UNIVERSITÄT KONSTANZ
Fachbereich Physik
Prof. Dr. Guido Burkard
Dr. Regina Finsterhoelzl
Dr. Balázs Gulácsi
https://tinyurl.com/QC-WS23

Quantencomputing und Quantensimulation

 Wintersemester 2023 - Übungsblatt 9
Ausgabe: 12.01.2024, Abgabe: 19.01.2024, Übungen: 22.01.2024

Aufgabe 22: Landau-Zener formula (5 points)

Consider the Hamiltonian operator of a two-level system (qubit),

$$
H(t)=\left(\begin{array}{cc}
\frac{-\alpha t}{2} & V \\
V & \frac{\alpha t}{2}
\end{array}\right)
$$

a) (oral) Sketch the time dependence of the eigenvalues of the Hamiltonian, for $V=0$ and for an arbitrary $V>0$.
b) (1 point) Assume that the wavefunction is given by $|\psi(t)\rangle=\left(c_{1}(t), c_{2}(t)\right)^{T}$. Show that the coefficients of the wavefunction for $V=0$ are $c_{1 / 2}(t)=c_{1 / 2}(0) \exp \left(\pm \frac{i \alpha t^{2}}{4 \hbar}\right)$.
c) (2 points) Let us consider the case $V>0$. In order to obtain an approximation, we use variation of parameters on the solution of problem b),

$$
c_{1 / 2}(t)=\tilde{c}_{1 / 2}(t) \exp \left(\pm \frac{i \alpha t^{2}}{4 \hbar}\right)
$$

Show that the parameters $\tilde{c}_{1 / 2}(t)$ satisfy the system of differential equations,

$$
\begin{aligned}
i \hbar \frac{\partial \tilde{c}_{1}(t)}{\partial t} & =\tilde{c}_{2}(t) V \exp \left(-\frac{i \alpha t^{2}}{2 \hbar}\right) \\
i \hbar \frac{\partial \tilde{c}_{2}(t)}{\partial t} & =\tilde{c}_{1}(t) V \exp \left(\frac{i \alpha t^{2}}{2 \hbar}\right)
\end{aligned}
$$

d) (2 points) Assume now that the system initially was in the lower energy level: $c_{2}(t \rightarrow-\infty)=1$. Use the approximation $\tilde{c}_{2}(t) \approx 1$ to obtain $\tilde{c}_{1}(t \rightarrow \infty)$. Calculate the first order correction to $\left|c_{2}(t \rightarrow \infty)\right|^{2}$. What does $\left|c_{2}(t \rightarrow \infty)\right|^{2}$ describe? Compare this solution with the exact one,

$$
\left|c_{2}(t \rightarrow \infty)\right|^{2}=\exp \left(-\frac{2 \pi V^{2}}{\hbar \alpha}\right)
$$

Pro tip: Use $\int_{-\infty}^{\infty} \mathrm{d} x \exp \left(-a x^{2}\right)=\sqrt{\pi / a}$.

Aufgabe 23: Trotter-Suzuki Formula (5 points)

Given the Hamiltonian $H=A+B$ with $[A, B] \neq 0$, we want to calculate the corresponding time evolution operator $U(t)=\exp \left(-\frac{i}{\hbar} H t\right)$ with the help of the Trotter-Suzuki formula.
a) (1 point) Compare the given time evolution operator with the following approximated form: $U_{T S}(t)=\exp \left(-\frac{i}{\hbar} A t\right) \exp \left(-\frac{i}{\hbar} B t\right)$. Show that these operators are identical up until second order in time $\mathrm{O}\left(t^{2}\right)$, therefore $U_{T S}(t)$ can be regarded as a linear approximation to $U(t)$.
b) (oral) What advantage does $U_{T S}(t)$ have over the more direct linear approximation $U(t) \approx$ $\mathbb{1}-\frac{i}{\hbar} H t$? Hint: What properties should a time evolution operator fulfill?
c) (2 points) Show that $U(t)$ can be approximated by $U(t) \approx U_{T S}(t / n)^{n}$ for arbitrarily long times t.

Now consider the rotation of a qubit along the axis $\boldsymbol{n}=\frac{1}{\sqrt{2}}(1,0,1)^{T}$ with an angle of α, given by $U(\alpha)=\exp (-i \alpha \boldsymbol{n} \cdot \boldsymbol{\sigma} / 2)$. We now want to use the Trotter Suzuki formula to represent this rotation by alternating rotations around the $\hat{\boldsymbol{x}}$ - and $\hat{\boldsymbol{z}}$-axis.
d) (2 points) Define $U_{T S}(\alpha)$. Sketch $\left.\left|\langle+| U^{\dagger}(\alpha) U_{T S}(\alpha / n)^{n}\right|+\right\rangle\left.\right|^{2}$ for three different rotation angles α as a function of n and discuss the results.
Note: 1 point for three different rotation angles with $n=1$ and one point for the dependence on n. The dependence on n can be calculated using MATLAB or MATHEMATICA.

