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We propose a universal quantum computing scheme in which the orthogonal qubit states #0$ and #1$ are
identical in their single-particle spin and charge properties. Each qubit is contained in a single quantum dot,
and gate operations are induced all electrically by changes in the confinement potential. Within the computa-
tional space, these qubits are robust against environmental influences that couple to the system through single-
particle channels. Due to the identical spin and charge properties of the #0$, #1$ states, the lowest-order
relaxation and decoherence rates 1 /T1 and 1/T2, within the Born-Markov approximation, both vanish for a
large class of environmental couplings. We give explicit pulse sequences for a universal set of gates !phase,
! /8, Hadamard, and CNOT" and discuss state preparation, manipulation, and detection.
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I. INTRODUCTION

Proposals for quantum computing architectures based on
semiconductor devices1–7 are attractive for their scalability;
once the few-qubit problem is solved, massive scalability
is not expected to pose insurmountable barriers either in
resource requirements or fabrication precision. This is prima-
rily due to the sustained and continued improvements in epi-
taxy and lithography over the past few decades, and the abil-
ity with which new techniques, often developed in industry,
are transferred to basic research laboratories. On the other
hand, semiconductor environments are hardly systems of
pristine quality and isolation, and there are severe trade-offs
between long coherence times and short access times.

Pure spin qubits, for example, couple relatively weakly to
their environment.8 Their dipole tails are often negligibly
weak, and spin-exchange effects, while potentially strong,
are short range. Precisely because of this weak environmen-
tal coupling, spin qubits may be potentially difficult to con-
trol and manipulate. For single-particle qubits, local Zeeman
tuning is required to rotate bits. The opposite scenario is
often true for charge qubits. Here, control may be attained
very quickly with metallic gates or optics.6,7 However, relax-
ation and decoherence times can be very fast, requiring even
faster switching times.

This begs the question of whether there exist hybrid qu-
bits which accentuate the positives and mitigate the nega-
tives. We show below that this does indeed seem the case if
a single qubit is judiciously defined as a correlated few-body
system whose charge and spin degrees of freedom are en-
tangled. These strong correlations should additionally be ef-
fective at suppressing relaxation and decoherence through
single-particle channels. Indeed, our two orthogonal qubit
states are identical in their single-particle spin and charge
degrees of freedom; differences only show up in their two-
body correlation functions.

Sources of decoherence and dissipation can also be
broadly classified as spin based or charge based. Both de-
stroy the unitary dynamics of the system either by taking it
outside the computational subspace or by remaining within

the computational subspace, but causing either uncontrolled
qubit flips or pure dephasing without dissipation of energy.
This will generally occur whenever an environmental influ-
ence couples differently to each qubit state. For example, if
the two qubit states differ in their spin, then random mag-
netic fields are an issue. For single-particle qubits, this will
always be the case, and likewise for two-particle qubits; it is
not possible to define two orthogonal one- or two-particle
states with identical spin and charge densities. A three-
particle system, however, can be constructed in which both
the charge density and the spin of the two orthogonal #0$ and
#1$ states are identical.

We show that the qubits we define below admit a univer-
sal set of one- and two-qubit gates, and we give explicit gate
pulse sequences which implement this universal set. We also
discuss issues of decoherence and relaxation among the qu-
bits and show that, for a broad class of environments, includ-
ing certain spin dependent ones, relaxation and dephasing are
absent !1/T1=1/T"=0" within the lowest-order Born-
Markov approximation. We expect the residual decoherence
rate due to higher-order couplings, non-Markovian effects,
and other weakly coupled environments to be small. We also
discuss extensions to the model of system-environment cou-
pling, and comment on issues of state preparation and detec-
tion.

In the following section, we describe our model electronic
Hamiltonian consisting of two many-body parabolic-elliptic
quantum dots, with long-range intradot Coulomb repulsion.
In Sec. III, we construct our qubits and demonstrate how
correlations produce orthogonal #0$ and #1$ states with iden-
tical spin and single-particle charge densities. Section IV
contains explicit implementations—in the form of pulse
sequences—for a universal set of quantum logic gates !Had-
amard, ! /8, phase, and CNOT gates". Section V demonstrates
that, to lowest order, intraqubit relaxation and dephasing are
absent for all pure spin and pure charge environments, which
couple to the qubit through single-particle channels. Finally,
in Sec. VI, we briefly discuss issues of state preparation and
detection.
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II. MODEL HAMILTONIAN

We consider two coupled dots with Hamiltonian

Ĥ = Ĥdot1 + Ĥdot2 + Ĥcoupl, !1"

where the first two terms denote the individual quantum dots
whereas the third denotes interdot coupling. For Ĥcoupl, we
shall take a simple coupling Hamiltonian, but, within each
quantum dot, we shall take full long-range repulsive interac-
tions into account !exactly". We first focus on a single qubit
and subsequently discuss two-qubit interactions.

We encode a single qubit in a single elliptically confined9

two-dimensional lateral quantum dot. We place three inter-
acting electrons in the dot and consider the two-dimensional
subspace spanned by the S=1/2, Sz=−1/2 spin sector.
Single-qubit rotations are created by tuning the eccentricity
of the elliptic confinement potential,10 whereas two-qubit op-
erations, as we show below, are created by controlling the
coupling between two adjacent quantum dots.1,2

The Hamiltonian of a single dot is given by Ĥdot1

= Ĥ1body+ ĤCoul, where

Ĥ1body =
1

2m
%p̂ −

e

c
Â&2

+
1
2

m!#x
2x̂2 + #y

2ŷ2" . !2"

We take a magnetic field B= !0,0 ,B" perpendicular to the
plane of the dot. The Hamiltonian !2" can be exactly diago-
nalized with canonical Bose operators â1

†, â2
† and their Her-

mitian conjugates as10,11

Ĥ1body = $%+%â1
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We build many-body states through antisymmetrized prod-
ucts of single-particle states #nm$, where â1

†â1#nm$=n#nm$
and â2

†â2#nm$=m#nm$.
The long-range Coulomb interaction ĤCoul can then be

written in the usual second-quantized form as

ĤCoul =
1
2 ( Vijklci&

† cj&!
† cl&!ck&, !5"

where all indices are summed over. An explicit and exact
closed-form expression for the matrix element

Vijkl =) d2q
e2

2!q'
!mini,mjnj#eiq·!r̂1−r̂2"#mknk,mlnl" , !6"

is derived in Ref. 10.

III. QUBIT CONSTRUCTION

For definiteness, we consider three singly occupied orbit-
als #nm$= #00$ , #01$ , #02$ corresponding to the three lowest-
energy orbitals in the lowest Landau level. With this orbital
occupation, the S=1/2, Sz=−1/2 subspace is two dimen-
sional and is spanned by our orthogonal qubit states

#0$ *
1
'6

!2#↓↓↑$ − #↓↑↓$ − #↑↓↓$" , !7a"

#1$ *
1
'2

!#↓↑↓$ − #↑↓↓$" . !7b"

Each term on the right is a single antisymmetrized state:
#s0s1s2$*c00s0

† c01s1

† c02s2

† #vacuum$, where the operator cnms
†

creates an electron in state #nms$. The spin configurations in
Eq. !7" are !up to an overall exchange of spin up and down"
those of Ref. 12; however, the electron states differ in their
orbital degrees of freedom. In particular, the states +Eq. !7",
have particles sitting in orthogonal orbitals; this orthogonal-
ity is required for the charge densities to be identical during
gate operations.

The states in Eq. !7" cannot be written as single Slater
determinants in any single-particle basis; they are correlated
states with entangled spin and charge degrees of freedom.
These correlations enable the states to be both orthogonal to
each other and yet exhibit identical single-particle properties.
Both qubit states in Eq. !7" have spin S=1/2, Sz=−1/2. Fur-
thermore, defining the charge density operator as (̂!r"
=(i)!r− r̂i", we find -($#0$= -($#1$=(i#*0i!r"#2, where *nm!r"
*-r #nm$ is a real-space eigenstate of Eq. !2". The density is
plotted in Fig. 1 for two different values of z=#c /#x.

Physical differences in the qubits arise at the two-body
level. For the two-particle density

(̂t!r1,r2" =
1
2(

ij
)!r1 − r̂i")!r2 − r̂ j" , !8"

we find

)( = 2F01 − F02 − F12, !9"

where )(= -(t$#1$− -(t$#0$, and

FIG. 1. !Color online" Identical charge density -(!r"$ for both
qubit states. Both plots have #y /#x=1/2. The left plot is at zero
magnetic field, whereas the right has #c /#x=5. For #x=1 meV,
this corresponds to Bz.3 T for GaAs.
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Fij = Re+*i!r1"* j!r2"*i
*!r2"* j

*!r1", . !10"

The two-point functions are shown in Fig. 2 for r1=0.
Because both the single-particle charge and spin proper-

ties for both qubit states are identical, intraqubit decoherence
and dissipation should be minimized. We show below that,
within the lowest-order Born-Markov approximations, the T1
and T2 times are infinite for a very large class of environ-
mental models. Before doing so, however, we first show that
a complete universal set of logic gates is achievable in this
system.

IV. UNIVERSAL QUANTUM LOGIC GATES

In the space defined by the qubit states in Eq. !7", the
electronic Hamiltonian !2" can be written as a pseudospin-
1 /2 particle in a pseudomagnetic field. In this particular case,
we have10

Ĥqubit = bx&̂x + bz&̂z + b0&̂0, !11"

with &̂x, &̂z the Pauli spin matrices and &̂0 the identity matrix.
The pseudomagnetic field components bx, bz, and b0 are
given by

bx = '3!V0220 − V1221"/2, !12a"

bz = − V0110 + !V1221 + V0220"/2, !12b"

b0 = V0101 + V0202 + V1212, !12c"

where Vijji are exchange !and Vijij direct" matrix elements,
given in Eq. !6" with ni=nj =0, mi= i, and mj = j. Explicit
!exact, analytic" expressions of these are given in Refs. 10
and 13.

The main point with regard to qubit rotations is that the
fields in Eq. !12" have a different functional dependence on
the dimensionless ratios r=#y /#x and z=#c /#x. Thus, adia-
batically controlling either r!t" or z!t" can rotate qubits.14

These ratios may be changed at fixed magnetic field !#c" by
altering the two confinement frequencies #x and #y indepen-
dently.

To perform an arbitrary computation, we require a univer-
sal set of quantum logic gates, which typically consists of
both single- and double-qubit operations. We focus first on
the single-qubit portion of this universal set, followed by the
two-qubit portion, the CNOT gate.

A. Single-qubit gates

A universal set15 of quantum logic gates is given by the
CNOT gate, which we discuss below, and the single-qubit
Hadamard gate H, ! /8 gate T, and phase gate S. These are
each given by

H =
1
'2

%1 1

1 − 1
&, T = %1 0

0 ei!/4 &, S = %1 0

0 i
& .

!13"

We expect that all SU!2" operations on qubits encoded as in
Eq. !7" can be achieved asymptotically, since two nonparallel
pseudofields are achievable with two different values of r
and z.16

In order to find explicit time-dependent parameters r!t"
and z!t" for which the single-dot time evolution,

Û = T̂ exp%− i)
0

T

Ĥdot1„r!t",z!t"…dt& , !14"

equals the desired single-qubit operation, we adapt the mini-
mization method used in Refs. 12 and 17. !T̂ is the time-
ordering operator." The time interval +0,T, is divided into N
discrete pieces during which the functions r!t" and z!t" are
set constant. We are then left with an optimization problem
with 3N variables ti, ri, and zi !i=1, . . . ,N", where ti denotes
the length of the ith phase, (i=1

N ti=T; the parameters ri and zi
determine the values of r!t" and z!t" in the ith phase. We
numerically minimize the function f = /U!0ti ,ri ,zi1"−Ut/2,
where U!0ti ,ri ,zi1" is obtained by exponentiation, Eq. !14",
and Ut is the desired target single-qubit operation, Eq. !13".

We have found numerical solutions involving N=1, 3, and
5 steps for the H, T, and S gates, respectively. Explicit se-
quences are shown in Table I,18 where the time pulse dura-
tion is expressed in terms of the dimensionless parameter +
= t / t0, with t0= !2! /#x"!8!2$#x /Ry"1/2. Here, Ry
=m*e4 / !2,2$2" is the effective Rydberg energy, where m* is
the effective mass and , the dielectric constant. For GaAs,
Ry.5.93 meV and t0.2.5 ps for #x=2.5 meV. Note that
the sequences shown in Table I are not optimized for experi-
mental efficiency, but merely demonstrate that solutions for a
universal set do indeed exist. We have found many more
solutions !none shorter" for each of the one-bit gates, includ-
ing solutions at fixed z.13

B. Coupled dots

To consider two-qubit gates, we now include the interdot
coupling term Ĥcoupl. We consider a minimal model valid in
the limit of weak coupling. Of the three orbitals we are con-
sidering, the #nm$= #02$ orbital is both highest in energy and
closest to the edge of the dot. Thus, as the interdot barrier is
lowered, the respective #02$ orbitals in each dot will be the
first to couple. This is schematically depicted in Fig. 3. Our
minimal model considers the coupling only between these
two orbitals. This leads to a Heisenberg form,1,2

FIG. 2. !Color online" Two-point density -(t!r1 ,r2"$#Q$ with
r1=0. The left plot is for Q=0 and the right for Q=1. Both plots
have #y /#x=1/2 and #c /#x=5.
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Ĥcoupl = JŜ! · Ŝr, !15"

where Ŝ=(ss!c02s
† &ss!c02s! is the spin operator of the #02$

orbital, and the indices ! and r denote the left and right dots,
respectively.

C. Double-qubit gate

A two-qubit system is formed from the direct product
#Q$ ! #Q!$ of the states in Eq. !7", forming a four-
dimensional computational space. The states #Q$ ! #Q!$ are,
in fact, S=1, Sz=−1 eigenstates. Unfortunately, the spin sub-
space and the computational subspace are not identical; the
six spin !three for each dot" S=1, Sz=−1 subspace is nine
dimensional, four of which constitute our #Q$ ! #Q!$ compu-
tational space. Thus, our implementation of CNOT, as that in
Ref. 12, involves transient excursions outside the computa-
tional space; nevertheless, our sequences are designed such
that the final gate operation is unitary and returns to the
four-dimensional computational space. We require the final
state to be such that the CNOT truth table be satisfied, up to
single-qubit operations.19 An explicit implementation is
given in Table II. Six parameters are required to describe a
pulse: the pulse duration +, two !r, z" parameters per dot to
describe each qubit, and a dimensionless exchange coupling
J=Jt$ /+ describing the coupling. As shown in Table II, a
nine-step solution is the smallest we have been able to find.20

!If it were possible to turn off intradot exchange, then a
three-pulse CNOT is achievable.13"

V. DECOHERENCE AND DISSIPATION

Environmental influences can be of two distinct types:
Slow variations in the electromagnetic environment merely

lead to adiabatic changes in the pseudofield b and thus to
unitary errors that typically average out over the length of a
pulse.14 We look first to fast, nonadiabatic environmental
influences that can lead to nonunitary errors—i.e.,
decoherence—followed by a discussion on adiabatic influ-
ences which lead to gate errors.

A. Nonadiabatic influences

Assuming that the environment does not change the num-
ber of particles on the dot, and that the bath couples only to
single particles in the dot, then a general model of system-
bath coupling is given by

ĤSB = ( B̂nms
n!m!s!cn!m!s!

† cnms, !16"

where the sum is over all repeated indices. B̂nms
n!m!s! is a set of

arbitrary operators which describe the reservoir and all rel-
evant coupling constants.

At time t, the full state vector of the system #-!t"$
=(Q#Q$ ! #.Q!t"$ !Q=0,1" is a nonseparable state, where the
states #.Q!t"$ are reservoir states including all time-
dependent coefficients. The matrix elements of Eq. !16",

HSB
Q!Q = ( -Q!#cn!m!s!

† cnms#Q$Anms
n!m!s!!.!,." , !17"

where Anms
n!m!s!!.! ,."= -.!#B̂nms

n!m!s!#.$, are straightforwardly
calculated.13

TABLE I. Pulse sequences for one-bit logic gates. The dimensionless parameters +, z, and r can be tuned
through the time t and any two of #y, #x, and Bz.

Hadamard gate ! /8 gate Phase gate

2!+ z r 2!+ z r 2!+ z r

1.470 0.376 0.158 1.859 4.828 0.022 2.092 0.249 0.121
3.674 0.102 0.936 1.512 2.803 0.996
2.443 1.093 0.051 2.123 2.586 0.012

2.280 0.124 0.916
1.992 0.224 0.139

TABLE II. CNOT implementation with an always-on intradot ex-
change interaction. Subscripts denote individual qubits, J the inter-
dot exchange, and + the pulse duration.

2!+ J z1 r1 z2 r2

1.227 2.133 0.846 0.630 3.280 0.398
3.821 0.615 1.860 0.067 0.663 0.308
2.766 4.094 0.418 0.767 3.897 0.340
1.167 3.540 0.017 0.298 0.852 0.952
1.591 3.242 1.695 0.370 2.362 0.237
2.148 3.031 2.177 0.559 2.648 0.354
1.560 1.714 3.091 0.077 4.812 0.083
2.255 1.889 1.536 0.222 2.032 0.645
1.981 3.796 21.501 0.453 11.516 0.157

FIG. 3. !Color online" Schematic of our minimal coupling
model. As the interdot barrier is lowered, the orbitals highest in
energy and with the greatest overlap will be the first to couple.
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Within the Born-Markov approximation, and using the
definitions in Eq. !7", the relaxation T1 and dephasing T"

times are given by21,22 +1/T2=1/ !2T1"+1/T",

1
T1

2 #HSB
10 #2 =

1
12

#)h0 − )h1#2, !18a"

1
T"

2 #HSB
00 − HSB

11 #2 =
1
9

#2)h2 − !)h1 + )h0"#2, !18b"

where )hm=A0m↑
0m↑−A0m↓

0m↓. To the extent that the Born-Markov
approximation is valid,23 Eq. !18" states that relaxation and
dephasing within the computational space are negligible to
leading order for all environmental couplings which are ei-
ther purely charge or purely spin in character. The former has
B̂mns

m!n!s!=)ss!B̂mn
m!n! in Eq. !16" and, consequently, )hm=0,

whereas the latter has B̂mns
m!n!s!=)m!m)n!nB̂s

s! and, conse-
quently, )h0=)h1=)h2!0. For both these cases, dephasing
and relaxation vanish within the Born-Markov approxima-
tion. !Neither of these is applicable for hyperfine environ-
ments, which depend on both spin and charge."

B. Adiabatic influences

Regarding adiabatic !unitary" influences, which do not
cause decoherence, these can be minimized by choosing set-
tings for the confinement potential such that db /dr and
db /dz are small in magnitude. This is the case, for example,
for the values r.0.8 and z→0. For these values of the con-
finement, we find #db /dz#→0 and #db /dr#2e2 / !16'2!/",
where /2=$ / !m#x". For GaAs material parameters, with
#x=1 meV, this gives #db /dr#.85 0eV—at least an order
of magnitude smaller than typical pseudofield magnitudes.
With these, we can estimate corrections to the adiabatic

limit24 expressed as a leakage time given by Tleak
2E4 / !$2ṙ3#db /dr#2", where E21 meV is the excitation en-
ergy to states outside the qubit space, and ṙ=dr /dt
210 GHz is the rate of typical gate operation. For these
parameter values, we find Tleak2200 0s, and a leakage prob-
ability of only Pleak210−7.

VI. INITIALIZATION AND MEASUREMENT

With regard to state initialization, we note that if the qubit
states are the lowest-energy states, then preparation becomes
merely a matter of thermalization. In this case, potentials
other than elliptic may well prove useful.9 Ideally, a system
where the two qubit states are the two lowest-energy states
would be beneficial not only for state preparation but also for
a more general deterrent to dissipation, especially relaxation
to states outside the computational basis.

Finally, with regard to measurement, we note that the two
states in Eq. !7" are not degenerate. Thus, a destructive mea-
surement is possible by detecting whether a fourth electron
resonantly tunnels onto the !three-particle" dot; similar to the
single-shot readout of individual quantum dot spin,25 the
gates may be pulsed such that an additional electron can
tunnel onto the dot only if it is in the higher-energy qubit
state. In fact, since the tunnel barriers as well as the confine-
ment itself is determined !and controlled" by the applied
electrostatic potential, the universal set of gates described
above as well as detection may be accomplished using al-
ready existing8,25 experimental techniques.
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