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Multilevel quantum description of decoherence in superconducting qubits

Guido Burkard, Roger H. Koch, and David P. DiVincenzo
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We present a multilevel quantum theory of decoherence for a general circuit realization of a superconducting
qubit. Using electrical network graph theory, we derive a Hamiltonian for the circuit. The dissipative circuit
elements~external impedances, shunt resistors! are described using the Caldeira-Leggett model. The master
equation for the superconducting phases in the Born-Markov approximation is derived and brought into the
Bloch-Redfield form in order to describe multilevel dissipative quantum dynamics of the circuit. The model
takes into account leakage effects, i.e., transitions from the allowed qubit states to higher excited states of the
system. As a special case, we truncate the Hilbert space and derive a two-level~Bloch! theory with character-
istic relaxation (T1) and decoherence (T2) times. We apply our theory to the class of superconducting flux
qubits; however, the formalism can be applied for both superconducting flux and charge qubits.
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I. INTRODUCTION

Since the famous cat paradox was formulated
Schrödinger,1 the question of whether the range of validity
quantum mechanics in principle extends to macroscopic
jects has been a long-standing open problem. While ma
scopic quantum tunneling was observed in seve
experiments,2–5 there is less experimental evidence for ma
roscopic quantum coherence. The experimental study
macroscopic superconducting circuits comprising lo
capacitance Josephson junctions as a physical impleme
tion of a quantum computer~see Ref. 6 for a review! repre-
sents a new test for macroscopic quantum coherence. O
theory side, the effect of dissipation on macroscopic qu
tum tunneling and macroscopic quantum coherence was
into a quantitative phenomenological model by Caldeira a
Leggett.7

The fundamental building block of a quantum comput8

is the quantum bit~qubit!—a quantum-mechanical two-sta
system that can be initialized, controlled, coupled to ot
qubits, and read out at the end of a quantum computat
Presently, three prototypes of superconducting qubits
studied experimentally. The charge (EC@EJ) and the flux
(EJ@EC) qubits are distinguished by their Josephson ju
tions’ relative magnitude of charging energyEC and Joseph-
son energyEJ . A third type, the phase qubit,9 operates in the
same regime as the flux qubit, but consists of a single
sephson junction. In all of these systems, the quantum s
of the superconducting phase differences across the Jos
son junctions in the circuit contain the quantum informatio
i.e., the state of the qubit. Since the superconducting pha
a continuous variable similar to, e.g., the position of a p
ticle, superconducting qubits~two-level systems! have to be
obtained by truncation of an infinite-dimensional Hilbe
space. This truncation is only approximate for various r
sons:~i! because it may not be possible to prepare the in
state with perfect fidelity in the lowest two states,~ii ! be-
cause of erroneous transitions to higher levels~leakage ef-
fects! due to imperfect gate operations on the system,
~iii ! because of erroneous transitions to higher levels du
the unavoidable interaction of the system with the envir
0163-1829/2004/69~6!/064503~20!/$22.50 69 0645
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ment. One result of the present work is a quantitative e
mate of the effect of errors of type~iii ! by studying the
multileveldynamics of a superconducting circuit containin
dissipative elements. The multilevel dynamics and leakag
superconducting qubits may be related to the observed
ited visibility of coherent oscillations. Previous theoretic
works on the decoherence of superconducting qubits10–13

have typically relied on the widely used spin-boson mo
that postulatesa purely two-level dynamics, therefore ne
glecting leakage effects. Reference 11 includes the dynam
of an attached measurement device, thus going beyond
standard spin-boson model while still making thea priori
two-level assumption.

In this paper, we present a general multilevel quant
theory of decoherence in macroscopic superconducting
cuits and apply it to circuits designed to represent flux qub
i.e., in the regimeEJ@EC . However, the same formalism
can be applied to charge qubits. Flux qubits have been
posed and studied experimentally by several groups.14–19

The first step in our analysis is the derivation of a Lagrang
and Hamiltonian from the classical dynamics of a superc
ducting circuit; the Hamiltonian is then used as the basis
our quantum theory of the superconducting circuit. Wh
deriving the Lagrangian and Hamiltonian of a dissipatio
free electrical circuit is—at least in principle—rathe
straightforward, different possible representations of dissi
tive elements~such as resistors! can be found in the litera-
ture. One possibility is the representation of resistors
transmission lines,20–22 i.e., an infinite set of dissipation-fre
elements~capacitors and inductors!. Here, we use a relate
but different approach following Caldeira and Leggett
modeling each resistive element by a bath of harmonic
cillators that are coupled to the degrees of freedom of
circuit7,23,24~see also Refs. 26, 27 for extensive reviews!.

We develop a general method for deriving a Hamiltoni
for an electrical circuit containing Josephson junctions us
network graph theory.28 A similar approach, combining net
work graph theory with the Caldeira-Leggett model for d
sipative elements, was proposed by Devoret.24 On a more
microscopic level, circuit theory was also used in combin
tion with Keldysh Green functions in order to obtain the fu
©2004 The American Physical Society03-1



pi
he
th
rk
s
u

su
on
rm

ic
b
te

ive

he
la

re
d
er
ka
te

ol-

-

en
.

ph

the

is
tain

s all
stors

he
er
ith
ord
the
on

ph
e

in
to

b-
that

GUIDO BURKARD, ROGER H. KOCH, AND DAVID P. DiVINCENZO PHYSICAL REVIEW B69, 064503 ~2004!
counting statistics of electron transport in mesosco
systems.25 Here, we give explicit general expressions for t
Hamiltonian in terms of the network graph parameters of
circuit. We apply our theory to Josephson junction netwo
that are currently under study as possible candidates for
perconducting realizations of quantum bits. By tracing o
the degrees of freedom of the dissipative elements~e.g., re-
sistors!, we derive a generalized master equation for the
perconducting phases. In the Born-Markov approximati
the master equation is cast into the particularly useful fo
of the Bloch-Redfield equations.29 Since we do not start from
a spin-boson model, we can describe multilevel dynam
and thus leakage, i.e., transitions from the allowed qu
states to higher excited states of the superconducting sys
As a special case, we truncate the Hilbert space and der
two-level ~Bloch! theory with characteristic relaxation (T1)
and decoherence (T2) times.

II. OVERVIEW AND RESULTS

Before presenting a formal derivation, we explain t
main results and show how they can be applied to calcu
the relaxation, decoherence, and leakage timesT1 , T2, and
TL of a superconducting qubit. Our theory is capable of p
dicting more than these quantities since it can be use
model the evolution of the entire density matrix. Howev
we concentrate on the relaxation, decoherence, and lea
time in order to keep the discussion simple. For concre
ness, we discuss the IBM qubit,19 which is described by the
electrical circuit drawn in Fig. 1. The procedure is as f
lows.

~1! Draw and label anetwork graphof the superconduct
ing circuit, in which each two-terminal element~Josephson
junction, capacitor, inductor, external impedance, curr
source! is represented as a branch connecting two nodes
Fig. 1, the IBM qubit is represented as a network gra
where thick lines are used as a shorthand forRC-shunted

FIG. 1. The IBM qubit. This is an example of a network gra
with 6 nodes and 15 branches. Each thick line represents a Jos
son element, i.e. three branches in parallel, see Fig. 2. Thin l
represent simple two-terminal elements, such as linear induc
(L,K), external impedances (Z), and current sources (I B).
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Josephson junctions~see Fig. 2!. A convention for the direc-
tion of all branches has to be chosen—in Figs. 1 and 2,
direction of branches is represented by an arrow.

~2! Find a tree of the network graph. A tree of a graph
a set of branches connecting all nodes that does not con
any loops. Here, we choose the tree such that it contain
capacitors, as few inductors as possible, and neither resi
~external impedances! nor current sources~see Sec. III B for
the conditions under which this choice can be made!. The
tree of Fig. 1 that will be used here is shown in Fig. 3. T
branches in the tree are called ‘‘tree branches’’; all oth
branches are called ‘‘chords.’’ Each chord is associated w
the one unique loop that is obtained when adding the ch
to the tree. The orientation of a loop is determined by
direction of its defining chord. For example, the orientati
of the loop pertaining toL1 ~large circle in Fig. 1! is anti-
clockwise in Fig. 1.

ph-
es
rs

FIG. 2. A Josephson subgraph~thick line! consists of three
branches; a Josephson junction~cross!, a shunt capacitor (C), a
shunt resistor (R), and no extra nodes.

FIG. 3. A tree for the circuit shown in Fig. 1. A tree is a su
graph containing all nodes and no loop. Here, we choose a tree
contains all capacitors (C), some inductors (K), but no current
sources (I B) or external impedances (Z).
3-2
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~3! Find the loop submatricesFCL , FCZ , FCB , FKL , FKZ ,
andFKB . The loop submatrices have entries11, 21, or 0,
and hold the information about the important interconn
tions in the circuit. The matrixFXY determines which tree
branchesX ~either capacitorsX5C or inductorsX5K) are
present in which loop defined by the chordsY ~inductorsY
5L, external impedancesY5Z, or current sourcesY5B).
In order to find, e.g., the loop submatrixFCL for the IBM
circuit ~Figs. 1 and 3!, we have to identify all loops obtaine
by adding a chord inductor (L). Each column inFCL corre-
sponds to one such loop. In our example, there are two ch
inductorsL1 and L3; the corresponding loops are the ma
superconducting loop~large circle! and the control loop
~small circle!. Each row inFCL stands for one capacitorC;
therefore, in our example,FCL is a 3 by 2matrix. The entries
in each column ofFCL are 1, 21, or 0, depending on
whether the corresponding capacitor~row! belongs to the
corresponding loop~column! with the same (21) or oppo-
site (11) orientation or does not belong to the loop at
~0!. For example, for our example@see Eq.~157!#

FCL5S 1 0

21 1

0 21
D .

The first column says that the capacitorC1 ~part of J1) be-
longs to the large loop~in the opposite direction, thus11),
capacitorC2 ~part of J2) belongs to the large loop~in the
same direction, thus21), while capacitorC3 ~part of J3)
does not belong to the large loop at all. Similarly, the seco
column ofFCL says which of the capacitors are contained
the small loop.

~4! Use the inductances~self and mutual!

L t5S L L LK

LLK
T LK

D ~1!

and external impedancesZ(v) to calculate the matricesM0 ,
N, m̄, S using Eqs.~62!, ~63!, ~65!, and ~66!; for a single
external impedance, also use Eqs.~73!–~75! to calculate the
function K(v), the coupling strengthm and the unit vector
m. The block form of the inductance matrixL t originates
from the distinction between tree~K! and chord~L! induc-
tors;L is the chord inductance matrix~including chord-chord
mutual inductances as its off-diagonal elements!, LK is the
tree inductance matrix, andLLK is the tree-chord mutual in
ductance matrix. The Hamiltonian, Eqs.~77!–~82!, together
with the bath spectral densityJ(v)}Im K(v), Eq. ~93!, rep-
resents the quantum theory of the system including the
sipative environment. The form of this Hamiltonian, in pa
ticular Eqs.~62!–~66! are the first main results of this pape
The evolution of the density matrixr of the superconducting
phases only is determined by the Bloch-Redfield equa
~107! with the Redfield tensor given by Eqs.~111! and~114!,
representing our second main result.

~5! Find the eigenstates and eigenenergies of the sys
Hamiltonian ~78! and calculate the matrix elements of th
superconducting phase operatorsw. In practice, this task is
06450
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usually done numerically or using some approximatio
Typically, only a finite number of eigenstates is known.

~6! For two given quantum levelsu0& and u1&, the relax-
ation time T1 and pure dephasing timeTf can be found
using Eqs.~124! and ~125!; the decoherence time is the
given by

1

T2
5

1

2T1
1

1

Tf
.

The leakage rateTL
21 is given by Eq.~150!.

We have carried out the above program for two cases;
the IBM qubit19 ~Fig. 1! in Sec. VIII and for the Delft
qubit14,15 ~Fig. 6! in Sec. IX. For the IBM qubit, matrix ele-
ments were calculated numerically; the relaxation and de
herence times in the case of a current-biased circuit are p

FIG. 4. Relaxation timeT1, decoherence timeT2, and pure
dephasing timeTf for the current-biased IBM qubit as a function o
the control fluxFc around the pointFc5F0/2. The main fluxF is
chosen such that the resulting double-well is always symme
While Tf diverges at the pointFc5F0/2 where ^0um•wu0&
5^1um•wu1&, T1 has a minimum at that point. The inductances f
this example areL15L45100 pH ~main loop! andL25L354 pH
~control loop!. The capacitance and critical current of the junctio
areC50.1 pF andI c58.5 mA (LJ5F0/2pI c539 pH). The exter-
nal impedance is assumed to beZ(0)52.5 kV at zero frequency
and Z(v01)510 kV at the transition frequencyv01; the tempera-
ture of the external impedance is taken to be 30 mK.
3-3
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ted in Fig. 4. For the Delft qubit, a semiclassical approa
was taken, and earlier results by van der Walet al.12 for
a symmetric superconducting quantum interference de
~SQUID! are correctly reproduced. In addition to this, t
effect of SQUID asymmetries—either in the self-inductan
or in the critical currents of the two junctions—are calculat
in Sec. IX C. It turns out that typical sample-to-sample flu
tuations of the critical current of about 10% can lead to
sizable decoherence rate at zero bias current.

III. CLASSICAL NETWORK THEORY

The goal of this section is to derive a classical Ham
tonian for an electrical circuit containing superconducti
elements, such as Josephson junctions. An electric cir
will be represented by an oriented graph28 G5(N,B), see
Fig. 1 for an example.

A. Graph theory

An oriented graph31 G5(N,B) consists ofN nodesN
5$n1 , . . . ,nN% andB branchesB5$b1 , . . . ,bB%. In circuit
analysis, a branchbi5(na( i ) ,nb( i )) represents a two-termina
element ~resistor, capacitor, inductor, current, or volta
source, etc.!, connecting its beginning nodena( i ) to its end-
ing nodenb( i ) . The degree of a nodenPN is the number of
branches containingn. A loop in G is a subgraph ofG in
which all nodes have degree 2. The number of disjoint c
nected subgraphs which, taken together, make upG, will be
denotedP and the subgraphsGi , each havingNi nodes and
Bi branches (i 51, . . . ,P), where ( i 51

P Ni5N and ( i 51
P Bi

5B. For each connected subgraph we choose a treeTi , i.e.,
a connected subgraph ofGi which contains all its nodes an
has no loops. Note thatTi has exactlyNi21 branches. The
Bi2Ni11 branches that do not belong to the tree are ca
chords. The tree of the graphG is the union of the trees of al
its subgraphsTi containingN2P branches. A tree of the
graph shown in Fig. 1 is shown in Fig. 3. The fundamen
loopsFi of a subgraphGi are defined as the set of loops inGi
which contain exactly one chordf iPGi\Ti . We define the
orientation of a fundamental loop via the orientation of
chord f i . Each connected subgraphGi has Fi5Bi2Ni11
fundamental loops, i.e., the graph hasF5( i 51

P Fi5B2N
1P fundamental loops~one for each chord!. A cutset of a
connected graph is a set of a minimum number of branc
that, when deleted, divides the graph into two separate
graphs. A fundamental cutset of a graph with respect to a
is a cutset that is made up of one tree branchci and a unique
set of chords. We denote the set of fundamental cutsets oGi
with respect to the treeTi with Ci . Each connected subgrap
has Ni21 fundamental cutsets, therefore there areN2P
fundamental cutsets in total~one for each tree branch!.

We will use two characteristic matrices of the netwo
graph, the fundamental loop matrix (i 51, . . . ,F; j
51, . . . ,B)

Fi j
(L)5H 1 if bjPFi ~same direction asf i!,

21 if bjPFi ~direction opposite tof i!,

0 if bj¹Fi

~2!
06450
h

e

e

-
a

-

it

-

d

l

es
b-
ee

and the fundamental cutset matrix (i 51, . . . ,N1P; j
51, . . . ,B)

Fi j
(C)5H 1 if bjPCi ~same direction asci!,

21 if bjPCi ~direction opposite toci!,

0 if bj¹Ci .

~3!

By observing that cutsets always intersect loops in as m
ingoing as outgoing branches, one finds

F(L)~F(C)!T50. ~4!

By labeling the branches of the graphG such that the first
N2P branches belong to the treeT, we obtain

F(C)5~1uF!, ~5!

whereF is an (N1P)3(B2N2P) matrix. Using Eq.~4!,
we find

F(L)5~2FTu1!. ~6!

B. Electric circuits

The state of an electric circuit described by a netwo
graph can be defined by the branch currentsI
5(I 1 , . . . ,I B), whereI i denotes the electric current flowin
in branch bi , and the branch voltagesV5(V1 , . . . ,VB),
whereVi denotes the voltage drop across the branchbi . The
sign of I i is positive if a positive current flows from nod
na( i ) to nb( i ) and negative if a positive current flows from
nodenb( i ) to na( i ) ; Vi is positive if the electric potential is
higher at nodena( i ) than at nodenb( i ) .

The conservation of electrical current, combined with t
condition that no charge can be accumulated at a node,
plies Kirchhoff’s current law

F(C)I50. ~7!

In a lumped circuit, energy conservation implies Kirchhoff
voltage law in the form

F(L)V50. ~8!

External magnetic fluxesF5(F1 , . . . ,FB2N1P) threading
the loops of the circuit represent a departure from the st
lumped circuit model; if they are present, Faraday’s law
quires that

F(L)V5Ḟ. ~9!

External fluxes have to be distinguished from the fluxes
sociated with lumped circuit elements~e.g., inductors, see
below!.

We divide the branch currents and voltages into a tree
a chord part

I5~ I tr ,I ch!, ~10!

V5~Vtr ,Vch!. ~11!
3-4
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The 2B branch currents and voltages are not independ
the Kirchhoff laws Eqs.~7! and ~9! together with Eqs.~5!
and ~6! yield the followingB equations relating them:

FI ch52I tr , ~12!

FTVtr5Vch2Ḟ. ~13!

As an example, theN1P tree branch voltagesVtr combined
with the B-N-P chord currentsI ch completely describe the
state of a network, since all other currents and voltages
be obtained from them via Eqs.~12! and ~13!. However, in
the following, we will use a different subset of variables, a
making use of theB equations that are derived from th
current-voltage relations of the individual branch elemen

C. Circuits containing superconducting elements

For the purpose of analyzing electric circuits containi
Josephson junctions, we adopt the RSJ model for a Jos
son junction, i.e., a junction shunted by a capacitor an
resistor, see Fig. 3. We treat the Josephson junctions as
linear inductors. A~flux controlled! nonlinear inductor28 is a
two-terminal circuit element that follows a relation betwe
the time-dependent currentI (t) flowing through it and the
voltageV(t) across it of the form

I ~ t !5 f „F~ t !…, ~14!

whereḞ(t)[V(t) andf is an arbitrary function. For a linea
inductor, f (x)5x/L, with L the inductance.

We begin our analysis by choosing a tree containing al
the capacitors in the network, no resistors or external imp
ances, no current sources, and as few inductors as pos
~in particular, no Josephson junctions!. We assume here tha
the network does not contain any capacitor-only loo
which is realistic because in practice any loop has a nonz
inductance. A network is called proper if in addition to th
it is possible to choose a tree without any inductors~i.e., if
there are no inductor-only cutsets!.28 Again, it can be argued
that this is realistic since there always are~at least small!
capacitances between different parts of a network. But
have avoided making the latter assumption here becau
spares us from describing the dynamics of small paras
capacitances. We further assume that each Josephson
tion is shunted by a finite capacitance, so that we are ab
choose a tree without any Josephson junctions. Finally,
assume for simplicity that the circuit does not contain a
voltage sources; however, voltage sources could easily
incorporated into our analysis.

We divide up the tree and chord currents and volta
further, according to the various branch types

I tr5~ IC ,IK!, I ch5~ I J ,IL ,IR ,IZ ,IB!, ~15!

Vtr5~VC ,VK!, Vch5~VJ ,VL ,VR ,VZ ,VB!, ~16!

where the tree current and voltage vectors contain a capa
~C! and tree inductor~K! part, whereas the chord current an
voltage vectors consist of parts for chord inductors, b
06450
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nonlinear~J! and linear (L), shunt resistors~R! and other
external impedances (Z), and bias current sources (B). Ac-
cordingly, we write

F5S FCJ FCL FCR FCZ FCB

FKJ FKL FKR FKZ FKB
D . ~17!

The submatricesFXY will be called loop submatrices. Not
that since Josephson junctions are always shunted by a
pacitor as a tree branch, there are never any tree inducto
parallel with a Josephson junctionFKJ50. As a conse-
quence, a tree inductor is never in parallel with a shunt
sistorFKR50.

We then formally define the branch charges and flu
(X5C,K,J,L,R,Z,B),

IX~ t !5Q̇X~ t !, ~18!

VX~ t !5ḞX~ t !. ~19!

Using the second Josephson relation and Eq.~19!, we iden-
tify the formal fluxes associated with the Josephson juncti
as the superconducting phase differencesw across the junc-
tions

FJ

F0
5

w

2p
, ~20!

whereF05h/2e is the superconducting flux quantum. It wi
be assumed that at some initial timet0 ~which can be taken
as t0→2`), all charges and fluxes~including the external
fluxes! are zero,QX50, FX50 ~including w50), andF
50.

The current-voltage relations for the various types
branches are

I J5I c sinw, ~21!

QC5CVC , ~22!

IL5L̄21FL2L21LLKL̄K
21FK , ~23!

IK5L̄K
21FK2LK

21LLK
T L̄21FL , ~24!

VR5RIR , ~25!

VZ~v!5Z~v!IZ~v!, ~26!

where Eq.~21! is the first Josephson relation for the Josep
son junctions~flux-controlled nonlinear inductors!, where
the diagonal matrix I c contains the critical currents
I c,i of the junctions on its diagonal, andsinw
[(sinw1,sinw2, . . . ,sinwNJ

). Equation ~22! describes the

~linear! capacitors (C is the capacitance matrix!, Eqs. ~23!
and ~24! the linear inductors, see Eqs.~32! and ~33! below.
The junction shunt resistors are described by Eq.~25! where
R is the ~diagonal and real! shunt resistance matrix. The ex
ternal impedances are described by the relation~26! between
the Fourier transforms of the current and voltage, wh
3-5
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Z(v) is the impedance matrix. The external impedances
also defined in the time domain

VZ~ t !5E
2`

t

Z~ t2t!IZ~t!dt[~Z* IZ!~ t !, ~27!

where the convolution is defined as

~ f* g!~ t !5E
2`

t

f~ t2t!g~t!dt. ~28!

Causality allows the response function to be nonzero only
positive times,Z(t)50 for t,0. In frequency space, th
replacementv→v1 i e with e.0 guarantees convergenc
of the Fourier transform32

Z~v!5E
2`

`

Z~ t !eivtdt5E
0

`

Z~ t !eivtdt. ~29!

In order to obtain Eq.~23! for the inductors, we write

S FL

FK
D 5S L L LK

LLK
T LK

D S IL

IK
D[L tS IL

IK
D , ~30!

whereL and LK are the self-inductances of the chord a
tree branch inductors, respectively, off-diagonal elements
scribing the mutual inductances among chord inductors
tree inductors separately, andLLK is the mutual inductance
matrix between tree and chord inductors. Since the total
ductance matrix is symmetric and positive, i.e.,vTL tv.0 for
all real vectorsv, its inverse exists, and we find

S IL

IK
D 5S L̄21 2L21LLKL̄K

21

2LK
21LLK

T L̄21 L̄K
21 D S FL

FK
D

[L t
21S FL

FK
D ~31!

with the definitions

L̄5L2LLKLK
21LLK

T , ~32!

L̄K5LK2LLK
T L21LLK . ~33!

Note that the matricesL andLK , being diagonal submatrice
of a symmetric and positive matrix, are also symmetric a
positive and thus their inverses exist. The operatorsL̄ andL̄K

as defined in Eqs.~32! and ~33! are invertible sinceL t
21

exists. Moreover, since the inverse of the total inducta
matrix, see Eq.~31!, is symmetric and positive, its diagon
submatrices are symmetric and positive, and thusL̄ ,L̄K.0.

D. Equations of motion

In order to derive a Lagrangian for an electric circuit, w
have to single out among the charges and fluxes a comp
set of unconstrained degrees of freedom, such that eac
signment of values to those charges and fluxes and their
time derivatives represents a possible dynamical state o
system. Using Eqs.~17!–~19!, ~21!–~26!, ~30!, and~31!, the
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time evolution of the charges and fluxes can be expresse
the following set of first-order integrodifferential equation

F0

2p
ẇ5VJ5FCJ

T C21QC , ~34!

Q̇C5IC52FCJI c sinw2FCRR21ḞR2FCL~ L̄21FL

2L21LLKL̄K
21FK!2FCZLZ

21* FZ2FCBIB , ~35!

ḞL5VL5FCL
T C21QC1FKL

T ḞK1Ḟx , ~36!

ḞR5VR5FCR
T C21QC , ~37!

ḞZ5VZ5FCZ
T C21QC1FKZ

T ḞK , ~38!

FK52LKF̄KLL̄21FL1LKF̄KLL21LLKL̄K
21FK

2LKFKZLZ
21* FZ2LKFKBIB , ~39!

whereLZ(v)[Z(v)/ iv, and where the convolution is give
by Eq. ~28!. In the equations for the chord variables Eq
~34!, ~36!, ~37!, and ~38!, we have assumed that only th
loops closed by a chord inductor~L! are threaded by an ex
ternal fluxF5(0,Fx,0,0,0). In order to obtain Eq.~39!, we
have first used Eq.~30!, then Eqs.~12! and~26!, and finally
Eq. ~31!. We can eliminateFK by solving Eq.~39!,

FK52L̃K~ F̄KLL̄21FL1FKZLZ
21* FZ1FKBIB!, ~40!

with the definitions

L̃K5~1K2LKF̄KLL21LLKL̄K
21!21LK , ~41!

F̄KL5FKL2LK
21LLK

T . ~42!

Further knowledge of the structure ofF can be derived
from the fact that Josephson junctions are always assume
beRCshunted, see Fig. 2. If we label the tree branches s
that the firstNJ<NC capacitances are the ones shunting
Josephson junctions (NC5number of capacitances,NJ
5number of Josephson junctions! then we find

FCJ5FCR5S 1NJ

0NC2NJ

D , ~43!

QC5S QCJ

QC̄
D , ~44!

whereC̄ denotes the capacitors which are not parallel shu
of a Josephson junction. In general, the charges of these
ditional capacitors represent independent degrees of free
in addition to the shunt capacitor chargesQCJ5F0Cẇ/2p.
But from this point onward, we will study the case whe
there are no capacitors except the Josephson junction s
capacitorsNC5NJ . However, the resulting equation of mo
3-6
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tion ~61! with the definitions~62!–~66! still allows us to
describe pure capacitors by treating them as Josephson
ments with zero critical currentI c and infinite shunt resis
tanceR. With this simplification

FCJ5FCR51, ~45!

and thew andẇ can be chosen as the 2NJ generalized coor-
dinates and velocities that satisfy the equation of motion

Cẅ52L J
21sinw2R21ẇ2

2p

F0
~FCLL̃L

21FL

1F̄CZLZ
21* FZ1F̄CBIB!, ~46!

where we have used Eqs.~34!, ~35!, and~40!, and introduced
L J

2152pI c /F0, and (Y5Z,B)

L̃L
215~1L1L21LLKL̄K

21L̃KF̄KL!L̄21, ~47!

F̄CY5FCY1FCLL21LLKL̄K
21L̃KFKY . ~48!

The remaining state variables obey the following linear re
tions:

LLLL̄21ḞL1LLZLZ
21* ḞZ5aL~ẇ!, ~49!

LZLL̄21ḞL1LZZLZ
21* ḞZ5aZ~ẇ!, ~50!

where we have introduced

LLL5L̄1FKL
T L̃KF̄KL , ~51!

LZZ5LZ1FKZ
T L̃KFKZ , ~52!

LLZ5FKL
T L̃KFKZ , ~53!

LZL5FKZ
T L̃KF̄KL , ~54!

aL~ẇ!5
F0

2p
FCL

T ẇ1Ḟx2FKL
T L̃KFKBİB , ~55!

aZ~ẇ!5
F0

2p
FCZ

T ẇ2FKZ
T L̃KFKBİB . ~56!

Note that in the absence of dissipation,LZ
21→0, Eqs. ~49!

and ~50! are holonomic constraints for the variablesḞL ,
since Eqs.~49! and~50! can be integrated. IfLLL , LZZ , and

L̄L5LLL2LLZLZZ
21LZL , ~57!

L̄Z5LZZ2LZLLLL
21LLZ , ~58!

are regular matrices, the solution to Eqs.~49! and ~50! is
given by

ḞL5L̄ L̄L
21@aL~ẇ!2LLZLZZ

21* aZ~ẇ!#, ~59!

ḞZ5LZL̄Z
21* @aZ~ẇ!2LZLLLL

21aL~ẇ!#. ~60!
06450
le-
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Note that in the limit of large external impedancesLZ→0,
the regularity conditions forLLL , LZZ , L̄L , and L̄Z all col-
lapse to the condition thatLLL be regular. The latter alway
holds in the absence of mutual inductances between tree
chord inductors, since in this caseF̄KL5FKL and thusLLL is
symmetric and positive, so that its inverse exists. Integra
Eqs.~59! and~60! from t0 to t, using the initial condition~all
charges and fluxes equal to zero!, and substituting the solu
tions into Eq. ~46!, we arrive at the classical equation o
motion for the superconducting phasesw,

Cẅ52L J
21sinw2R21ẇ2M0w2Md* w

2
2p

F0
NFx2

2p

F0
SIB , ~61!

with

M05FCLL̃L
21L̄LLL

21FCL
T , ~62!

N5FCLL̃L
21L̄LLL

21 , ~63!

Md~v!5m̄L̄Z
21~v!m̄T, ~64!

m̄5FCZ2FCL~LLL
21!TF̄KL

T L̃K
TFKZ , ~65!

S5FCB2FCL~LLL
21!TF̄KL

T L̃K
TFKB . ~66!

Although the expression~62! for the matrixM0 is not mani-
festly symmetric, we show in Appendix A that it is indee
symmetric, i.e.,M0

T5M0. This property ofM0 allows us to
write the termM0w in the equations of motion~61! as the
gradient of a potential, see Eq.~77! below. The matrices
Md(v) andR contain all the dissipative dynamics ofw; if all
external impedances~shunt resistors! are removed, then
LZ

21→0 and thusMd(v)→0 (R21→0). A proof of the sym-
metry of the dissipation matrixMd5Md

T , and a derivation of
the representation in Eqs.~64! and ~65! can be found in
Appendix B.

Note that the coupling matrixS to an external bias curren
IB can be obtained fromm̄ by replacingZ by B. Physically,
this means that the external impedancesZ can be thought of
as fluctuating external currents; in particular, if a bias curr
is shunted in parallel to an impedanceFXZ56FXB (X
5C,K) then we findS56m̄. In deriving the equation of
motion ~61!, we have assumed that the external magne
fluxes and bias currents become time independent after
have been switched on in the past,Ḟx→0, İB→0 (t.t0). In
the absence of mutual inductances between the tree
chord inductors,LKL50, Eqs.~62!–~66! become somewha
simpler,

M05FCLLLL
21FCL

T , ~67!

N5FCLLLL
21 , ~68!

m̄5FCZ2FCLLLL
21FKL

T LKFKZ , ~69!
3-7
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S5FCB2FCLLLL
21FKL

T LKFKB , ~70!

LLL5L1FKL
T LKFKL5LLL

T . ~71!

It should be noted here that from now on, the shunt re
tors R can be treated as external impedances by settingMd8
5Md1 ivR21; the only reason for treating the shunt res
tors separately is that more is known about the possible
rangement of the shunt resistors in the circuit. We w
mostly concentrate on external impedances in our exam
and neglect the shunt resistors, because in our examplR
@Z. If, in turn, the external impedances are pure resist
i.e., Z(v) is real and frequency independent, then they c
be described as corrections toR, i.e., R85R1Z.

A few important remarks about the form of the matrixMd
are in order.~i! We know thatMd(t) is real, causal@i.e.,
Md(t)50 for t,0], and symmetricMd5Md

T ~Appendix B!.
A dissipative term in the equations of motion with the
properties can be modeled using the Caldeira-Leg
formalism.7 ~ii ! In the lowest-order Born approximation, i.e
perturbation theory in the equation of motion in the sm
parametersZi

21 ~see below!, the contributions toMd from
different external impedances are additive, in the sense
one can calculateMd for each impedanceZi separately,
while Zj Þ i→`, and then add the contributions in order
obtain the full coupling Hamiltonian@see Eq.~82! below#. In
the same manner, the decoherence rates due to differen
pedances will be additive in the lowest-order Born appro
mation. An exact statement~independent of the Born ap
proximation! can be made ifL̄Z

21 can be written as a sum i
which every term contains only one of the impedancesZi ,
since in this caseMd5( i 51

NZ Md,i whereNZ denotes the num
ber of external impedances andMd,i(v) describes the effec
of Zi . From now on, we will study the case of a sing
external impedance, bearing in mind that in lowest-order p
turbation theory the results obtained in this way can easily
used to describe the dynamics of a system coupled to se
external impedances.~iii ! In the case of a single impedanc
Md(v) has the form

Md~v!5mK~v!mmT, ~72!

K~v!5L̄Z
21~v!, ~73!

m5um̄u2, ~74!

m5m̄/Am5m̄/um̄u, ~75!

where K(t) is a scalar real function,m is the normalized
vector parallel tom̄, andAm is the length of the vectorm̄ (m
is the eigenvalue of the rank 1 matrixm̄m̄T).

The dissipation free (R,Z→`, Md50) part of the clas-
sical equation of motion~61! can be derived from the La
grangian

L05S F0

2p D 2S 1

2
ẇTCẇ2U~w! D , ~76!
06450
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U~w!52(
i

LJ; i
21 cosw i1

1

2
wTM0w

1
2p

F0
wT~NFx1SIB!, ~77!

or, equivalently, from the Hamiltonian

HS5
1

2
QC

TC21QC1S F0

2p D 2

U~w!, ~78!

where the canonical momenta corresponding to the flux v
ablesF0w/2p are the capacitor charges

2p

F0

]L0

]ẇ
5

F0

2p
Cẇ5CVC[QC .

IV. CANONICAL QUANTIZATION OF HS AND
SYSTEM-BATH MODEL

In this section, we quantize the classical theory for a
perconducting circuit that was derived in the previous s
tion. The conjugate flux and charge variablesw andQC now
have to be understood as operators with the commuta
relations

F F0

2p
w i ,QC; j G5 i\d i j . ~79!

In order to include the dissipative dynamics of the classi
equation of motion~61! in our quantum description, we fol
low Caldeira and Leggett,7 and introduce a bath~reservoir!
of harmonic oscillators describing the degrees of freedom
the external impedances. We will restrict ourselves to
case of a single external impedance coupled to the cir
~this is sufficient to describe the general case in the low
order Born approximation, see Sec. III!. For the Hamiltonian
of the circuit including the external impedance, we write

H5HS1HB1HSB, ~80!

HB5
1

2 (
a

S pa
2

ma
1mava

2xa
2 D , ~81!

HSB5m•w(
a

caxa1DU~w!, ~82!

whereHS is the quantized Hamiltonian Eq.~78!, derived in
Sec. III,HB is the Hamiltonian describing a bath of harmon
oscillators with~fictitious! position and momentum operato
xa andpa with @xa ,pb#5 i\dab , massesma , and oscillator
frequenciesva . Finally,HSB describes the coupling betwee
the system and bath degrees of freedom,w andxa , whereca
is a coupling parameter andm is defined in Eqs.~65! and
~75!. The termDU(w)5(m•w)2(aca

2/2mava
2 compensates

the energy renormalization caused by the system-bath in
action ~first term!.7 It ensures that, for a fixed value ofw,

min
$xa%

@U~w!1HB~$xa%!1HSB~w,$xa%!#5U~w!, ~83!
3-8
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or, equivalently, that for allw

min
$xa%

@HB~$xa%!1HSB~w,$xa%!#50. ~84!

The termDU(w) will not be relevant for the Redfield theor
to be derived below.

In Eq. ~82!, we have already anticipated the form of th
system-bath interaction. In order to verify this and to det
mine the spectral density of the bath~the masses, frequen
cies, and coupling constants will only enter through t
quantity, see below!, we derive the classical equations
motion from the Hamiltonian Eq.~80! in the Fourier repre-
sentation. The equations of motion for the bath variables

2v2maxa52mava
2xa2cam•w. ~85!

Solving for xa , we obtain

xa5ca

m•w

ma~v22va
2 !

. ~86!

The equation of motion forw is

2v2Cw52
]U

]w
2S 2p

F0
D 2

m(
a

caxa . ~87!

Using Eq.~86!, we find

2v2Cw52
]U

]w
2S 2p

F0
D 2

m~m•w!(
a

ca
2

ma~v22va
2 !

.

~88!
Comparing Eq.~88! to the Fourier transform of Eq.~61!, and
using the decomposition Eqs.~72! we obtain the expression

K~v!5
1

m S 2p

F0
D 2

(
a

ca
2

ma~v22va
2 !

. ~89!

The spectral density of a bath of harmonic oscillators is
fined as7

J~v!5
p

2 (
a

ca
2

mava
d~v2va!; ~90!

combining Eqs.~89! and ~90!, we arrive at

K~v!5
1

m S 2p

F0
D 22

pE0

`

dv8
v8J~v8!

v22v82
. ~91!

We now use the replacementK(v)→K(v1 i e), sinceK(v)
is a function of the external impedanceZ(v), see Eq.~29!,

1

v2v8
5 lim

e→0

1

v2v81 i e
5P

1

v2v8
2 ipd~v82v!

and obtain

K~v!5
1

m S 2p

F0
D 2F 2

p
PE

0

`

dv8
v8J~v8!

v22v82
2 iJ~v!G .

~92!
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Comparing the imaginary parts, we have identified the sp
tral function of the bath~up to prefactors! with the imaginary
part of the functionK(v) derived in Sec. III from the theory
of electrical circuits

J~v!52mS F0

2p D 2

Im K~v!. ~93!

The real parts of Eq.~92! agree due to the Kramers-Kroni
relation forK(v),

ReK~v!52
2

p
PE

0

`

dv8
v8Im K~v8!

v22v82
, ~94!

which can be derived from the causality relationK(t,0)
50, following from Eq.~29!.

V. MASTER EQUATION

Starting from the quantum theory for an electrical circ
containing Josephson junctions and dissipative elem
~78!–~82! we derive in this section a generalized mas
equation for the dynamics of the Josephson phases only.
equation of motion for the density matrix of the whole sy
tem ~superconducting phases plus reservoir modes in the
ternal impedances! is given by the Liouville equation

ṙ~ t !52 i @H,r~ t !#[2 iLr~ t !. ~95!

Following from Eq.~80!, the Liouville superoperatorL is the
sum of the Liouville superoperators corresponding to
parts Eqs.~78!, ~81!, and ~82! of the HamiltonianL5LS
1LB1LSB, whereLXr[@HX ,r# for X5S,B,SB. In order
to study the dynamics of the system without the bath,
take the partial trace over bath modes

rS~ t !5TrB r~ t !. ~96!

From Eq. ~95! and with the additional assumption that th
initial state of the whole system is factorizable into a syst
part rS(0) and an equilibrium bath part

rB5Z B
21 exp~2bHB!, ~97!

with the bath partition functionZB5Tr exp(2bHB), b
51/kBT being the inverse temperature, we obtain the~exact!
Nakajima-Zwanzig equation

ṙS~ t !52 iLSrS~ t !2 i E
0

t

dt8S~ t2t8!rS~ t8!, ~98!

S~ t !rS52 i TrB L SBe
2 iQLtLSBrS^ rB , ~99!

where we have used that the interaction Liouville super
erator has the formLSB5L SB

S
^ L SB

B whereL SB
S andL SB

B are
system and bath superoperators, respectively, and
TrB(L SB

B rB)50. The projection superoperatorsP andQ are
defined as

Pr5~TrB r! ^ rB , ~100!

Qr5r2Pr. ~101!
3-9



th
ll

i

a
-
w
r

s

h-

a
al
ca

m
lly

tio

-

on
ld

s in

-

st

es

-
he
nd
of

e

GUIDO BURKARD, ROGER H. KOCH, AND DAVID P. DiVINCENZO PHYSICAL REVIEW B69, 064503 ~2004!
The Nakajima-Zwanzig equation~98!, with Eq. ~99!, is a
formally exact and closed description of the dynamics of
state of the systemrS , but it is rather unpractical since it sti
essentially involves diagonalizing the complete problem
order to evaluate the exponential in Eq.~99!. However, the
problem can be substantially simplified in the case of we
coupling, i.e., ifiLSBi!iLS1LBi . We assume that the cir
cuit contains a finite number of external impedances. As
will see below, the weak coupling condition is satisfied he
if

J~v i j !

v i j
!1 and

J~v!

v U
v→0

kBT

v i j
!1, ~102!

hold for transition energiesv i j between all possible level
iÞ j , whereJ(v) is given in Eq.~93!. If the coupling of the
external impedance is strong,m'1, then the condition~102!
requires that the involved impedance~resistance! is large
compared to the quantum of resistance

Zi ,Ri@
e2

h
5

p

2
\F0

2 . ~103!

In the regime of Eq.~102!, we can expand Eq.~99! in orders
of the system-bath interactionLSB. Retaining only the terms
in first order~Born approximation! yields

S2~ t !rS52 i TrB L SBe
2 iQ(LS1LB)tLSBrS^ rB , ~104!

where the projectorQ in the exponent can be dropped wit
out making any further approximation.

The master equation Eq.~98! in the Born approximation
Eq. ~104!, although much simpler than the gener
Nakajima-Zwanzig equation, is still an integrodifferenti
equation that is hard to solve in general. Further simplifi
tion is achieved with a Markov approximation

ṙS~ t !52 iLSrS~ t !2S2
R~ t !rS~ t !, ~105!

S2
R~ t !52 i E

0

`

dt8S2~ t8!eit 8LS. ~106!

Markov approximations rely on the assumption that the te
poral correlations in the bath are short lived and typica
lead to exponential decay of the coherence and popula
In some situations, e.g., for 1/f noise, the Markov approxi-
mation is not appropriate.6,26 Also, note that the Markov ap
proximation is not unique.30

The master equation in the Born-Markov approximati
~105! and ~106! can be cast into the form of the Redfie
equations29 by taking matrix elements in the eigenbasisun&
of HS ~eigenenergiesvn)

ṙnm~ t !52 ivnmrnm~ t !2(
kl

Rnmklrkl~ t !, ~107!

wherernm5^nurSum&, vnm5vn2vm , and where we have
introduced the Redfield tensor
06450
e

n

k

e
e

l

-

-

n.

Rnmkl5E
0

`

dt TrB^nu†HSB~ t !,@HSB~0!,uk~ t !&^ l ~ t !urB#‡um&,

~108!

using the interaction Hamiltonian and system eigenstate
the interaction picture

HSB~ t !5ei (HS1HB)tH SBe
2 i (HS1HB)t, ~109!

uk~ t !&5eitHSuk&5eitvkuk&. ~110!

Further evaluation of the commutators in Eq.~108! yields

Rnmkl5d lm(
r

Gnrrk
(1) 1dnk(

r
G lrrm

(2) 2G lmnk
(1) 2G lmnk

(2) ,

~111!

G lmnk
(1) 5E

0

`

dte2 i tvnk TrB H̃SB~ t ! lmH̃SB~0!nkrB ,

~112!

G lmnk
(2) 5E

0

`

dte2 i tv lm TrB H̃SB~0! lmH̃SB~ t !nkrB ,

~113!

with H̃SB(t)nm5^nueitHBH SBe
2 i tHBum&. Note that, using

the relation (G lmnk
(1) )* 5Gknml

(2) , the Redfield tensor can be ex
pressed in terms of, e.g., the complexG lmnk

(1) tensor only. For
our system-bath interaction Hamiltonian~82!, we obtain

ReG lmnk
(1) 5~m•w! lm~m•w!nkJ~ uvnku!

e2bvnk/2

sinhbuvnku/2
,

Im G lmnk
(1) 52~m•w! lm~m•w!nk

2

p
PE

0

`

dv
J~v!

v22vnk
2

3S v2vnk coth
bv

2 D . ~114!

VI. TWO-LEVEL APPROXIMATION

If a system is initially prepared in one of the two lowe
energy eigenstates~0 and 1! and all ratesRnmkl for k,l
50,1 and n,mÞ0,1 are negligible compared to the rat
Rnmkl for n,m,k,l 50,1 ~a sufficient criterion for this being
low temperature,bv12@1), then we can restrict our descrip
tion of the system dynamics to the two lowest levels. T
2-by-2 density matrix of the system, being Hermitian a
having trace equal to 1, can then be written in the form
three real variables, the Bloch vector

p5Tr~sr!5S r011r10

i ~r012r10!

r002r11

D , ~115!

wheres5(sx ,sy ,sz) is the vector composed of the thre
Pauli matrices.

By combining the Redfield equation~107! with Eq. ~115!,
we obtain the Bloch equation
3-10
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ṗ5v3p2Rp1p0 , ~116!

with v5(0,0,v01)
T,

p05S 2~R01118 1R01008 !

R01009 1R01119

2~R00008 2R11118 !
D ~117!

and the relaxation matrix

R5S R01018 1R01108 R01019 2R01109 R01008 2R01118

2R01019 2R01109 R01018 2R01108 2R01009 1R01119

2R00018 R00018 R00008 1R11118
D ,

~118!
whereRnmkl8 5ReRnmkl andRnmkl9 5Im Rnmkl .

If v01@Rnmkl , we can make the secular approximatio
only retaining termsRnmkl with n2m5k2 l ~see, e.g., Ref.
29!,

Rsec5S R01018 R01019 0

2R01019 R01018 0

0 0 R00008 1R11118
D . ~119!

The off-diagonal termR01019 can be absorbed into the syste

Hamiltonian as a frequency renormalizationṽ015v01

2R01019 and we are left with the relaxation matrix

R̃5S T2
21 0 0

0 T2
21 0

0 0 T1
21
D , ~120!

where the relaxation and decoherence times are given b

1

T1
5R00008 1R11118 52 Re~G0110

(1) 1G1001
(1) !, ~121!

1

T2
5R01018 5

1

2T1
1Re~G0000

(1) 1G1111
(1) 22G0011

(1) !5
1

2T1
1

1

Tf
,

~122!

1

Tf
5Re~G0000

(1) 1G1111
(1) 22G0011

(1) !. ~123!

Using Eq.~114!, we obtain

1

T1
54u^0um•wu1&u2J~v01!coth

v01

2kBT
, ~124!

1

Tf
5u^0um•wu0&2^1um•wu1&u2

J~v!

v U
v→0

2kBT.

~125!

Typically, Tf can be made to diverge by changing the ext
nal fluxes until̂ 0um•wu0&5^1um•wu1&. It can be expected
however, that this divergence will be cut off by effects th
are beyond the present theory, e.g., other noise sou
higher-order corrections, or non-Markovian effects.
06450
,

-

t
es,

A. Semiclassical approximation

Let us assume that the potentialU(w) describes a double
well with ‘‘left’’ and ‘‘right’’ minima at wL andwR . Further-
more, for the moment we make a semiclassical approxim
tion in which the left and right single-well ground statesuL&
and uR& centered atwL,R are localized orbitals, i.e., they d
not overlap each other. Then the two lowest eigenstates
approximately be written as the symmetric and antisymm
ric combinations ofuR& and uL&:

u0&5
1

A2
SA11

e

v01
uL&1A12

e

v01
uR& D , ~126!

u1&5
1

A2
SA12

e

v01
uL&2A11

e

v01
uR& D , ~127!

wherev015AD21e2, D5^LuHSuR& is the tunneling ampli-
tude between the two wells, ande5^LuHSuL&2^RuHSuR&
the asymmetry of the double well. SinceuL& and uR& are
localized orbitals, we can approximate

^LuwuR&'0, ^LuwuL&'wL , ^RuwuR&'wR . ~128!

From Eqs.~126!–~128! the eigenstate matrix elements are

^0uwu1&'
1

2

D

v01
Dw, ~129!

^0uwu0&2^1uwu1&'
e

v01
Dw, ~130!

where Dw5wL2wR . Finally, the relaxation and pure
dephasing times for a double-well potential in the semicl
sical limit becomes

1

T1
5S D

v01
D 2

uDw•mu2J~v01!coth
v01

2kBT
, ~131!

1

Tf
5S e

v01
D 2

uDw •mu2
J~v!

v U
v→0

2kBT. ~132!

In this semiclassical approximation with localized states,
relaxation and decoherence times both diverge ifDw can be
made orthogonal tom. For a symmetric double well (e
50), Tf→` for all Dw.

B. Quantum corrections

Quantum corrections to the semiclassical approximat
discussed in Sec. VI A can be estimated by taking into
count the finite spread of the wavefunction about its cen
using a~approximate! quadratic Hamiltonian at the potentia
minimum

H5
1

2 FQC
TC21QC1S F0

2p D 2

wTL lin
21wG , ~133!

where
3-11
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L lin
215M01diagS cos~wL,R; i !

LJ; i
D . ~134!

Rescalingw and its conjugate momentumQC ,

w5
2p

F0
AC21w̃, Fw i5

1

ACi

2p

F0
w̃ i G , ~135!

QC5ACQ̃C , @QC; i5ACiQ̃C; i # ~136!

we obtain the Hamiltonian

H5
1

2
~Q̃C

2 1w̃TVw̃!5
1

2 S Q̃C
2 1(

i
v i

2~jiw̃!2D , ~137!

where the inverseLC matrix is defined as

V5~AC21!TL lin
21AC21, ~138!

and we have diagonalized theV matrix Vji5v i
2ji . The

ground-state wave function of the harmonic oscillator Ham
tonian~138! is a Gaussian centered at the left~L! or right ~R!
potential minimum

C~w!5^wuL,R&5S F0

2p D NJ/2

)
i 51

NJ S Civ i

p\ D 1/4

3expF2(
i

v i S F0

2p D 2

@ji
TC~w2wL,R!#2G .

~139!

The wave function overlap integral between the left and ri
state is found to be

S[^LuR&5expF2
1

2\ S F0

2p D 2

(
i 51

NJ

v i~ji
TCDw!2G .

~140!

Note that in the classical limit, where all capacitancesCi are
large, the overlap tends to zero,^LuR&→0. Introducing the
orthogonalized~Wannier! orbitals

uL̃&5
uL&2guR&

A122Sg1g2
, ~141!

uR̃&5
uR&2guL&

A122Sg1g2
, ~142!

g5
12A12S

S
, ~143!

we can derive the matrix elements

^L̃uwuR̃&50, ~144!

^L̃uwuL̃&5
~12g2!wL12g~g2S!w0

122Sg1g2
, ~145!
06450
-

t

^R̃uwuR̃&5
~12g2!wR12g~g2S!w0

122Sg1g2
~146!

and the difference

^L̃uwuL̃&2^R̃uwuR̃&5
12g2

122Sg1g2
Dw'S 11

S2

2 DDw,

~147!

whereS is defined in Eq.~140!. By replacinguL& anduR& by
uL̃& and uR̃& in Eqs.~126! and ~127!, we obtain

^0uwu1&'
1

2

D

v S 11
S2

2 DDw, ~148!

^0uwu0&2^1uwu1&'
e

v S 11
S2

2 DDw. ~149!

Note that in this semiclassical approximation using Gauss
orbitals, bothT1 andTf , Eqs.~131! and~132!, and thus also
T2, are renormalized by a factor (11S2/2)21, but for the
symmetric double well (e50), Tf is still infinite.

VII. LEAKAGE

We can go beyond the two-level approximation, e.g.,
looking at the leakage out of the two lowest levels. With
the secular approximation, the total rates for transition ou
the allowed qubit statesuk& (k50,1) can be written as

1

TL,k
54(

n
u^num•wuk&u2J~vkn!coth

vkn

2kBT
. ~150!

As an example, we model leakage by adding two ad
tional levelsu2& and u3& to the allowed logical qubit state
u0& and u1& and derive the typical rate for transitions fro
u0,1& to u2,3& due to the coupling to the environment. I
analogy to Eqs.~126! and ~127!, the excited states originat
ing from two coupled single-well excited statesuL8& and
uR8& can be written as

u2&5
1

A2
SA11

e

v23
uL8&1A12

e

v23
uR8& D , ~151!

u3&5
1

A2
SA12

e

v23
uL8&2A11

e

v23
uR8& D , ~152!

wherev235AD821e2 and ^LuL8&5^RuR8&50. We model
the coupling to the lowest two levels by the perturbati
Hamiltonian

H852d~ uL&^R8u1uR&^L8u1H.c.! ~153!

and denote the energy splitting between the lowest two st
uL&, uR& and the higher energy statesuL8& and uR8& with h.
In the regimeh@D,d,e@D8, the matrix elements of the
phase coordinatew in the coupled statesuñ& are found to be
3-12
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^0̃uwu3̃&'2^1̃uwu2̃&'
1

A2

d

h
A11

e

v
Dw, ~154!

^0̃uwu2̃&'^1̃uwu3̃&'
1

A2

d

h
A12

e

v
Dw. ~155!

The dominant leakage occurs with the rate

1

TL
'4S d

h D 2

um•Dwu2J~h!coth
h

2kBT
. ~156!

Note that~thermally activated! leakage is not relevant ifT
!h, in spite of a finite rateTL

21 , because the population o
the excited states in thermal equilibrium is exponentia
suppressed.

VIII. THE IBM QUBIT

In this section, we use the theory developed in Se
III–VI to describe decoherence and relaxation in a superc
ducting flux qubit design which is currently under expe
mental study by a group at IBM.19 This superconducting cir
cuit resembles a dc SQUID, with one Josephson junc
replaced by another dc SQUID, see Fig. 1. The circuit th
comprises three Josephson junctions in total. This design
the advantage that it provides a high level of control. Th
are three externally adjustable parameters; the external m
netic fluxes threading the larger~main! loop and the smaller
~control! loop, and the bias currentI B .

A. Current biased circuit

We first study the decoherence due to a current source
is attached to the circuit, see Fig. 1. It is unavoidable that
external current source will also introduce a coupling to
external impedanceZ. In our model, this impedance is con
nected in parallel with an ideal current source. The imp
anceZ(v) as a function of frequencyv can be determined
experimentally.19

We choose the tree shown in Fig. 3 for the graph rep
senting the IBM circuit (N56 nodes andB515 branches!
and obtain the following network graph characteristics~see
Sec. III!,

FCL5S 1 0

21 1

0 21
D , FCZ52FCB5S 0

1

0
D , ~157!

FKL5S 21 1

21 0D , FKZ52FKB5S 1

1D . ~158!

The linear inductances are given by

L5S L1 0

0 L3
D , LK5S L2 0

0 L4
D , LKL50. ~159!

Using Eqs.~67! and ~68! with Eqs. ~157!, ~158!, ~159!, we
obtain the parameters for the Hamiltonian
06450
s.
n-

n
s
as
e
g-

at
e
n

-

-

M05
1

B0
S L21L3 2L3 2L2

2L3 L11L31L4 2L12L4

2L2 2L12L4 L11L21L4

D ,

~160!

N5
1

B0
S L21L3 L2

2L3 L11L4

2L2 2L12L22L4

D , ~161!

where

B05L1L21L1L31L2L31L2L41L3L4 . ~162!

For the dissipative part, we use Eq.~69! and Eqs.~73!–~75!,
with the result

K~v!5B0 /Bv , ~163!

where Bv 5 L1L2L3 1 L1L2L4 1 L1L3L4 1 L1L2Lz(v )
1 L1L3Lz (v ) 1 L2L3Lz (v ) 1 L2L4Lz (v ) 1 L3L4Lz (v ),
which allows us to determine the spectral densityJ(v) of the
bath using Eq.~93!, and

m5
L1

2~L2
21L3

2!1@L3L41L2~L31L4!#2

B0
2

, ~164!

m5
1

B0Am S L3L41L2~L31L4!

L1L3

L1L2

D . ~165!

Since the bias current in shunted in parallel to the exter
impedance, we findS52m̄52Amm. We can further sim-
plify the expressions in the case of symmetric loopsL4
5L1 andL35L2,

K~v!5
4L11L2

2L1
21L1L214L1Lz1L2Lz

, ~166!

m5
6L1

214L1L21L2
2

~4L11L2!2
, ~167!

m5
1

A6L1
214L1L21L2

2 S 2L11L2

L1

L1

D . ~168!

Moreover, if the control loop inductance is much smal
than the main loop inductanceL1@L2, we obtain the asymp-
totics

K~v!'
1

Z~v!/ iv1L1/2
'

iv

Z~v!
, ~169!

m'
3

8
, ~170!
3-13
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FIG. 5. The flux-biased IBM qubit. The coi
inductanceK4 can either be coupled to the mai
loop via a mutual inductance toL1 or to the con-
trol loop via L3.
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e

m'
1

A6 S 2

1

1
D . ~171!

The second approximation forK(v) is suitable if v
!Z(v)/L1 which holds for v!vLR'150 GHz for Z
'100 V andL1'100 pH. In Fig. 4, the relaxation and de
coherence timesT1 and T2 in this regime are plotted as
function of the externally applied magnetic fluxFc , using a
numerical solution ofHS .

There is an intuitive explanation for the simplified res
~171!; both an external bias currentI B and the current fluc-
tuations from the external impedanceZ are split equally be-
tween the right and left half of the main loop~the two halves
having equal inductances!. For this splitting of the curren
~fluctuations!, the inductance of the control loop is irrelevan
since it is negligible compared to the inductance of the m
loop. The current in the left half of the main loop is furth
split equally between the two halves of the control loop~hav-
ing equal inductances!. Thus, the ratio of current~fluctua-
tions! flowing through each of the Josephson junctions
2:1:1, which is reflected in the coupling vectorm for current
fluctuations from the bath to the superconducting phasew
pertaining to the Josephson junctions in the right half of
main loop, and the right and left halves of the control loo
and also in the vectorS describing the coupling of an exte
nal current to the superconducting phases.

B. Flux biased circuit

Further control for the system shown in Fig. 1 in additi
to a current bias line can is achieved by inductively chang
the magnetic flux through the two loops, see Fig. 5. This ty
of control also potentially introduces decoherence due
fluctuations of the external fluxes. Another way of looking
this effect would be to say that, again, current fluctuatio
are caused by an external impedance in the coil produ
the flux; subsequently, these current fluctuations are tra
ferred to the superconducting circuit via a ‘‘transforme
i.e., via the mutual inductance between the coil and the
perconducting qubit. As in the case of the external bias c
rent, the decoherence processes are unavoidable if ext
control is to be applied. The method introduced above can
used in the same way as before to derive the Hamilton
06450
n

s

e
,

g
e
o
t
s
g
s-

u-
r-
nal
e
n

and the spectral density and form of coupling of the dissi
tive environment. The network graph (N57 nodes,B515
branches! shown in Fig. 5 has the following characteristic

FCL5S 1 0

21 1

0 21
D , FCZ5FCB50, ~172!

FKL5S 21 1

0 0D , FKZ52FKB5S 0

21D . ~173!

The structure of the inductance matrix depends on whe
the external flux is coupled to the main loop or the cont
loop.

1. Main flux bias

For an external coil coupled to the main~larger! loop, the
inductances are

L5S 2L1 0

0 L3
D , LK5S L2 0

0 Lc
D ,

LLK5S 0 M

0 0 D , ~174!

whereLc denotes the self-inductance of the coil andM the
mutual inductance between the coil and the main loop.

Since the system without external coupling is the same
for the current-biased version, the system Hamiltonian, i
the expressions forM0 , N, andB0 are the same as for th
current-biased circuit, Eqs.~160! and ~161!, with L45L1.
The spectral density is obtained via Eq.~93! and the result
K(v)5B0 /Bv where Bv52L1(L21L3)(Lc1Lz)2L3M2

1L2@L3(Lc1Lz)2M2#. For m andm we find

m5M2
2~L2

21L2L31L3
2!

@L2L312L1~L21L3!#2
, ~175!

m5
1

AL2
21L3

21~L21L3!2 S 2~L21L3!

L3

L2

D . ~176!
3-14
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FIG. 6. The graph representation of the De
qubit. The ‘‘qubit’’ loop ~right! involves three Jo-
sephson junctionsJi ( i 51,2,3; thick lines! and is
inductively coupled to the SQUID~or read-out!
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We study the following special cases of this result. If t
control loop is symmetric,L35L2, we obtain the simpler
expressions

K~v!5
4L11L2

4L1~Lc1Lz!1L2~Lc1Lz!22M2
, ~177!

m5
6M2

~4L11L2!2
, m5

1

A6 S 22

1

1
D . ~178!

If for a symmetric control loop, the control loop inductan
is much smaller than the main loop inductance, i.e., forL1
@L2, we find

K~v!5
4L1

4L1~Lc1Lz!22M2
'

iv

Z~v!
, ~179!

m5
3M2

8L1
2

. ~180!

The second approximation forK(v) is suitable if v
!Z(v)/Lc ,Z(v)L1 /M2. The intuitive explanation for the
result ~178! is essentially the same as above for Eq.~171!,
with the difference that the inductively coupled current flu
tuations couple oppositely to the Josephson junction in
main loop.

2. Control flux bias

An external coil coupled to the control~small! loop can be
described by the inductances

L5S 2L1 0

0 L3
D , LK5S L2 2M /2

2M /2 Lc
D , ~181!

LLK5S 0 0

0 M /2D , ~182!

where Lc is the self-inductance of the coil andM is the
total mutual inductance between the coil and the con
loop. Again, the expressions forM0 , N, and B0 are the
same as for the current-biased circuit. We findK(v)
5B0 /Bv with Bv5$2L3M218L1@L2(Lc1Lz)1L3(Lc
1Lz)2M2#1L2@4L3(Lc1Lz)2M2#%/4, and
06450
-
e

l

m5M2
16L1

21L2
22L2L31L3

214L1~L21L3!

2@L2L312L1~L21L3!#2
, ~183!

m5
1

A~4L11L2!21~4L11L3!21~L22L3!2

3S 2L21L3

2~4L11L3!

4L11L2

D . ~184!

Since the bias current is shunted parallel to the external
pedance, we findS52m̄52Amm. For a symmetric control
loop L35L2, we obtain

K~v!5
2L2

2L2~Lc1Lz!2M2
'

iv

Z~v!
, ~185!

m5
M2

2L2
2

, m5
1

A2 S 0

21

1
D . ~186!

The second approximation forK(v) is suitable if v
!Z(v)/Lc ,Z(v)L2 /M2.

The result Eq.~186! reflects the fact that in the symmetr
case,L35L2, a control flux bias only affects the superco
ducting phases in the control loop. The two phases are
fected with the same magnitude of fluctuations, but with o
posite sign.

IX. THE DELFT QUBIT

As a further application of our theory, we study decoh
ence in a superconducting circuit studied experimentally a
candidate for a superconducting flux qubit in Refs. 14,
The circuit consists of a ring similar to a dc SQUID but wi
three junctions, see Fig. 6. For readout, a dc SQUID is
ductively coupled to the three-junction~qubit! loop. The
readout SQUID is current biased in order to find its critic
current. The value of the critical current can then be used
determine the state of the qubit loop.

This circuit network graph characteristics of the Delft q
bit are (N58 nodes,B520 branches!,
3-15



u-

el
a
f

g
f

ce

c-

b

ve
ro
w

as-

ical

,

ive

i-

s,

ce

GUIDO BURKARD, ROGER H. KOCH, AND DAVID P. DiVINCENZO PHYSICAL REVIEW B69, 064503 ~2004!
FCL5S 21 0

21 0

21 0

0 21

0 1

D , FCZ52FCB5S 0

0

0

1

0

D , ~187!

FKL5(0 21), FKZ52FKB5~1!. ~188!

We use the following assignment for the inductances:

L5S L MR

MR LR
D , LK5~LL!, LLK5S ML

M 8
D , ~189!

whereL andL85LL1LR are the self-inductances of the q
bit and SQUID loops, respectively, andM5ML1MR is the
mutual inductance between the two loops. The s
inductance of the SQUID loop and the mutual inductance
divided into partsLL and ML corresponding to the left hal
of the SQUID loop and partsLR and MR corresponding to
the right half of the SQUID loop. We introduce the followin
notations and conventions. The Josephson inductances o
five junctions are given byLJ,15LJ,25LJ and LJ,35LJ /b
for the three qubit junctions, andLJ;L,R5LJ8 for the two
SQUID junctions. The superconducting phase differen
across the five junctions are denoted withw
5(w1 ,w2 ,w3 ,wL ,wR), and the capacitances of the five jun
tions areC5diag(C,C,C,C8,C8). The externally applied
fluxes threading the qubit and SQUID loops are described
the vectorFx5(Fx ,Fx8). In the symmetric case,LL5LR

5L8/2, ML5MR5M /2, we obtain

M05
1

LL82M2 S L8 L8 L8 2M M

L8 L8 L8 2M M

L8 L8 L8 2M M

2M 2M 2M L 2L

M M M 2L L

D ,

~190!

N5
1

LL82M2 S 2L8 M

2L8 M

2L8 M

M 2L

2M L

D ~191!

for the Hamiltonian and

K~v!5
iv

Z~v!1 ivL8/4
, ~192!

m51/2, m5(0,0,0,1,1)/A2, andS52Amm.
Instead of quantizing the classical Hamiltonian Eq.~80!,

with Eqs.~190! and~191! we will linearize the dc SQUID in
order to separate the degrees of freedom that become
massive under the influence of the external impedance f
the other, light degrees of freedom. Subsequently, we
06450
f-
re

the

s

y

ry
m
ill

only quantize the light degrees of freedom, viewing the m
sive degrees of freedom as part of the environment.

A. Linearization of the dc SQUID

We start by linearizing the uncoupled (M50) SQUID.
The equations of motion for the SQUID are

C8

2
~ ẅL2ẅR!52

1

2LJ8
~sinwL2sinwR!

2
1

L8
S wL2wR22p

Fx8

F0
D , ~193!

C8

2
~ ẅL1ẅR!52

1

2LJ8
~sinwL1sinwR!1

2p

F0
I B

2mK* ~wL1wR!~ t !. ~194!

Now we make the expansion

wL,R~ t !5w̄L,R1dwL,R~ t !, ~195!

wherew̄L,R denotes the steady-state solution of the class
equations of motion~193! and ~194!. We first find this
steady-state solution in the absence of a bias currentI B

50, usingL8!LJ8 and assumeFx8ÞF0/2, with the result

w̄L
(0)52w̄R

(0)5p
Fx8

F0
. ~196!

Next, we allow a finite but small bias currentI B!I c8

5F0/2pLJ8 , and withw̄L,R5w̄L,R
(0) 1dw̄L,R we find

dw̄L5dw̄R5p
LJ8I B

F0 cos~pFx8/F0!
. ~197!

Starting from the steady-state solution, we can now der
the linearized SQUID dynamicsdw(t). We assume that the
external impedanceZ(v) contains a sizable shunt capac
tanceCsh@C8 and thatv!1/AL8C8 ('1500 GHz for typi-
cal valuesC851 fF, L8510 pH). Under these assumption
the effect of the external impedanceZ'1/ivCsh is to make
the coordinatewL1wR very ‘‘massive,’’ i.e.,

K~v!'
ivCsh

4
, E

0

t

K~ t2t8!w1~ t8!'
Csh

4
ẅ1~ t !,

~198!

the ‘‘mass’’ beingC81Csh/4'Csh/4. In order to eliminate
wL1wR from the classical equations of motion, we introdu
w65wL6wR and expand Eqs.~193! and ~194! about the
steady-state solutionw65w̄61dw6 ,
3-16
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FIG. 7. Circuit representation
of the Delft qubit with a linearized
SQUID. The analysis is simplified
due to the absence of tree indu
tors (K).
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F v2
C8

2
1S c1

2LJ8
1

1

L8

c2

2LJ8

c2

2LJ8

c1

2LJ8
1mK~v!

D G S dw2~v!

dw1~v!
D

5S 0

0D , ~199!

where we have used the steady-state solution to define

c1[cosw̄L1cosw̄R52 cosp
Fx8

F0
, ~200!

c2[cosw̄L2cosw̄R522p
LJ8I B

F0
tanp

Fx8

F0
. ~201!

NeglectingC8!Csh in the equation of motion fordw1 , we
can solve fordw1 ~neglecting higher powers ofI B),

dw1~v!52c2S c11
ivLJ8/2

Z~v!1 ivL8/4
D 21

dw2~v!.

~202!

Substituting this back into Eq.~199!, we obtain the following
damping term in the equations of motion fordw2

c2

2LJ8
dw1~v!52

iv

Z̃~v!
dw2~v!, ~203!

with the effective SQUID inductance L̃J

5LJ8/4 cos(pFx /F0)5LJ8/2c1 and the effective external im
pedance

Z̃~v!52
v2LJ8

2

Zt~v! S I B

I c8
tanp

Fx8

F0
D 22

, ~204!

whereI c8 is the critical current of the SQUID junctions an
the total impedance~heavy SQUID degree of freedom i
parallel with external impedanceZ) is defined through

Zt~v!5S 1

ivL̃J

1
1

Z~v!1 ivL8/4
D 21

. ~205!
06450
The effective external impedanceZ̃ is much larger thanvLJ8
for I B!I c8 or for sinpFx8/F0'0. Thus, unlikedw1 , the re-
maining degrees of freedom~includingdw2) are weakly af-
fected by the effective external impedance and will be
scribed as quantum mechanical degrees of freedom.

B. Description of the light degrees of freedom

After having eliminated one degree of freedom from t
SQUID, the remaining four degrees of freedomw
5(w1 ,w2 ,w3 ,dw2) will are now described by the Hamil
tonian ~80! with the capacitancesC5diag(C,C,C,C8/2),
the Josephson effective inductances L J

21

5diag(LJ
21 ,LJ

21 ,bLJ
21,0), and

M05
1

LL82M2 S L8 L8 L8 2M

L8 L8 L8 2M

L8 L8 L8 2M

2M 2M 2M L

D
1

1

L̃J S 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

D , ~206!

N5
1

LL82M2 S 2L8 M

2L8 M

2L8 M

M 2L

D . ~207!

Since the part of the circuit that was coupled to the b
current is described byZ̃, there is no coupling to a bia
current left, S50. By inspecting Eq.~203!, we find m
5(0,0,0,1),m51, and

K~v!5
iv

Z̃~v!
. ~208!

The results Eqs.~206!–~208! for the reduced system can als
be obtained from the circuit drawn in Fig. 7 withC45C8/2
and the inductance matrix
3-17
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L5S L M 0

M L8 0

0 0 L̃J

D . ~209!

Using Eqs.~131!, ~132!, ~208!, and~204!, we obtain

1

T1
5S D

v01
D 2S F0

2p D 2

um•Dwu2
1

v01
ReZt~v01!

3S 2pI B

F0
tanp

Fx8

F0
D 2

coth
v01

2kBT
, ~210!

1

Tf
5S e

v01
D 2S F0

2p D 2

um•Dwu2 ReZt~0!

3S 2pI B

F0
tanp

Fx8

F0
D 2

2kBT. ~211!

We make the approximation that the SQUID is co
pletely classical; solving the classical equation of mot
~61! for dw2 using Eq.~206!, we obtain the stationary clas
sical solution fordw2 ~with L8,L!LJ8 ,L̃J),

dw252
2p

F0
~MI 1Fx8!, ~212!

where we have used that( iw i522pF/F0, whereF is the
flux threading the qubit loop, andF2Fx5LI , whereI is the
current circulating in the qubit loop. The difference betwe
the two minimaw ~localized statesu0& and u1&) is then (Fx
is constant!

m•Dw5Ddw2'2
2p

F0
M ~ I L2I R! ~213!

and, sinceI L52I R[I ,

m•Dw'22
2p

F0
MI . ~214!

Substituting the above result into Eqs.~210! and ~211!, we
obtain

1

T1
54S D

v01
D 2

I B
2 1

v01
S 2pMI

F0
tanp

Fx8

F0
D 2

ReZt~v01!

3coth
v01

2kBT
, ~215!

1

Tf
54S e

v01
D 2

I B
2 1

v01
S 2pMI

F0
tanp

Fx8

F0
D 2

ReZt~0!2kBT,

~216!

which agrees with earlier results.12 We also obtain an esti
mate for the leakage rate from Eq.~156!,

1

TL
5S d

h D 2

I B
2 1

h S 2pMI

F0
tanp

Fx8

F0
D 2

ReZt~h!coth
h

2kBT
.

~217!
06450
-

n

C. Asymmetric SQUID

Up to now we have assumed that the SQUID ring in t
Delft qubit is symmetric in two senses; namely, that both
self-inductances of the left and right halves of the ring a
identical and the critical currents of the Josephson juncti
in the left and right halves of the SQUID ring are identica
Both symmetries are certainly broken to some degree in
physical systems. Below, we study both cases, i.e., the
where the self-inductances of the left and right halves of
ring are different ~geometrical asymmetry! and the case
where the two critical currents are different~Junction asym-
metry!.

1. Geometric asymmetry

We analyze the Delft qubit again with the inductance m
trix ~189! and the asymmetric inductances

ML5S 11
a

2 D M

2
, MR5S 12

a

2 D M

2
, ~218!

LL5S 11
a

2 D L8

2
, LR5S 12

a

2 D L8

2
, ~219!

where ML1MR5M and LL1LR5L8. By linearizing the
SQUID, we obtain the result

Z̃~v!52
v2LJ8

2

Zt~v! F S I B

I c8
tanp

Fx8

F0
D 2

1a
I B

I c8
sinp

Fx8

F0
G21

.

~220!

This result implies that ifa@I B /I c8 , the decoherence rate
scale asaI B /I c8 instead of (I B /I c8)

2 for a!I B /I c8 . Therefore,
for very asymmetric loops,a@I B /I c8 , moderate bias cur-
rents can already cause large decoherence effects.

2. Junction asymmetry

For asymmetric critical currents, or, equivalently, asy
metric effective Josephson inductances

LJ;L,R8 5LJ8~16g/2!, ~221!

we repeat the linearization of the SQUID keeping contrib
tions of lowest order ing. SettingI B50, we obtain

1

LJ;L,R
'

1

LJ
S 17

g

2D1O~g2!. ~222!

The steady state of the SQUID is then determined by
following equations:

w̄L2w̄R522p
Fx8

F0
, ~223!

S 12
g

2D sinw̄L1S 11
g

2D sinw̄R50. ~224!

We make the ansatz
3-18
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w̄L,R57p
Fx8

F0
1gq, ~225!

and obtain the resultq52tan(pFx8/F0)/2 and, finally,

w̄L,R57p
Fx8

F0
2

g

2
tanp

Fx8

F0
. ~226!

Comparing this to Eq.~197!, we see that in order to obtai
the Redfield tensor and the decoherence rates at zero
current in the presence of a junction asymmetryg, we sim-
ply have to make the substitution

I B

I c8
→g sinp

Fx8

F0
. ~227!

Typical values for the junction asymmetry due to process
inaccuracies are fairly large,g'10%. The effect of a junc-
tion asymmetry is more severe than the effect of a geom
cal asymmetry because for asymmetric junctions, deco
ence occurs even for zero bias currentI B50.
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APPENDIX A: SYMMETRY OF M 0

In this Appendix, we prove that the matrixM0 defined in
Eq. ~62! is always symmetric,M0

T5M0. This property is
required in order to find a potentialU(w) generating the
force term2M0w in the equation of motion. We writeM0

5FCLVW21FCL
T with

V5L̃L
21L̄51L1XL̃ KF̄KL , ~A1!

W5LLL5L̄1FKL
T L̃KF̄KL , ~A2!

with the off-diagonal block ofL t from Eq. ~31!,

X52L21LLKL̄K
21 , ~A3!

XT52LK
21LLK

T L̄21, ~A4!

and show thatVW21 is symmetric, thus proving thatM0 is
symmetric. Note that in Eq.~A4! we have used thatL t is
symmetric. As a first step of our proof, we note that t
symmetry ofVW21,

~VW21!T[~WT!21VT5VW21, ~A5!

is equivalent to the relation

VTW5WTV. ~A6!

As a second step, we use Eq.~42! to show
06450
ias

g

ri-
r-

l
nt

VTW2WTV5F̄KL
T L̃K

T~Y2YT!L̃KF̄KL , ~A7!

where Y5(L̃K
T)212FKLX. The third and last step of the

proof is to show thatY is symmetric, i.e.,Y5YT. For this,
we rewrite Eqs.~41! and ~42! as

L̃K5~1K2LKF̄KLX!21LK , ~A8!

F̄KL5FKL2XTL̄ . ~A9!

Using these relations, we can show thatY5LK
211XTL̄X

which is manifestly symmetric. This concludes the proof th
M0 is symmetric.

APPENDIX B: SYMMETRY OF M D

From Eqs.~46!, ~59!, and~60!, we obtain Eq.~61! with

Md~v!5FCL~ L̃L
21L̄LLL

21LLZ

2L21LLKL̄K
21L̃KFKZ!L̄Z

21~v!LZLLLL
21FCL

T

1FCZL̄Z
21~v!@FCZ

T 2LZLLLL
21~v!FCL

T #

1FCL~L21LLKL̄K
21L̃KFKZ

2L̃L
21L̄LLL

21LLZ!L̄Z
21~v!FCZ

T , ~B1!

where we have used the identityL̄L
21(v)LLZLZZ

21(v)

5LLL
21LLZL̄Z

21(v). This expression is a quadratic form i
FCL andFCZ ,

Md5~FCLFCZ!S AL̄ Z
21B AL̄ Z

21

L̄Z
21B L̄Z

21D S FCL
T

FCZ
T D , ~B2!

with the definitions

A52L̃L
21L̄LLL

21LLZ1L21LLKL̄K
21L̃KFKZ , ~B3!

B52LZLLLL
2152FKZ

T L̃KF̄KLLLL
21 . ~B4!

Next, we show thatMd must be symmetricMd
T5Md , and

thereforeL̄Z
T5L̄Z andA5BT.

The argument for the symmetry ofMd is as follows. We
consider a generalized model in which the external imp
ancesZ and the linear inductancesL andK are treated on an
equal footing. For this purpose, we allow mutual impedan
~generalized mutual inductances! betweenZ and K and in-
cludeZ into L by allowing frequency dependent linear indu
tances and writingLZ(v)5Z(v)/ iv. This leaves us with the
following types of circuit elements; tree elements are eit
capacitors C or linear impedancesK where LK(v)
5ZK(v)/ iv, branch elements are Josephson junctions~non-
linear inductors! J, linear impedancesL where L (v)
5ZL(v)/ iv, and external bias currentsB. In addition to this,
there can be frequency-dependent linear mutual impeda
ZLK(v), whereLLK(v)5ZLK(v)/ iv, between theL andK
branches. The equation of motion~61! can now be derived
exactly as before, but in the frequency domain, the re
3-19
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being Eq.~61! without theMd(v) term, since there are n
Z branches. These new equations include dissipation w
is described by the~now frequency-dependent! M08(v),
the prime distinguishing it from the ‘‘ordinary’’M0 ~see
above!. The matrixM08 is formally identical toM0, up to
frequency dependencies which are irrelevant for the sym
ar

-
e,

e

l,
so

.E

ns

l,

v,

n

06450
ch

e-

try of the matrix. We have shown in Appendix A thatM0
T

5M0; this proof also goes through forM08 , thus M08
T

5M08 . Since M08(v)5M01Md(v) and bothM0 and M08
are symmetric, we conclude that alsoMd

T5Md . Introducing
m̄5FCL1FCZA5FCL1FCZBT, we can now writeMd in the
form given in Eqs.~64! and ~65!.
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