UNIVERSITÄT KONSTANZ
Fachbereich Physik
Prof. Dr. Guido Burkard
Dr. Regina Finsterhoelzl
Dr. Balázs Gulácsi
https://tinyurl.com/QC-WS23

Quantencomputing und Quantensimulation

Wintersemester 2023 - Übungsblatt 10
Ausgabe: 19.01.2024, Abgabe: 26.01.2024, Übungen: 29.01.2024

Aufgabe 24: Jordan-Wigner Transformation (8 points)

In the lecture, the Jordan-Wigner transformation was introduced to transform fermionic systems into spin systems, which can be simulated on a quantum computer. The vacuum state (the state without particles) is simulated as a spin up state and the one-particle state as a spin down state,

$$
|0\rangle=a|1\rangle \equiv|\uparrow\rangle, \quad|1\rangle=a^{\dagger}|0\rangle \equiv|\downarrow\rangle .
$$

At first sight, this gives us an equivalence between the ladder operators of the spin states $\sigma_{ \pm}=$ $1 / 2\left(\sigma_{x} \pm i \sigma_{y}\right)$ and the creation and annihilaton operators of the fermions $a^{(\dagger)}$,

$$
a \equiv \sigma_{+}, \quad a^{\dagger} \equiv \sigma_{-} .
$$

a) (1 point) Use $\left[\sigma_{+}, \sigma_{-}\right]=\sigma_{z}$ to show $1-2 a^{\dagger} a \equiv \sigma_{z}$.

Let us now consider fermions on a chain. This shows that the above equivalence no longer works, as the creation and annihilation operators for different lattice sites $(i \neq j)$ has to anti-commute, however for different lattice sites the ladder operators commute,

$$
a_{i}^{\dagger} a_{j}^{\dagger}=-a_{j}^{\dagger} a_{i}^{\dagger} \quad \leftrightarrow \quad \sigma_{i,-} \sigma_{j,-}=\sigma_{j,-} \sigma_{i,-} .
$$

In order to express this property using the spin operators, the transformation

$$
a_{i} \rightarrow \sigma_{i,+} \otimes_{k=1}^{i-1} \sigma_{k, z}, \quad a_{i}^{\dagger} \rightarrow \sigma_{i,-} \otimes_{k=1}^{i-1} \sigma_{k, z}
$$

is performed. We therefore accumulate a phase of -1 per spin down state on the lattice sites before i.
b) (2 points) Show that this preserves the canonical anti-commutation relations $\left\{a_{i}, a_{j}^{\dagger}\right\}=\delta_{i, j}$ and $\left\{a_{i}, a_{j}\right\}=0$.
c) (1 point) Show that $a_{n}^{\dagger} a_{n+1} \equiv \sigma_{n,-} \sigma_{n+1,+}$.
d) (1 point) Use the Jordan-Wigner transformation on the following fermionic Hamiltonian

$$
H=\sum_{n} J_{z}\left(1-2\left(a_{n}^{\dagger} a_{n}+a_{n+1}^{\dagger} a_{n+1}\right)-4 a_{n}^{\dagger} a_{n+1}^{\dagger} a_{n} a_{n+1}\right)+\frac{J_{\perp}}{2}\left(a_{n}^{\dagger} a_{n+1}+a_{n+1}^{\dagger} a_{n}\right)
$$

to obtain

$$
H=\sum_{n} J_{z} \sigma_{n, z} \sigma_{n+1, z}+\frac{J_{\perp}}{2}\left(\sigma_{n,-} \sigma_{n+1,+}+\sigma_{n,+} \sigma_{n+1,-}\right)
$$

The Jordan-Wigner transformation uses the occupation number representation. An alternative formulation is given by using the so-called parity basis. In the parity basis, the state of the i th qubit q_{i} is given by the formula $q_{i}=\sum_{j<i} f_{j} \bmod 2$, where f_{i} describes the state of the i th qubit in the occupation number representation ($f_{i}=1$ if a fermion occupies lattice site i). This alternative transformation is obtained as

$$
\begin{aligned}
& a_{i} \rightarrow \otimes_{k=0}^{M-i-1} \sigma_{M-k, x} \sigma_{i, x} \sigma_{i-1, z}+i \otimes_{k=0}^{M-i-1} \sigma_{M-k, x} \sigma_{i, y}, \\
& a_{i}^{\dagger} \rightarrow \otimes_{k=0}^{M-i-1} \sigma_{M-k, x} \sigma_{i, x} \sigma_{i-1, z}-i \otimes_{k=0}^{M-i-1} \sigma_{M-k, x} \sigma_{i, y} .
\end{aligned}
$$

d) (1 point) Write the state $|10100111\rangle$ given in the occupation number representation in the parity basis.
e) (2 points) Show that this transformation also preserves the canonical anti-commutation relations $\left\{a_{i}, a_{j}^{\dagger}\right\}=\delta_{i, j}$ and $\left\{a_{i}, a_{j}\right\}=0$.

Aufgabe 25: Simulation of a one dimensional particle (3 points)

We consider the simulation of a one dimensional particle with the Hamiltonian

$$
H=\frac{1}{2} p^{2}+V(x) .
$$

In order to simulate this Hamiltonian with a circuit, we discretize space by using the (dimensionless) position operator $x=\sum_{x} x|x\rangle\langle x|$ and the approximated (dimensionless) momentum operator $p=-\frac{i}{2} \sum_{x}(|x+1\rangle\langle x|-|x-1\rangle\langle x|)\left(x\right.$ here represents a binary number and $x \Delta x=x L / 2^{n}$ describes the actual location). A general state $|\psi\rangle$ can then be described by $|\psi\rangle=\sum_{x} \psi(x \Delta x)|x\rangle$, where $\psi(x \Delta x)$ represents the wave function.
a) (1 point) Given the state $|p\rangle=U_{\mathrm{QFT}}|x\rangle$ with $U_{\mathrm{QFT}}=\frac{1}{\sqrt{2^{n}}} \sum_{y} e^{2 \pi i x y / 2^{n}}|y\rangle\langle x|$. Calculate $p|p\rangle$ for both the exact operator $p=-i \partial_{x}$ and its discretized approximation and compare the results.
b) (2 points) To implement the effect of the potential, the unitary mapping

$$
U_{V}:|x\rangle|y\rangle \rightarrow|x\rangle|y \oplus \Delta t V(x)\rangle
$$

is used. Show that the circuit shown below produces the state

$$
U_{V}|\psi(0)\rangle U_{\mathrm{QFT}}^{\dagger}|1\rangle=\sum_{x=1}^{2^{n}-1}\langle x \mid \psi(0)\rangle e^{-2 \pi i \Delta t V(x) / 2^{t}}|x\rangle U_{\mathrm{QFT}}^{\dagger}|1\rangle
$$

