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Based on a network graph analysis of the underlying circuit, a quantum theory of arbitrary superconducting
charge qubits is derived. Describing the dissipative elements of the circuit with a Caldeira-Leggett model, we
calculate the decoherence and leakage rates of a charge qubit. The analysis includes decoherence due to a
dissipative circuit element such as a voltage source or the quasiparticle resistances of the Josephson junctions
in the circuit. The theory presented here is dual to the quantum circuit theory for superconducting flux qubits.
In contrast to spin-boson models, the full Hilbert space structure of the qubit and its coupling to the dissipative
environment are taken into account. Moreover, both self- and mutual inductances of the circuit are fully
included.

DOI: 10.1103/PhysRevB.71.144511 PACS numberssd: 74.50.1r, 03.67.Lx, 72.70.1m, 85.25.Dq

I. INTRODUCTION

Various types of quantum bits with Josephson junctions in
superconductingsSCd circuits are now investigated in theo-
retical and experimental studies.1,2 The two types of macro-
scopic SC qubits, the charge3–8 and flux9–12 qubits, are dis-
tinguished by the relative size of the charging energyEC and
the Josephson energyEJ of their junctions.13 In flux qubits,
also known as persistent-current qubits, the Josephson en-
ergy dominates,EJ@EC, and the state of the qubit is repre-
sented as the orientation of a persistent current in a SC
loop.9–12 In contrast to flux qubits, charge qubits operate in
the regimeEC@EJ, and are represented as the charge state of
a small SC islandspresence,u1l, or absence,u0l, of an extra
Cooper paird which is capacitively coupled to SC leads3–8

sFig. 1d. The quantronium7 is a charge qubit that operates in
a regime close toEC<EJ.

Both types of SC qubits suffer from decoherence that is
caused by several sources. In flux qubits, the Johnson-
Nyquist noise from lossy circuit elementsse.g., current
sourcesd has been identified as one important cause of
decoherence.18–20 A systematic theory of decoherence of a
qubit from such dissipative elements, based on the network
graph analysis21 of the underlying SC circuit, was developed
for SC flux qubits,22 and successfully applied to study the
effect of asymmetries in a persistent-current qubit.23 Deco-
herence in charge qubits has previously been investigated
using the spin-boson model.1,24

Here, we develop a general network graph theory for
charge qubits and give examples for its application. As in the
case of the circuit theory for flux qubits, we are not restricted
to a Hilbert space of the SC device which isa priori trun-
cated to two levels only. In other words, in contrast to the
spin-boson model, our theory is capable of describingleak-
ageerrors,25 i.e., unwanted transitions to states that are out-
side the subspace spanned by the logical qubit statesu0l and
u1l. The description presented here is an extension of earlier
results on the SC flux qubits22 and has potential applications
to hybrid charge-flux qubits.7 The role of the self- and mu-
tual inductances in SC charge qubits has been previously
studied,26 in particular as a means of coupling two SC charge
qubits.1,24 Here, we fully and systematically take into ac-

count self- and mutual inductances in the underlying SC cir-
cuit.

While the circuit theory developed in Secs. II–IV can be
applied to any SC charge qubit, its usefulness will be illus-
trated with some specific examples of charge qubit circuits
that have been studied before in Sec. V, where we reproduce
and extend some previously known results. However, we
stress that the circuit theory results are more general than
previously applied methods for the following reasons.sid The
derived Hamiltonian is nota priori truncated to a two-
dimensional subspace, which allows us to treat leakage and
to derivethe matrix element of the system-bath coupling.sii d
The capacitance matrix of the circuit is fully taken into ac-
count, and no assumption about the relative magnitude of
gate and Josephson capacitances has to be made.siii d The
inductance matrix of the circuit is fully taken into account.

Any number of dissipative elementsZ sexternal imped-
ances, resistancesd can be included in the circuit theory. In
our treatment of the system-bath Hamiltonian and the deco-
herence and relaxation rates in Sec. IV, we choose to restrict
ourselves to the case of a single impedanceZ in order to
keep the notation simple. However, the analysis can readily
be extended to multiple impedances in analogy to SC flux
qubits.27

FIG. 1. Circuit graph of a single voltage-biased charge box.
Branches represent a Josephson junctionsEJd, capacitancessCJ and
Cgd, a voltage sourceV, and the impedanceZ. The nodes are shown
as black dots; the node connecting the junctionsEJd to the gate
capacitanceCg represents the SC island.
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II. NETWORK GRAPH THEORY

The purpose of this section is to derive Kirchhoff’s laws
and the current-voltage relationssCVRsd for the circuit of a
general SC charge qubit in an appropriate form for their later
use in the derivation of the classical equations of motion of
the circuit sSec. IIId.

Our analysisssee also Ref. 22d starts with the representa-
tion of the SC circuit as a directed graph, in which the
branchesb1,b2, . . . ,bB represent one of the following lumped
circuit elements: a Josephson junction, inductance, capaci-
tance, voltage source, or an external impedancese.g., a re-
sistanced. The circuit graph of a single, voltage-biased charge
box in Fig. 1 is a simple example of a circuit graph. In our
examples, we neglect the quasiparticle resistance of the junc-
tions because it makes the analysis simpler and because they
are typically less important than the impedances of the volt-
age sources; however, the shunt resistances can easily be
included as additional impedances in the circuit. The next
step is to find atree of the graph, i.e., a loop-free subgraph
which connects all nodessfor each connected piece of the
graph, we choose a connected subtreed. The branches
f1, f2, . . . ,fF outside the tree are the so-calledchords; each
chord f i, when added to the tree, gives rise to a unique loop,
a fundamental loopFi of the circuit. The topological infor-
mation about the graph which is of importance for our analy-
sis can be represented in the fundamental loop matrixsi
=1, . . . ,F ; j =1, . . . ,Bd,

Fi j
sLd = 51 if bj P Fi ssame directiond,

− 1 if bj P Fi sopposite directiond,

0 if bj ¹ Fi ,
6 s1d

where the direction of the fundamental loopFi is defined to
be opposite to the direction of its defining chordf i. Accord-
ingly, the currents I =sI1, . . . ,IBd and voltages V
=sV1, . . . ,VBd associated with the branches 1, . . . ,B of the
graph are split up into tree and chord currents and voltages,

I = sI tr,I chd, V = sV tr,Vchd. s2d

With this ordering, the fundamental loop matrix assumes the
form

FsLd = s− FTu1d, s3d

and we will simply refer to the matrixF in the following.
Using Eq. s3d, we write Kirchhoff’s laws in the following
useful form:22

FI ch = − I tr, s4d

FTV tr = Vch − Ḟx, s5d

whereFx=sF1, . . . ,FFd denote the externally applied mag-
netic fluxes threading loops 1, . . . ,F of the circuit. The par-
tition of branch types into tree and chord branches isdual to
the flux qubit case,22 i.e., the roles of tree and chord branches
are interchanged.

Before we proceed, we summarize the assumptions about
the circuit that will be used in the following.

sid There are no loops containing nothing else than Jo-
sephson junctionssJd, external impedancessZd, and voltage
sourcessVd. This assumption is physically motivated be-
cause all loops have a finite self-inductance.

sii d Voltage sourcessVd and impedancessZd are not in-
ductively shunted.

siii d There are sufficiently many capacitorssCd in the cir-
cuit to independently shunt all inductors. A more precise
form of this requirement is that the capacitance matrixC has
full rank ssee belowd.

Using assumptionsid, we may split up the current and
voltage vectors as

I tr = sI J,I L,I V,I Zd, I ch = sI CJ
,I C,I Kd, s6d

V tr = sVJ,VL,VV,VZd, Vch = sVCJ
,VC,VKd. s7d

The chord current and voltage vectorsI ch andVch in Eqs.s6d
and s7d contain the branch currents and voltages of the ca-
pacitorssCJ,Cd and chord inductorssKd; the tree current and
voltage vectorsI tr and V tr contain the branch currents and
voltages of tree inductorssLd, Josephson junctionssJd, exter-
nal impedancessZd, and bias voltage sourcessVd.28 The loop
matrix F then acquires the block form,

F =1
1 FJC FJK

0 FLC FLK

0 FVC FVK

0 FZC FZK

2 . s8d

The form of the first column in Eq.s8d reflects the fact that
the CJ capacitances aresby definitiond shunted in parallel to
the Josephson junctions. Moreover, assumptionsii d above
impliesFVK=FZK=0. In order to derive the equations of mo-
tion, we formally define the branch charges and fluxessX
=C,K ,J,L ,Z,Vd,

I Xstd = Q̇Xstd, s9d

VXstd = ḞXstd, s10d

where the formal fluxes of the Josephson branches are the SC
phase differences across the junctions, according to the sec-
ond Josephson relation,

FJ

F0
=

w

2p
, s11d

with F0=h/2e. The current-voltage relationssCVRsd of the
Josephson, capacitance, and external impedance branches are

I J = I c sin w = I c sinS2p
FJ

F0
D , s12d

QC = CVC, s13d

VZ = Z p I Z, s14d

where the convolution is defined assf pgdstd=e−`
t fst

−tdgstddt. The CVR for the inductive branches has the fol-
lowing matrix form:
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SFL

FK
D = SL L LK

L LK
T L K

DSI L

I K
D ; L tSI L

I K
D , s15d

whereL and L K are the self-inductances of the chord and
tree branch inductors, respectively, off-diagonal elements de-
scribing the mutual inductances among chord inductors and
tree inductors separately, andL LK is the mutual inductance
matrix between tree and chord inductors. Since the total in-
ductance matrix is symmetric and positive, i.e.,vTL tv.0 for
all real vectorsv, its inverse exists, and we find

SI L

I K
D = S L̄ −1 − L −1L LKL̄ K

−1

− L K
−1L LK

T L̄ −1 L̄ K
−1

DSFL

FK
D ; L t

−1SFL

FK
D

s16d

with the definitions

L̄ = L − L LKL K
−1L LK

T , s17d

L̄ K = L K − L LK
T L −1L LK. s18d

III. CLASSICAL EQUATION OF MOTION

In this section, we derive the classical equation of motion
of the dynamical variablesF=sFJ,FLd of the circuit.

We now combine Kirchhoff’s laws, Eqs.s4d and s5d, and
the CVRs, Eqs.s12d–s18d, in order to derive the classical
equations of motion of the circuit. These will then be used in
Sec. IV to find the Hamiltonian suitable for quantization. The
details of the derivation are explained in Appendix A.

EquationssA3d and sA9d can be summarized as

CḞ = Q − CVV − FCCZ p VC, s19d

with the combined flux vectorF=sFJ,FLd=sF0w /2p ,FLd,
and the canonical charge

Q = − SQJ

QL
D − FKQK. s20d

Note that in the SC charge qubits studied in Ref. 6, the Jo-
sephson junctions lead tosotherwise only capacitively
coupledd SC islands, with the consequence that there are no
chord inductors sKd, and Q=−sQJ,QLdT. However, the
quantronium circuits,7 which have hybrid charge and flux
nature, cannot be described without chord inductors. In the
following, we will derive our theory for the most general
case including chord inductors, but further below, we will
also discuss the much simpler special case without chord
inductors. In Eqs.s19d ands20d, we have also introduced the
notation

FX = SFJX

FLX
D s21d

for X=C,K, and the capacitance matrices

C = SCtot CJL

CJL
T CL

D ; SCJ 0

0 0
D + FCCFC

T , s22d

CV = SCJV

CLV
D ; FCCFVC

T , s23d

CZsvd = ivCFZC
T ZsvdFZCC. s24d

We can further rewrite the dissipative term in Eq.s19d by
using Eq.s5d scapacitance partd, solving for VC, and substi-
tuting the solution back into Eq.s19d, with the result

sC + CZd p Ḟ = Q − CVV , s25d

where we have introduced

CZsvd = m̄C̄Zsvdm̄T, s26d

m̄ = FCCFZC
T = Sm̄J

m̄L
D , s27d

C̄Zsvd = ivZsvdf1 + FZCCFZC
T ivZsvdg−1. s28d

Using the symmetry ofCZsvd, we can show thatC̄Zsvd is
also a symmetric matrix.

We obtain the equation of motion from Eq.s25d by taking
the derivative with respect to time, and using Eq.s9d with
X=K ,L and Eq.s16d,

sC + CZd p F̈ = Q̇ = −
]U

]F
, s29d

with the potential

UsFd = − L J
−1 cosw +

1

2
FTM 0F + FTNFx, s30d

whereF=sF0w /2p ,FLd and

M 0 = GL t
−1GT, N = GL t

−1s0 1KdT, s31d

with the sNL+NKd3 sNJ+NLd block matrix

G = S 0 − FJK

1L − FLK
D . s32d

Using L t
T=L t, we observe thatM 0

T=M 0. In the absence of
chord inductorssKd, we find FTM 0F=FL

TL −1FL andN=0,
whereas in the absence of tree inductorssLd, we obtain
1
2FTM 0F+FTNFx= 1

2sFJK
T w+FxdTL K

−1sFJK
T w+Fxd+const.

By bringing the dissipative term in Eq.s29d to the right-
hand side and using assumptionsiii d, we find the equation of
motion

CF̈ = −
]U

]F
− Cd * C−1Q̇, s33d

with the dissipation matrix

Cdsvd = f1 +CZsvdC−1g−1CZsvd ; m̄K svdm̄T, s34d

and the frequency-dependent kernel

K svd = C̄Zsvdf1 + m̄TC−1m̄C̄Zsvdg−1. s35d

Since bothC̄Zsvd andC are symmetric matrices, we find that
K svd, and thus alsoCdsvd, are symmetric. Moreover, we

CIRCUIT THEORY FOR DECOHERENCE IN… PHYSICAL REVIEW B 71, 144511s2005d

144511-3



know thatCdstd inherits two additional properties fromZstd:
it is also real and causal, i.e.,Cdstd=0 for t,0. In a pertur-
bation expansion inZ2, the lowest-order term inK svd is
simply K svd= ivZsvd+OsZd2.

In deriving Eq.s33d, we have used assumptionsiii d that
the matrix C has full rank, such thatC−1 exists. Since all
junctions are capacitively shunted, we know thatCtot has full
rank, henceNJø rankCøNJ+NL, whereNX is the number of
branches of typeX. The case rankC,NJ+NL occurs if there
are not sufficiently many capacitances in the circuit to inde-
pendently shunt all inductors. In that case, Eq.s33d, without
the dissipative part, containsl =NJ+NL−rankC constraints
that can be used to eliminatel degrees of freedom. In the
case of SC flux qubits,22 it was assumed that only the junc-
tions are shunted by capacitorssrankC=NJd, thus l is the
number of tree inductors.

IV. QUANTUM THEORY

The purpose of this section is to derive the Hamiltonian of
the circuit, including its dissipative elements, and then to
quantize this Hamiltonian in order to have a description of
the quantum dissipative dynamics of the circuit from which a
master equation and, finally, the decoherence rates can be
derived.

The Hamiltonian of the circuit,

HS=
1

2
sQ − CVVdTC−1sQ − CVVd + UsFd, s36d

giving rise to the equation of motions33d without dissipation
sZ =0d, can readily be quantized with the commutator rule

fFi,Qjg = i"di j . s37d

A somewhat subtle point here is that while the inductor flux
variablesFL are defined on an infinite domain, the Joseph-
son flux variablesFJ=sF0/2pdw are defined on a compact
domain since they are periodic with periodF0. Upon impos-
ing Eq. s37d, this leads to charge operatorsQL with a con-
tinuous spectrum andQJ with a discrete spectrum with ei-
genvaluesQJi=2eni, with ni integer.2

In order to describe the dissipative dynamics of the SC
circuit, we construct a Caldeira-Leggett Hamiltonian29 H
=HS+HB+HSB that reproduces the classical dissipative
equation of motion Eq.s33d. For simplicity, we will restrict
ourselves to the case of a single impedanceZ here, where a
single bath of harmonic oscillators can be used to model the
dissipative environment,

HB = o
a
S pa

2

2ma

+
1

2
mava

2xa
2D . s38d

We choose the system-bath coupling to be of the form

HSB= C−1m̄ ·Qo
a

caxa = m̄ ·C−1Qo
a

caxa, s39d

such that it reproduces the classical equation of motion Eq.
s33d, with a spectral density of the bath modessfor a deriva-
tion, see Appendix Bd,

Jsvd = − Im Ksvd. s40d

Note that the kernelK has become a scalar because we are
now only dealing with a single external impedance.

From the HamiltonianH, the master equation for the evo-
lution of the system density matrix can be derived.22 In the
Born-Markov approximation, the matrix elementsrnm
=knurSuml, whereHSunl=vnunl, obey the Redfield equation30

ṙnmstd = − ivnmrnmstd − o
kl

Rnmklrklstd, s41d

with vnm=vn−vm, and with the Redfield tensor,

Rnmkl= dlmo
r

Gnrrk
s+d + dnko

r

Glrrm
s−d − Glmnk

s+d − Glmnk
s−d , s42d

wheresGlmnk
s+d d* =Gknml

s−d , and

ReGlmnk
s+d =

1

"
sm ·Qdlmsm ·QdnkJsuvnkud

e−"bvnk/2

sinh"buvnku/2
,

Im Glmnk
s+d = −

1

"
sm ·Qdlmsm ·Qdnk

2

p
PE

0

`

dv
Jsvd

v2 − vnk
2

3Sv − vnk coth
"bv

2
D , s43d

andm=C−1m̄.
The Redfield equations41d can be derived for arbitrary

SC circuits. The SC circuit can represent a single qubit or a
number of qubits. In order to make connection with single-
qubit experiments, we apply the theory to the case of a SC
circuit representing a single qubit. Restricting ourselves to
the two lowest levels and working in the secular
approximation,22 the Redfield equations41d turns into a
Bloch equation with the relaxationsT1d and decoherencesT2d
times,

1

T1
=

4

"
zk0um ·Qu1lz2Jsv01dcoth

"v01

2kBT
, s44d

1

T2
=

1

2T1
+

1

Tf

, s45d

1

Tf

=
1

"
zk0um ·Qu0l − k1um ·Qu1lz2UJsvd

"v
U

v→0
2kBT.

s46d

In the semiclassical approximation,22 k0uQu1l<s1/2dsD /
v01dDQ and k0uQu0l−k1uQu1l<se /v01dDQ, where DQ
=Q0−Q1 is the “distance” between two localized low-energy
classical charge statesQ0 and Q1, e is the classical energy
difference andD the tunneling amplitude between them, and
v01=ÎD2+e2 is the energy splitting between the two quan-
tum eigenstates in this energy double well. Within this ap-
proximation, we find

1

T1
=

1

"
um · DQu2S D

v01
D2

Jsv01dcoth
"v01

2kBT
, s47d
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1

Tf

=
1

"
um · DQu2S e

v01
D2UJsvd

"v
U

v→0
2kBT. s48d

The leakage rates from the logical statek=0,1 to statesn
=2,3, . . . outside the computational subspace can be esti-
mated as

1

TL
=

4

"
o
n=2

`

zkkum ·Qunlz2Jsvnkdcoth
"vnk

2kBT
. s49d

V. EXAMPLES

A. Single charge box

The voltage-biased charge box is shown in Fig. 1, where
the inductance of the leads has been neglected for simplicity
sno L andK branchesd. The tree of the graph is given by the
Josephson, voltage source, and impedance branches. For the
loop matrices, we simply find

FJC = FVC = FZC = 1. s50d

With the capacitances

C ; Ctot = CJ + Cg, CV = Cg, s51d

we arrive at the Hamiltonian,

HS=
sQJ + CgVd2

2Ctot
+ EJ cosw. s52d

The coupling to the environment is characterized bym
=sCg/Ctotd. As an example, we give here the relaxation and
dephasing times, withm= umu=Cg/Ctot,

1

T1
= 2pm24zk0unu1lz2

4 ReZsv01d
RQ

v01 coth
"v01

2kBT
, s53d

1

Tf

= 2pm2zk0unu0l − k1unu1lz2
4 ReZs0d

RQ

2kBT

"
, s54d

where n=Q/2e and RQ=h/e2. In the semiclassical limit,
k0unu1l<s1/2dsD /v01dDn and k0unu0l−k1unu1l<se /v01dDn.
With Dn<1, we reproduce the results in Ref. 1. Typical
leakage rates are of the form of 1/T1, with the matrix ele-
ment replaced byzk0unuklz and zk1unuklz, wherekù2 labels a
state other than the two-qubit states, and withv01 replaced
by vlk sl =0,1d.

B. Flux-controlled Josephson junction

A flux-controlled Josephson junction is a SC loop with
two junctions which acts as an effective Josephson junction
with a flux-dependent Josephson energy.5 The circuit Fig. 2
we use to describe the flux-controlled junction comprises a
chord inductancesKd with inductanceL. The tree consists of
the two Josephson branches. The only relevant loop matrix is
FJK=s1−1dT. In the limit L→0, and if EJ1=EJ2, we find
FJK

T w+Fx=w1−w2+Fx→0, which leads us to the Hamil-
tonian

HS=
Q2

2C̄
− EJsFxdcosw, s55d

where w=w1+pFx/F0, C̄=CJ1+CJ2, and EJsFxd
=2EJ coss2pFx/F0d.

C. Inductively coupled charge boxes

We now turn to the case of two charge boxes of the type
discussed in Sec. V A, coupled via an inductive loop,1,5 as
shown in Fig. 3. Here, the tree consists of all Josephson,
voltage source, and impedance branches, plus the inductive
branchL, and the loop matrices are

FJC = FVC = FZC = S1 0

0 1
D, FLC = s1 1d. s56d

With the two capacitance matricesC=diagsC1,C2d and CJ

=diagsCJ1,CJ2d, we find Ctot=C+CJ, CJV=C, CJL=CLV
T

=sC1,C2dT, and CL=C1+C2. The vectorm̄ consists of the
two parts mJ=C and mL=sC1C2d. With Eq. s36d and the
inverse of the total capacitance matrix,

C−1 =
1

g1sC1 + C2dCJ2 − C2
2 C1C2 − C1CJ2

C1C2 sC1 + C2dCJ1 − C1
2 − C2CJ1

− C1CJ2 − C2CJ1 CJ1CJ2
2

; 1 Ceff,1
−1 Ceff,12

−1 Ceff,L1
−1

Ceff,12
−1 Ceff,2

−1 Ceff,L2
−1

Ceff,L1
−1 Ceff,L2

−1 Ceff,L
−1 2 , s57d

where g=sC1+C2dCJ1CJ2−C1
2CJ2−C2

2CJ1, the Hamiltonian
of the coupled system can be written as

FIG. 2. A flux-controlled Josephson junction.

FIG. 3. Two inductively coupled charge boxes.
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HS= o
i=1,2

S sQJi + CiVid2

2Ceff,i
+ EJi coswiD

+
sQL + C1V1 + C2V2d2

2Ceff,L
+

FL
2

2L

+
sQJ1 + C1V1dsQJ2 + C2V2d

Ceff,12

− o
i=1,2

sQJi + CiVidsQL + C1V1 + C2V2d
Ceff,Li

. s58d

While the last term in Eq.s58d couples each qubit to theLC
mode associated with the inductorL, and is thus responsible
for the inductive coupling of the qubits, the second to last
term provides a direct capacitive coupling between the qu-
bits. In the limitCi !CJi, we reproduce the results of Ref. 1;
however, there are additional terms of orderCi /CJi, in par-
ticular the new term~1/Ceff,12 in the Hamiltonian that ca-
pacitively couples the qubits directly. Since the coupled sys-
tem involves at least four levelssmore if excited states of the
LC coupling circuit or higher qubit levels are includedd, it
can no longer be described by a two-level Bloch equation
with parametersT1 andT2. We can, however, fix one of the
qubits to be in a particular state, sayu0l, and then look at the
“decoherence rates” of the other qubit. To lowest order in
Ci /CJi, these rates due to the impedanceZi have the form
fqi =Ci / sC1+C2dg

1

T1
= 2pqi

24zk00unLu10lz2
4 ReZisv01d

RQ
v01 coth

"v01

2kBT
,

s59d

1

Tf

= 2pqi
2zk00unLu00l − k10unLu10lz2

4 ReZis0d
RQ

2kBT

"
.

s60d
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APPENDIX A: DERIVATION OF THE EQUATIONS
OF MOTION

This appendix contains the derivation of Eq.s19d. Note,
first, that the externally applied magnetic fluxFx only
threads loops with a finite self-inductancesi.e., those pertain-
ing to a chord inductor,Kd, and not, e.g., the circuit loop
formed by a junctionJ and its junction capacitanceCJ, there-
fore Fx;sFCJ

x ,FC
x ,FK

x d=s0,0,FK
x d. Using this fact and

Eqs.s5d scapacitance partd and s11d, we obtain

F0

2p
FJC

T ẇ = VC − FLC
T VL − FVC

T VV − FZC
T VZ

= C−1QC − FLC
T ḞL − FVC

T VV − FZC
T Z * I Z,

sA1d

multiply this equation byFJCC, and use Eq.s4d simpedance
partd, with the result

F0

2p
FJCCFJC

T ẇ = FJCQC − FJCCFLC
T ḞL − FJCCFVC

T VV

− FJCCFZC
T ZFZC * Q̇C. sA2d

Then we make use of Eq.s4d sJosephson partd and obtain

F0

2p
Ctotẇ = − QJ − FJKQK − CJLḞL − CJVVV − FJCCZ * VC,

sA3d

where we have defined the frequency-dependent capacity
CZsvd= ivCFZC

T ZsvdFZCC and

Ctot = CJ + FJCCFJC
T , sA4d

CJL = FJCCFLC
T , sA5d

CJV = FJCCFVC
T . sA6d

We find thatCZsvd is a symmetric matrix since bothC andZ
are symmetric. Using Eq.s5d scapacitance partd again, we
obtain

FLC
T ḞL = C−1QC −

F0

2p
FJC

T ẇ − FVC
T VV − FZC

T Z * I Z,

sA7d

which we multiply withFLCC, with the result

FLCCFLC
T ḞL = FLCQC −

F0

2p
FLCCFJC

T ẇ − FLCCFVC
T VV

− FLCCFZC
T ZFZC * Q̇C. sA8d

With the definitionsCL=FLCCFLC
T and CLV=FLCCFVC

T , we
find

CLḞL = − QL − FLKQK −
F0

2p
CJL

T ẇ − CLVVV − FLCCZ * VC.

sA9d

EquationssA3d and sA9d are rewritten in a more compact
form in Eq. s19d.

APPENDIX B: SYSTEM-BATH DYNAMICS

In this section, the form of the system-bath coupling op-
eratorHSB and its spectral densityJsvd, Eqs.s39d and s40d,
are derived in detail.

We first inspect the Hamilton equations for the bath coor-
dinates,
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ẋa =
]H
]pa

=
pa

ma

, sB1d

ṗa = −
]H
]xa

= − mava
2xa − cam̄ ·C−1Q, sB2d

then take their derivative with respect to time, and solve
them in Fourier space. We obtain

xasvd =
cam̄ ·C−1Q

masv2 − va
2d

, sB3d

pasvd = maivxasvd =
ivcam̄ ·C−1Q

v2 − va
2 . sB4d

Next, we look at the Hamilton equations for the system co-
ordinates,

Ḟ =
]H
]Q

= C−1SQ + m̄o
a

caxaD , sB5d

Q̇ = −
]H
]F

= −
]U

]F
. sB6d

Combining Eqs.sB5d andsB6d with Eqs.sB1d andsB4d, we
obtain

CF̈ = −
]U

]F
+ m̄o

a

ca

pa

ma

= −
]U

]w
− K p m̄sm̄ ·C−1Q̇d,

sB7d

where

Ksvd = − o
a

ca
2

v2 − va
2 sB8d

directly determines the bath spectral density

Jsvd =
p

2o
a

ca
2

mava

dsv − vad = − Im Ksvd. sB9d

By comparing Eq.sB7d with Eq. s33d, we find

Cdsvd = Ksvdm̄m̄T. sB10d
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