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Quantum gates between capacitively coupled double quantum dot two-spin qubits
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We study the two-qubit controlled-NOT gate operating on qubits encoded in the spin state of a pair of
electrons in a double quantum dot. We assume that the electrons can tunnel between the two quantum dots
encoding a single qubit, while tunneling between the quantum dots that belong to different qubits is forbidden.
Therefore, the two qubits interact exclusively through the direct Coulomb repulsion of the electrons. We find
that entangling two-qubit gates can be performed by the electrical biasing of quantum dots and/or tuning of the
tunneling matrix elements between the quantum dots within the qubits. The entangling interaction can be

controlled by tuning the bias through the resonance between the singly occupied and doubly occupied singlet

ground states of a double quantum dot.
DOI: 10.1103/PhysRevB.75.085324

I. INTRODUCTION

The spin 1/2 of a single electron trapped in a quantum dot
(QD) is a promising candidate for a carrier of quantum in-
formation in a quantum computer.! To perform a quantum
computation, we need to have all the unitary operations from
some universal set of quantum gates at our disposal.> One
such universal set consists of all the single-qubit quantum
gates and a two-qubit controlled-NOT (CNOT) quantum gate.
Quantum computation over the single-spin qubits with the
logical states corresponding to the spin orientations |T) and
||} can, in principle, be achieved using an external magnetic
field or with g-factor engineering for the single-qubit opera-
tions and with the time-dependent isotropic exchange inter-
action H,,(t)=J(t)S,-S, for manipulating a pair of qubits en-
coded into spins S; and S,.!

Control of electron spins in quantum dots is in the focus
of many intense experimental investigations. Manipulation
of pairs of electron spins using the tunable isotropic ex-
change interaction has already been demonstrated in several
experiments.’™ Such control was used in a study of the QD
spin decoherence due to the hyperfine coupling to the sur-
rounding nuclear spins, where the splitting between the sin-
glet states with the total spin S"'=0, where S$’=S,+8S,, and
the triplet states with S’=1 was used to turn the singlet-
triplet mixing caused by the hyperfine interaction on and off.
An important result of these studies is that the coherence
time of an electron spin in a quantum dot is very long if the
decoherence due to the interaction with the nuclear spins can
be suppressed. The spin coherence times can be improved by
the manipulation of nuclear spins,®® in principle, allowing
for elaborate sequences of operations to be performed.
Single-spin control is based on the local manipulation of the
magnetic field or g factor! or on electron-spin-resonance
methods®'® and has only recently been demonstrated
experimentally.!!

The difficulty of single-spin control has inspired a number
of proposals for quantum computation based on the encoding
of qubits into more than one spin. These encoding schemes
reduce the requirement on the control over electron spins,
but have the drawback of introducing so-called leakage er-
rors, in which the state of encoded qubit “leaks” out of the
set of computational states. Standard error-correction proce-
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dures can be modified to prevent this kind of error.!> A uni-
versal set of quantum gates operating on qubits encoded into
states of three quantum dot spins with equal total spin quan-
tum numbers can be implemented through control of the iso-
tropic exchange coupling H,, alone.'3"'> Control over inter-
actions that are symmetric only with respect to rotations
about a fixed axis in spin space allows for the construction of
a universal set of quantum gates that operate over qubits
encoded into a pair of spins. One such encoding is into the
orthogonal states |1]) and || T) of two spins 1/2. A universal
set of quantum gates over such qubits can, in principle, be
performed by the control over H,,, with the anisotropy pro-
vided by an external static homogeneous magnetic field and
a site-dependent g factor.!%!7

We consider a variant of the two-spin encoding where the
logical zero |0;) and the logical one |1,) quantum states are
the singlet and the triplet with zero projection of the total
spin to the symmetry axis z ($'=0); e.g., for lateral QDs,
the z axis is the normal to the plane of the heterostructure,

1
0.y =—=(11)-111)).

V2

| (1)
1) =—=(T1)+[L1)).

V2

These qubits can be manipulated by an axially symmetric
interaction to produce a universal set of quantum gates. The
interaction with an inhomogeneous Zeeman field and the iso-
tropic exchange,'®!” the interaction with an inhomogeneous
Zeeman field and an anisotropic spin-orbit coupling,'® and
the spin-orbit coupling alone'® were all proposed as a way of
producing a universal set of quantum gates operating on
singlet-triplet two-spin qubit [Eq. (1)]. Recently, it was sug-
gested that an architecture based on singlet-triplet qubits in-
dividually addressed using the isotropic exchange interaction
and inhomogeneous magnetic field and coupled through
Coulomb interactions of the electrons is scalable and, in
principle, realizable.?”

In this paper, we study a particular realization of entan-
gling two-qubit gates between singlet-triplet qubits [Eq. (1)],
where each qubit is represented by a pair of tunnel-coupled
single-electron quantum dots, as proposed in Ref. 20. In this
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FIG. 1. (Color online) Double-double quantum dot (DDQD)
setup. The four single-electron quantum dots are aligned along a
fixed direction. The spins of the electrons on two quantum dots,
inner (1) and outer (O), separated by a distance 2a; encode a qubit.
Two such double quantum dot (DQD) qubits, left (L) and right (R),
at the distance 2a, are separated by an impenetrable barrier. The
tunneling matrix element # within the DQDs carrying the qubits and
the bias € of the inner dots with respect to the outer are equal on
both DQDs and can be electrically tuned. The Coulomb interaction
between the DQD is represented by the capacitor C.

realization, the double quantum dots are separated by a bar-
rier, which is impenetrable for the electrons, so that the qu-
bits are coupled exclusively through the Coulomb repulsion
of electrons, while the exchange terms between electrons on
different double quantum dots vanish. The setup of this
double-double quantum dot (DDQD) is illustrated in Fig. 1.

The Coulomb interaction is spin independent, leading to
an isotropic interaction JS; -S, between tunnel-coupled spins
S, and S,. The anisotropic correction to this interaction is
dominated by the spin-orbit coupling induced term JB-(S;
X 8,)+0(|B|*). The relative strength of the anisotropic inter-
action in quantum dot systems is estimated to be |@]
~0.1-0.01.2"?? The influence of the anisotropic corrections
can be reduced in specific implementations of the quantum
gates.?>?* Coupling of singlet and triplet states in a DQD
induced by the anisotropy would introduce errors in a quan-
tum gate operation at the rate of approximately |B]*> for a
generic implementation of the entangling gates and at the
rate |B*| if the methods of Ref. 24 are applied. In our study
of a two-qubit gate operation, we will only consider the case
of isotropic interaction and neglect the weak anisotropy. In
this case, transitions between spin-singlet and spin-triplet
states on a DQD are forbidden. Due to this spin symmetry,
the four-electron Hamiltonian is block diagonal,

H = diag(H g5, Hgr,Hys, Hry) . (2)

The nonzero blocks H,,, where a,b=S,T, act on the states in
which electron pairs on each DQD are either in the singlet
(S) or in a triplet (7) state of the total spin S*'=0 or §'=1.

Our main results are the effective low-energy spin inter-
action and a scheme to perform a two-qubit CNOT gate in an
electrically controlled DDQD system. The effective low-
energy spin interaction in this setup has the form

H=J(S;;-S1o+ Sk Sro) + E.|SS)(SS|. (3)

Two pairs of spins, S;; and S;, on the left (L) qubit and Sg,
and Sy, on the right (R) qubit (see Fig. 1), interact via the
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isotropic exchange interaction of strength J and the entan-
gling interaction of strength E, that shifts the energy of the
singlet-singlet state. We show how the entangling two-qubit
quantum gates for universal quantum computation can be
performed through the electrical control of E,.

The triplet states with S?'=0,+1 are degenerate in the
absence of a magnetic field. A uniform magnetic field B,
pointing along the z axis normal to the plane of QDs, causes
a Zeeman splitting gupB- S between the S2”'=0 states and the
states with $’=1, S/’=x1. Our results apply to both the
isotropic (B=0) and the anisotropic but axially symmetric
(B #0) case if we take the S2'=0 state to represent the qubit
|1,) state.

A two-qubit quantum gate can, in principle, be performed
by adiabatically varying the tunneling amplitude 7 and the
bias € within the DQD. A generic voltage pulse will modify
the electrostatic potential in the quantum dots. We use the
tunneling amplitude and the bias to describe this potential. In
a more general approach, the new potential would be calcu-
lated as a solution to the electrostatic problem with external
voltages specifying the boundary conditions. However, the
wave functions of electrons are well localized at the posi-
tions of the quantum dots, and the parameters ¢ and € capture
the possible variation of the electron Hamiltonian. In a naive
picture, the tunneling and bias are controlled by separate
electrodes. Another important issue is independent control
over the two parameters. In principle, a change in the gate
potentials will modify both parameters. The control will,
however, be approximately independent as long as the quan-
tum dots are well separated. In practice, it is much simpler to
change the bias € while 7 remains fixed.?” The control param-
eters € and ¢ have to vary slowly on the time scale set by the
energy splitting between the states of a given spin configu-
ration. During the gate application, the orbital components of
the S and T states are different due to the Pauli principle that
forbids the electrons in a spin triplet to share their orbital
state (see Fig. 2). As opposed to ¢ and € that are determined
by gate voltages and can be changed more or less at will, the
Coulomb interaction is set by the geometry of the system and
therefore fixed. We show how the control of the parameters ¢
and €, or even € alone, can nevertheless be used to imple-
ment entangling two-qubit gates on encoded singlet-triplet
qubits through its influence on the Coulomb terms.

When an adiabatic gate is applied, the lowest-energy state
in each block H,,, of energy E,,, where a,b=S,T [see Eq.
(2)], acquires a phase d)ab:fﬁifEab(t’)dt’/h. The energy E,,
becomes time dependent through the time dependence of the
parameters ¢ and € in the interval 7;<<t' <t The resulting
interaction is described by an effective four-dimensional
two-qubit Hamiltonian acting in the space spanned by the
lowest-energy states |SS), |ST), |TS), and |TT) in the corre-
sponding blocks H,,, and has the form of Eq. (3).

In the regime of strong bias, |e—U|>t, where U is the
on-site Coulomb repulsion, we investigate the DDQD system
using perturbation theory. For the case of arbitrary bias €, we
numerically diagonalize the Hamiltonian [Eq. (2)]. We show
that the two-qubit quantum gate can be operated by tuning
the bias € so that the amplitude of the doubly occupied state
in the lowest-energy spin singlet becomes appreciable. In
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FIG. 2. (Color online) Two-qubit quantum gate. (a) When the
inner quantum dots of the two double quantum dots system are
strongly biased (e> U+1), the ground state is the doubly occupied
inner dot. Due to the Pauli principle, only the spin singlets (S) can
tunnel into the doubly occupied states on their DQDs. As the bias €
is reduced, the states again become degenerate. (b) A quantum gate
is performed by sending a bias pulse e(¢’). Each qubit state |ab)
acquires a phase ¢,,= /" E,,(t")dt' I, where E,;(t') is the ground-
state energy of the Hamiltonian at time ¢ reduced to the appropriate
spin subspace, resulting in a two-qubit quantum gate.

this “on” state with a large double occupancy amplitude,
entanglement is generated between the two-spin qubits. The
entanglement generation is suppressed in the “off” regime
with weak bias and tunneling. Therefore, the generation of
entanglement between the two two-spin qubits encoded into
DDQD can be efficiently controlled using the bias € alone.
Together with the single-qubit operation, this control is suf-
ficient for universal quantum computing.

This paper is organized as follows. In Sec. II, we intro-
duce our model of the DDQD system, followed by the dis-
cussion of the control through voltage pulses. In Sec. III, we
focus on the case of the strongly biased (|e—U|>t) DDQD
system and calculate the interaction between the qubits. The
constraint of the strong bias is lifted in Sec. IV, where we
numerically find the interaction between the qubits, valid at
an arbitrary bias €. In Sec. V, we outline the construction of
a CNOT gate based on the resources for the control over a pair
of qubits deduced from the results of Secs. III and IV. Our
results are summarized in Sec. VI. The technical details of
the calculation are collected in the Appendix.

II. MODEL

For the purpose of finding the effective low-energy spin
Hamiltonian, the excited orbital states of single quantum dots
can be neglected, leading to the Hund-Mulliken (HM) ap-
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proximation with one orbital per dot.>*> In the HM approxi-
mation, the state space of the two-electron system in a
double quantum dot (DQD) encoding the left (¢g=L) or the

right (g=R) qubit is spanned by three singlet basis states,
|D)), and |D,)), and one triplet basis state,

1 .

|$)= \,,—5(6%%01 = Cq11C401)10), ()
D))= clicin|0), (5)
Do) = CI{OTC(;01|O>’ (6)
Lov & .t 3

7o) = 5 Cancaor* Cq11¢q01)10) )

where c; is the annihilation operator for an electron in the
state k=(q;,py,s;) on the qubit g,=L,R, with position p,
=1,0, where [ stands for inner and O for outer quantum dot
within a qubit, and spin s;,= T, |. The vacuum |0) is the state
of empty QDs.

In the standard notation, the singlet states of a DQD are
denoted by |(n,m)S), where n is the number of electrons on
the left QD and m is the number of electrons on the right

QD. Our singly occupied singlet is then expressed as |§>
=|(1,1)S). The doubly occupied singlet states on the left,
g=L, DQD are |D;)=((0,2)S) and |Dy)=|(2,0)S). On the
right, g=R, DQD the definitions are reversed, |D;)
=1(2,0)$) and |Dy)=((0,2)S).

The orbital states annihilated by c¢; approximate the
ground states of the single-particle Hamiltonian,

e 2
H = 2 L[I’i— ;A(ri):| +V(ry), (8)

T 2m

describing an electron in the magnetic field B=V X A and
confined to the system of quantum dots by the electrostatic
potential V. The quantum dots form in the minima of this
potential, which is locally harmonic with the frequency w.
The ground states of H, localized in these wells are the trans-
lated Fock-Darwin states.’

The HM Hamiltonian is of the generic form

= tz ( s q, SpS] qklsk qAOVk + H-C-)

—€> c,‘(ck + 5 > (kl|VC|mn>c,Lcl' CyCop- 9)

k.pi=1 kimn

The intra-DQD tunneling term o¢ preserves the electron
spin. The bias € of the inner (p;=1) QDs with respect to the
outer (p;=0) QDs is taken to be symmetric; i.e., the energy
of both inner dots is lowered by the same amount. The two-
body Coulomb interaction is denoted by V. Near the center
of the quantum dot, the electrostatic potential is approxi-
mately harmonic and we assume that the wave functions of
the electrons annihilated by the operators c; are well approxi-
mated by the orthogonalized Fock-Darwin ground states.
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The impenetrable barrier that separates the DQDs im-
poses the conservation of the number of L(R) electrons,
AL(R) =2 p=1,0:5=1./AL(R)ps> WheTe Ay =Cy,Cops. The fipg) con-
serving terms, proportional to the interaction matrix elements
(kl|V|mn) in Eq. (9), where the indices k,/,m,n denote the
single QD ground states, can be divided into intra-DQD
terms where ¢,=¢;=9,,=¢, and inter-DQD terms that satisfy
q:#q; and q,, # q,. All the other terms, e.g., the ones that
annihilate two electrons on the left (L) DQD and create two
on the right (R) DQD, violate the conservation of the elec-
tron numbers and therefore vanish.

A. Interaction within a double quantum dot

The terms for the interaction within a DQD in Eq. (9)
were discussed in Ref. 9. They renormalize the one-body
tunneling matrix element #— ty=1+(S|V[Dyo))/12, intro-
duce the on-site repulsion U=(Dy)|Vc|Dyo)) of two elec-
trons on the same QD, and cause transitions between the two
doubly occupied DQD states with the matrix element X
=(Dy0)|Vc|D o) Also, the Coulomb interaction on a DQD

contributes V,=(S|V¢|S) to the electrostatic energy of the
symmetric and V_=(T,|V|T,) to the antisymmetric singly
occupied orbitals of two electrons in a DQD,’ giving rise to
a direct exchange interaction between spins. As a result, the
electrons on a DQD are described by an extended Hubbard

model with the isotropic exchange interaction,’
Uy | ————
sz__v+—7H+E\r’U§,+16t§,, (10)

where Uy=U-V,+X is the effective on-site repulsion.

B. Interaction between the double quantum dots

The Coulomb interaction between the DQDs produces
three new classes of direct terms in the Hamiltonian, while
the exchange terms between the DQD vanish due to the im-
penetrable barrier.

In the first class are the terms proportional to the number
operators i, ., describing the electrostatic repulsion of
the electrons in states gps and gp's’, where L=R and R=L.
For a pair of identical DQDs, there are three such terms: the
interaction of a pair of electrons on the inner QDs, Uy
=(qls,qls'|V¢|qls,qls'), the interaction of an electron on
the inner QD of one DQD and an electron in the outer QD
of the other DQD, U, ={qls,qOs|V|qls,gOs), and the
interaction of electrons on the outer QDs, Up
=(q0s,q0s|V|q0s,q0s) [Fig. 3(a)].

In the second class are the terms proportional to

A

nqpsc;p,_y,cqﬁsr, where I=0 and O=I. These terms describe
the spin-independent correction to the tunneling matrix ele-
ment in the g qubit due to the interaction with an electron in
the state gps. The two parameters that determine the tunnel-
ing corrections are T, ={(gps,qp’s’|Vc|gps.gp's’), and are
due to the interaction with an electron in the p’'=1,0 orbital

in the other DQD [Fig. 3(b)].
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FIG. 3. (Color online) Effects of the direct Coulomb interaction
between double quantum dots (DQDs). All the exchange terms be-
tween the DQDs vanish due to the impenetrable barrier. (a) The
Coulomb repulsion between the electrons on different double quan-
tum dots contributes to the energy of the system. In the case of
identical DQDs separated by an impenetrable barrier, there are three
such contributions, coming from the electrons in orbitals that are
near (Uy), at a medium distance (U);), or far apart (Up). (b) The
tunneling matrix elements within a DQD are renormalized by 7} or
T due to the interaction with an electron on the inner or the outer
dot of the other DQD. (c) The interaction enables the correlated
hopping processes in which electrons simultaneously tunnel in both
DQDs. In one such process, the electrons tunnel to the same side
(either left or right) with the matrix element Xs. In the other corre-
lated hopping process, electrons simultaneously tunnel into the in-
ner or outer quantum dots of their double quantum dots with the
matrix element X,.

The terms in the third class are proportional to
c;pxcqﬁsc;p,s,cgﬁs/ and describe the processes in which elec-
trons in both DQD tunnel simultaneously [Fig. 3(c)]. The
two independent matrix elements for these processes are X
=(gps,qps'|V¢|qps,qps'), describing the tunneling from
the inner to the outer orbital in one DQD and from the outer
to the inner in the other, and X,={qps,qps’|Vc|qps,qps'),
describing the simultaneous tunneling into inner or outer or-
bitals in both DQDs. For the system in zero magnetic field,
these two matrix elements are equal, X¢=X).

C. Control of the interaction

In order to describe the influence of the intra-DQD tun-
neling ¢ and the bias € on the spectrum of the DDQD, we
have to model the dependence of the Hamiltonian on these
external parameters. In an experiment, both ¢ and € are con-
trolled by applying voltages to the electrodes that define the
quantum dots. The exact form of the voltage-dependent
DDQD binding potential was studied using the Schrodinger-
Poisson equation,?® but here we do not attempt to calculate
the dependence of the Hamiltonian [Eq. (2)] on € and ¢ from
first principles.

Instead, we adopt a quartic double-well model for the
potential of a DQD centered at (+a,,0) of the form’

2
mawg

1
Vix,y) = —2 —[(x F ap)? = +y? ¢, 11
(r.y) == 4a%[( ) —al +y (1)
where m is the electron effective mass, 2a, is the distance
between the approximately harmonic wells in a DQD, and
2a, is the distance between the DQD double-well minima. In
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the limit of well separated dots, a; , > ap, where ap is the QD
Bohr radius given by a,zgzﬁ/ mawy, and near the local minima
of the quartic potential well at (xa,*a,,0), the potential is
approximately harmonic with the frequency ;. The Fock-
Darwin ground-state wave functions in this harmonic poten-
tial centered at (x.,0) and in the magnetic field B normal to
the plane of the dots, described in the symmetric gauge by
the vector potential A=B(-y,x,0)/2, are

¢xc(x’y) —a %e—mw[(x - xc)2+y2]/2ﬁ+imexcy/h , (12)

where w;=eB/2mc is the electron Larmor frequency and w
= \J’cu(z)+ wi is the resulting confinement frequency with both
electrostatic and magnetic contributions. We will use the
magnetic compression factor b=w/w, to measure the
strength of the magnetic field, consistent with the notation in
Ref. 9.

The translated single-electron Fock-Darwin states
$ra,2a,(x,y) define the state space of the variational HM
approximation for a DDQD. The tunneling matrix element
between the Fock-Darwin ground states in the local minima
of the potential [Eq. (11)] is our control parameter ¢,

38 [a 1
t:<¢i“2+al|H1|¢ia2_al>=gm(%-I-Z)’ (13)
where S=(¢., 4, | gbiaz_al):exp[—d%@b—l/b)] is the over-
lap between the Fock-Darwin ground states in a DQD and
dy=a,/ap is the distance between the QDs within the DQD
in the units of the QD Bohr radius.

As t is changed by external voltages, we assume that the
overlap S between the oscillator states remains consistent
with the relation in Eq. (13), which is valid for the double-
well potential V. All the Coulomb matrix elements can be
expressed in terms of S so that after solving Eq. (13) for the
overlap, they become functions of 7 (see the Appendix). The
bias € is modeled as an energy shift of the orbitals, so that
the inner p,=I orbitals have their energy reduced by e.

The two-qubit gates are applied by time-dependent tuning
of the tunneling matrix element ¢ and/or the bias € in the
DQDs using voltage pulses. In a typical experiment, the con-
trol of the QD energies through € is much easier to achieve
than the control over tunneling matrix element z.>’ The rea-
son behind this is that the energy bias is linear in applied
voltage, while the tunneling is typically exponential.

The structure of the energy levels is particularly simple in
the limit of zero tunneling =0. In this limit, the eigenstates
are the Hund-Mulliken basis states [Eqgs. (4)—(7)]. Their en-
ergies are determined by the bias €, the external magnetic
field B, and the direct Coulomb interaction that is set by the
device geometry. A drastic change in the structure of the
DDQD spectrum as a function of bias € appears at the cross-
ings of the lowest-energy singlet states within a DQD. Each

of the singlet states |S), |D,), and | D) is lowest in energy for
some values of the bias € (Fig. 4). A crossing occurs when
either the positive bias overcomes the effective on-site repul-

sion U, making the state with both electrons in an inner dot
|D,) the lowest in energy, or the negative bias makes |D,) the
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FIG. 4. (Color online) Illustration of the double quantum dot

energy levels as a function of the bias e. The energy of the singlet
state with doubly occupied outer quantum dot, |Dy), is independent

of the bias. The energies of the singly occupied singlet, |S), and the
singly occupied triplet, |Ty), state are lowered with the increasing
bias as they have a contribution of —2€ from the biased inner quan-
tum dots. The energy of the singlet with doubly occupied inner
quantum dots, |D;), is lowered with the increasing bias faster than
the energy of \E} and |T,) state due to the bias contribution of —4e.
When the tunneling 7 is zero, the lowest-energy levels cross at the
bias U., leading to a drastic change of the effective spin interaction.
For nonzero tunneling, the levels anticross, but the effective spin
interaction still changes significantly when we tune the system from
one side of the anticrossing to the other.

lowest in energy (see Fig. 5). We use the effective on-site

repulsion U to emphasize the fact that it includes not only the
repulsion of two electrons in the same dot, denoted by U, but
also the energy of the interaction with the electrons on the
other DQD. We will also use two special values of the effec-
tive on-site repulsion, U,. Due to the dependence of the ef-
fective on-site repulsion on the state of the other DQD, the
lowest-energy singlet-singlet DDQD state can consist of dif-

e>U

FIG. 5. Bias dependence of the double-double quantum dot
(DDQD) ground state. (a) When the bias € of the inner quantum
dots with respect to the outer ones is weaker than the effective
on-site Coulomb repulsion U, the charge configurations of the
lowest-energy singlet and triplet states consists of singly occupied
orbitals. (b) When e> U, the lowest-energy singlet has a doubly
occupied inner quantum dot, while the orbital state of the lowest-
energy triplet remains unchanged.
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ferent singlets on the two dots, as in |S,D;) and |D;,S). In the
strong-bias regions, the lowest-energy singlets are doubly oc-
cupied states. For e-U,>1t, the lowest-energy singlet is
|D,D)), and for U_-e>t, the lowest-energy singlet is
|DoD). The second doubly occupied singlet state is sepa-
rated by an energy gap =~|2¢| from the lowest-energy state.

III. STRONG BIAS

To develop an intuitive picture of the operation of an en-
tangling two-qubit gate and the mechanisms for its control,
we consider the simple case of strong bias. We show how the
switching between the strong-bias regime (e— U, > 1) and the
weak-bias regime, in which the dominant interaction is the
on-site repulsion, provides us with control over the entan-
gling interaction E,. The boundary of the strong-bias regime
considered here is set by U,=3Uy—2Uy,-Up-2V_
+2U)/2. A similar strong-bias regime with the lowest-energy
singlet |Dy,Dy) exists for U_—e>t, where U_=3Up
—2U,,—Uy=2V_+2U)/2, but we do not consider it here in
detail. In both of these regimes, a wide energy gap =~2|¢| to
the second doubly occupied state allows us to neglect that
state. This approximation reduces the dimensions of the
Hamiltonian blocks H,,;, [Eq. (2)] and allows for a perturba-
tive solution.

Since the only available DQD states in the strong-bias

regime are the triplet, |7,), and two singlets, |S) and |D)), the
H 7 block of Eq. (2) is one dimensional, Hg and Hyg are two
dimensional, and Hgg is four dimensional. For the present
discussion of the strong-bias regime, we choose the zero of
the energy scale at 4fiw—2e+U+2V, +Un+2Uy+ Uy, set-
ting the expectation value of the energy of four singly occu-
pied QDs with the DQDs in the electron singlet states to
zero, {S,S|H|S,S)=0. Using the expressions for the Hamil-
tonian matrix elements given in the Appendix, we find the
matrices of the H,, blocks (a,b=S,T). The energy of the
|TT) state is then

Epr=2(V_-V,). (14)

The two-dimensional blocks H7g and Hgy are related by the
symmetry under exchange of the double quantum dots L+« R

and in the bases {|S,7,).|D;.To)} and {|T,,S),|T,. D)}, and
have the identical matrix form
Hyps=Hgp=V_—V ( 0 g ) (15)
= =V_- + s
TS ST + \’Els V- e

where tg=—ty+Tg is the renormalized hopping matrix ele-
ment and Vp=U-V,+Uy—Uy is the electrostatic energy
cost of doubly occupying the p,=I state in the presence of
the triplet DQD. With our choice of the zero of the energy
scale, the ground-state energies of Hgr and Hyg are

1 1l /———————
EST=ETS= V_- V++ E(VD— E) - E\r’(VD— E)2+ Stgv

(16)

PHYSICAL REVIEW B 75, 085324 (2007)

From the energies Eg; and Erg, we extract the isotropic
exchange part of the low-energy four-spin Hamiltonian [Eq.

(3)] as
J=Err—Egr=Err— Eqg. (17)
The resulting exchange interaction strength is

1 |l ————
J=V_-V, - E(VD— €+ E\'(VD— e’ +8r. (18)

Comparing this result with the case of an unbiased isolated
double quantum dot [Eq. (10)], we see that the effect of the
strong bias € and the presence of another DQD behind the
impenetrable barrier is the change of the effective on-site
repulsion to the value V,—e€ and a reduction of the effective
tunneling matrix element because of the large gap to the
excited doubly occupied state. As a consequence of this gap,
the isotropic exchange in the limit of noninteracting DQDs
and weak tunneling is J=V_-V,+2t5/(U-V,—¢), with the
hopping contribution reduced to half of the result expected
from the standard Hubbard model in the unbiased case,
415,/ Uy0

The four-dimensional block Hg¢ in the basis
{15.5).(13.D)+|D1.5)/\2,1D;.D)). (18D~ |D;. ) /12.}
is

0 2t 2Xp 0
2ts VD—E+2XS 2t1 0
Hgg= ;
2X,, 21, Epp 0
0 0 0 VD — €— ZXS

(19)

where #; is the tunneling matrix element renormalized by the
spectator DQD in the doubly occupied state, and

EDD:2U+3UN_2UM_UF_2V+_2€ (20)

accounts for the repulsion energy of four electrons in the
pir=1I orbitals and the bias € (see the Appendix). Due to the
symmetry with respect to exchange of the DQDs, L+« R, the
antisymmetric state (|S,D,)—|D;,5))/12 decouples from the
other, symmetric, states.

In the limit of large and positive bias, |e=Vp|>tg;,Xgp.
all the tunneling and correlated hopping terms in the Hamil-
tonian Hgg can be taken to be small. The unperturbed Hamil-
tonian is then diagonal and the ground-state energy is Epp.
This situation is relevant because all the small terms are pro-
portional to the overlap S of the localized states in the quan-
tum dots, which is small for weakly tunnel-coupled QDs, and
we can reach this regime by applying external voltage to
make |e— V)| large enough.

Operating the system in the strong-bias regime causes a
qualitative change to the effective low-energy Hamiltonian
by turning on the entanglement generating term E, in Eq. (3),

Ee=ETT_2EST+ESS' (21)

For a weak bias and in the absence of tunneling, the en-
tanglement generating E, term is zero, as can be checked

§7‘§>, T05§>7 and |TO’T0>’

from the energies of the states
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given in the Appendix. This is not true in the case of a strong
bias, where the entangling interaction of the strength E,
=Uyn—-2U,+Ur#0 is present even if the tunneling terms are
zero. In the strong-bias regime, the conditions for E,=0 are
t;=tg, X¢=Xp, and Epp=2(Vp—e€). While the first two con-
ditions are satisfied when there is no tunneling, the third is
independent of the tunneling. It is only satisfied in the limit
of long distance between DQDs, a,>a; (see Fig. 1). The
tunneling causes a second-order correction to Egg,

417 4X%
Epp—(Vp—e) EDD’

and the corresponding correction to E,.”® Since the basic
control mechanism relies on turning the entangling interac-
tion on and off in the E, # 0 and E,=0 regimes, the control is
robust against small imperfections. For example, if the quan-
tum dots are not identical or the distances between the QDs
within two DQDs are different, the value of E, would
change, but it could still be turned on and off using external
voltages.

We have calculated the matrix elements of the Coulomb
interaction using the basis of single-electron Wannier states
obtained by orthogonalizing the Fock-Darwin ground states
centered at the quantum dot positions, following Ref. 9. The
resulting matrix elements can all be expressed in terms of the
distances between the quantum dots and the tunneling matrix
element ¢ between QD in DQD. These results are summa-
rized in the Appendix. Together with Egs. (3), (18), and (22),
they provide a model of the low-energy Hamiltonian of a
pair of qubits realized on a DDQD in the strong-bias regime.
This model can describe a two-qubit quantum gate realized
by adiabatically switching the value of the control parameter
€ so that the qubit goes from the weak-bias regime to the
strong-bias regime and back.

In an array of DQDs, where each encodes a qubit, a quan-
tum gate can be applied by bringing the pairs of neighboring
qubits that we would like to entangle into the E, # 0 regime,
while keeping E,=0 for all the other pairs. Each QD can play
the role of either an inner or an outer QD, depending on the
neighbor with which the entanglement is created. The Hamil-
tonian [Eq. (3)] and the gates generated by it are invariant
under the interchange of the inner and outer QDs within a
qubit.

In summary, the interaction of the DQDs causes a change
in the parameters of the extended Hubbard model coupling
strength [Eq. (10)] so that the energies and hopping matrix
elements on one DQD depend on the state of the other. Also,
the processes in which the hopping of electrons on the two
DQDs is correlated and mediated by the direct Coulomb in-
teraction become possible (see Fig. 3). The coupling between
the DQDs causes an effective spin interaction that deviates
from the form of exchange-coupled qubits, adding the entan-
gling term E, to Eq. (3). This deviation creates the entangle-
ment between the two qubits. The generation of entangle-
ment can be efficiently controlled by changing the bias e.

Egs=Epp+ (22)

IV. GENERAL BIAS

The study of a DDQD system in the strong-bias regime
presented in Sec. IIT allows for a simple perturbative solution
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and offers an insight into the mechanism of entanglement
generation. However, it lacks sufficient predictive power for
a general analysis of a realistic two-qubit quantum gate:
When switching on and off the entangling interaction, a con-
tinuous voltage pulse is applied, and the system undergoes a
smooth transition from the strong-bias regime to the unbi-
ased (or merely biased) regime and vice versa. During this
transition, the system has to pass through an intermediate
weak-bias regime where the perturbative expansion [Eq.
(22)] breaks down.

In this section, we calculate the full HM Hamiltonian of
the four quantum dots, including both |D;) and |D,) states.
This calculation allows us to predict the quantum gate gen-
erated by an arbitrarily shaped adiabatic pulse of the control
parameters ¢ and e. The main difference in the system’s de-
scription is that now we take into account both doubly occu-
pied states |D;) and |D,) in each DQD. Therefore, we are
working in the entire Hilbert space of the HM approxima-
tion, and the strong-bias requirement is not important. Now,
H77 is one dimensional, Hgr and Hyg are three dimensional,
and Hgg is nine dimensional.

Following the discussion of Sec. III, the effective low-
energy spin Hamiltonian H [Eq. (3)] is determined by the
energies E,;,, where a,b=S,T, of the lowest-energy states of
a given spin configuration. Due to the L+« R symmetry, H is
the sum of the isotropic exchange terms and the entangling
term. We proceed by calculating the matrix elements of the
Hamiltonian as a function of the tunneling matrix element ¢
and the bias €. The results of this calculation are given in the
Appendix. Numerical diagonalization of the resulting Hamil-
tonian gives the energies E,, for each of the blocks H ,,
where a,b=S,T. Finally, we extract the effective low-energy
Hamiltonian parameters J and E, using Egs. (17) and (21).

The dependence of the isotropic exchange coupling on the
bias J(e) is illustrated in Fig. 6. In the zero-tunneling limit,
we can identify three regions of qualitatively different behav-
iors of J(€). For strong and negative bias, e<U_, corre-
sponding to the |D,D,) lowest-energy singlet state, the iso-
tropic exchange coupling is decreasing linearly with the bias.
In the intermediate region, U_<e<<U,, the exchange cou-
pling is absent. For strong and positive bias, U, <, the ex-
change coupling grows linearly with e. The asymmetric
placement of the /=0 plateau is a consequence of the differ-
ent repulsion energies of the electrons in the inner and outer
QDs. As the tunneling is turned on, the isotropic exchange
couplings become larger due to the mixing of the doubly
occupied states in the plateau region. For a zero magnetic
field, the coupling J is positive. In a finite field, there is a
region with negative J, consistent with the analysis of Ref. 9
and the experimental findings of Ref. 29.

A plot of the entanglement generating interaction E, is
given in Fig. 7. The zero-tunneling value of E, shows a
structure determined by the Coulomb energies of the basis
states [Egs. (4)—(7)]. In a wide plateau of small bias, the
entangling interaction vanishes because all of the lowest-

energy states of definite spin are products of |S) and |T;).
Since the direct exchange interaction V_—V,_ is zero in the
absence of tunneling, those two states are equal in energy.
When the bias overcomes the on-site repulsion, the lowest-
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e/hwy

FIG. 6. (Color online) Isotropic exchange coupling J as a func-
tion of the bias e. In the regions of strong positive and negative
bias, the exchange coupling is approximately linear Jx|€|. In the
intermediate region, the exchange is zero in the zero-tunneling limit
and becomes nonzero as the tunneling is turned on. The coupling J
is always positive in the absence of a magnetic field. The external
magnetic field drives J to negative values in a relatively wide range
of values of the tunneling matrix element and bias. The confinement
energy of the quantum dots is chosen to be iwy=3 meV, which
corresponds to a quantum dot Bohr radius az=20 nm in GaAs. The
distances between the dots are chosen to be 2a;=1.6ap and 2a,
=3ap.

energy states of Hgg, Hgy, and Hpg change. The degenerate
lowest-energy states of Hgg are either [SD;) and |D,S), in the
region of large bias on the right of the plateau, or [SD,) and
|D,S), in the region of smaller bias to the left of the plateau.

Simultaneously, the analogous states with |§> replaced by
|T,) become the lowest-energy states in Hgy and Hyg. In
these two regions, E, is a linear function of €, E,=Uy—Uy

1 T T T T T T T T T

FIG. 7. (Color online) Entangling interaction E, as a function of
bias. The plots correspond to different values of the tunneling ma-
trix elements ¢ within the double quantum dots in the absence of a
magnetic field and in an external magnetic field of B=2 T. The ¢
=0 plot indicates the regions of different lowest-energy singlets and
the positions of crossings. The strength of the entangling interaction
E, can be changed significantly by tuning the bias € at a fixed
tunneling matrix element 7. Parameters used in this plot are the
same as in Fig. 6.
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—U-eon the left and E,=—Uy+ Up— U+ € on the right of the
plateau. When the absolute value of the bias is even higher,
the lowest-energy state in Hg is |D;D,) for a very strong and
positive bias and |D,D,) for a very strong and negative bias.
These regions are characterized by an e-independent E,
=Up—2Uy+ Uy for large |€|. The values U, for the bias € at
which the changes in zero-tunneling lowest-energy states oc-
cur depend on the geometry of the device, described by the
distances 2a; and 2a, (Fig. 1) and the quantization energy
fiwgy, and correspond to the changes in behavior of the ex-
change coupling strength J.

The zero-tunneling case shows a desirable feature in that
E,, the quantity that determines the entanglement between
the qubits, can be switched on and off by tuning e. However,
the regions of different E, cannot be reached by adiabatic
pulses in the t— 0 limit. Turning on the tunneling ¢ between
the QDs will introduce transitions between previously dis-
connected regions, and the adiabatic gates become possible.
The simple #=0 picture of the entanglement generated by a
difference in Coulomb energies is perturbed by the transi-
tions. It is no longer possible to turn off E, throughout the
plateau region by a change in € alone. In the plateau region,
E, is generically nonzero, but small. Therefore, in order to
turn off the entangling interaction when ¢ is kept constant, it
is desirable to keep ¢ small and to tune € to a value where
E,=0.

V. QUANTUM GATE OPERATION

For a quantum gate applied by the time-dependent Hamil-
tonian [Eq. (2)], with the parameters 7 and € changing adia-
batically on the time scale set by the energy gap between the
states within the blocks H,,, the applied gate is determined
by the splittings between the lowest-lying states in each of
the subspaces of the definite spin. If the energies of the
lowest-energy states in singlet-singlet, singlet-triplet, triplet-
singlet, and triplet-triplet subspaces are Egg(t), Egp(1)
=E (1), and E(1), respectively, the gate applied by an adia-
batic pulse starting at the time ¢; and finishing at #; will be
U=diag( s, bsr. brs, drr), with the phases

¢ah =exp-— éj fEab(t)dt' (23)

14

With the ability to turn the entangling interaction on and off
and perform single-qubit gates, it is possible to perform a
CNOT gate on a pair of qubits encoded into spin states of
DQD. We consider a quantum gate implemented by first
adiabatically turning on the entangling interaction for a pe-
riod 7,,, and then again adiabatically switching to the Hamil-
tonian with the entangling interaction off for the time inter-
val 7. The lowest-energy states in each of the SS, ST, T,
and TT subspaces will acquire a phase dependent on the
control parameters € and ¢ and the pulse durations. In the on
state, the Hamiltonian that describes the ground states in all
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the spin subspaces is, up to a constant, H,
=diag(E,,J o, on>2Jn), Where E, is the strength of the en-
tangling interaction in the on regime and J, is the corre-
sponding exchange coupling. After the DDQD was in the on
state for the time 7,,, the applied gate is

Uy, = exp i%Hon. (24)

Similarly, during the subsequent period of duration 7,5 when
the entangling interaction is set to zero, the applied gate is

Upg=exp— i%“Hoff, (25)

where H g=diag(0,J g, Jopr, 2Jo5¢) in analogy with the on re-
gime. The resulting gate is

$ 00 0

loxo o
uzuoftz/{onzexp_l 0 0 ) s (26)

0 0 0 2N

where AN=J,Ton+J oo 18 the integrated strength of the
exchange coupling in DQD and #¢=E,, 7, is the integrated
strength of the entangling interaction.

The CPHASE gate, which is equivalent to CNOT up to
single-qubit rotations, is obtained when the gate parameters
satisfy ¢=mm and A=n, for an odd integer m and an arbi-
trary integer n. In order to complete a CNOT, we follow a
pulse of on-state Hamiltonian of the duration 7,,=mwh/E,
by a pulse of the off-state Hamiltonian with the duration
Toir=R(nm—J 3y Ton/ 1) [ Joir. The resulting gate is diag(-1,
—1,-1,1)=—CPHASE, for odd n and diag(-1,1,1,1), which
is equal to CPHASE with the X gate applied to both qubits
before and after /. For any integer n,

CPHASE ~ (£ ® &U(E® &), (27)

where &=explin|1+(-1)"]o,/4]. In order to complete the
CNOT, we apply the one-qubit Haddamard gates H=(X
+Z)/\2 to the target qubit both before and after the entan-
gling gate Y. The entire construction can be represented as

cNOT=(1® H)((® HU(E® (1 @ H). (28)

Note that the CNOT construction necessarily involves the
single-qubit rotations about pseudospin axes different from z.
Such operations can be performed using the asymmetric bias
within a DQD that encodes the qubit in an inhomogeneous
external magnetic field.?” The entangling part of a CNOT gate
can be performed by pulsing the bias € only and keeping the
tunneling ¢ constant. Therefore, control over the bias € and
the availability of an inhomogeneous magnetic field are suf-
ficient for the universal quantum computing with two-spin
qubits.

VI. CONCLUSION

We have analyzed two-qubit gates in a pair of qubits, each
encoded into singlet and triplet states of a DQD and coupled
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by Coulomb repulsion. A two-qubit CNOT gate, which to-
gether with the single-qubit rotations forms a universal set of
quantum gates, can be performed by tuning the bias of the
inner dots with respect to the outer ones. We identify the
entangling interaction strength E, as a quantity that has to be
controlled in order to implement a CNOT with the aid of
single-qubit rotations.

The dependence of E, on the externally controllable bias e
and the tunneling matrix element ¢ shows that it can, in prin-
ciple, be turned on and off by changing e alone, if suffi-
ciently low values of ¢ are available.

The largest change in E, comes from a tuning of the sys-
tem through the resonance between the singly occupied state
and the doubly occupied state on a DQD. At the side of the
resonance with a singly occupied ground state, and far from
the resonance, the entangling interaction E, is caused by
inter-DQD correlation and is small. On the other side of the
resonance, with a doubly occupied DQD ground state, the
entangling interaction is caused by the direct Coulomb repul-
sion and it is much stronger. Two-qubit gates necessary for a
universal set of gates can be performed by switching be-
tween the strong and weak entanglement generation regimes
using voltage pulses.
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APPENDIX: HUND-MULLIKEN 16X 16 HAMILTONIAN

The full Hund-Mulliken Hamiltonian is block diagonal
due to the symmetry of the interactions with respect to arbi-
trary rotations in spin space. In reality, this symmetry is bro-
ken by the weak spin-orbit coupling interaction that we have
neglected. The blocks are the one-dimensional Hy, the two
three-dimensional Hyg and Hgp, and the nine-dimensional
Hgg, where T stands for a triplet and S for a singlet state on
a DQD. In this appendix, we present the matrices of these
blocks as functions of the system geometry and the control
parameters.

There is only one 7T state and its energy is

HTT=ETT=2V_+ UN+2UM+UF—25. (Al)

The three-dimensional blocks Hyg and Hgy are related by the
symmetry operation of exchanging the DQD, and if we
choose the basis {|Ty,S),|Ty.D)),|Ty.Dp)} for the TS and

{S.7).1D;. Ty) . |Do, Ty} for the ST subspace, they can both
be represented by the matrix

I~ ~
CTS V2t5 \r’2ts
I~
Hrs=Hgr=|\2ty Cp X
\"Ets X CTO

(A2)

The nine-dimensional block of singlet states, in the direct
product basis composed out of the two-electron states [Eq.

(4)-(0)], is
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Css \Et s \Et s NE tg
V2t Cy X 2Xg
\«Ets X Cso 2Xp
V215 2Xs 2Xp G
He=| 2X, V21, 0 2y
2Xs 0 VEIO \Et It
V212X, 2Xs X
2 2, 0 0
2X, 0 21, 0

We do not antisymmetrize with respect to the permutations
of electrons that belong to different quantum dots and have
nonoverlapping orbital wave functions. The matrix elements
of the Hamiltonian that describe the Coulomb interaction
within a DQD (intra-DQD terms), U, ¢, X, V,, and V_, were
analyzed in Ref. 9. The inter-DQD elements depend on the
following matrix elements of the Coulomb interaction be-
tween the product states of the |gps) electrons localized in
the qubit ¢ and the quantum dot p and having a spin s:

Xg={(LIs,RIs'|Vc|LOs,ROs"), (A4)
Xp={(LIs,ROs'|V|LOs,RIs"), (AS)
To={LOs,ROs'|V|LIs,ROs"), (A6)
T;={(LIs,RIs'|V|LIs,ROs"). (A7)

In zero magnetic field, we find that X¢=X),.

The off-diagonal elements are determined by
ts=To+T;—1ty, (A8)
t1= 2T1— tH’ (A9)
t0=2T0_tH’ (AIO)
and the diagonal elements are given by

CTTZZV_+UN+2UM+UF—26, (All)
Crg=V,+V_+Uy+2Uy+ Ur-2¢, (A12)
Cr=V_+U+2Uy+2Uy -3¢, (A13)
Cro=V_+U+2Uy+2Ur—€, (A14)
CSS=UN+2UM+UF+2V+_267 (AIS)
CSIZZUM+2UF+U+V+—3E, (Al6)
CSO:ZUM+2UF+U+V+_€’ (A17)
C1[=4UN+2U—4€, (AIS)
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2X, 2X5 215 2Xg 2Xp
\Et, 02X, \Et, 0
0 21, 2Xg 0 21,
\Et, \Et, X 0 0
;¢ X 0 X 0 (A3)
X Co 0O 0 X
0 0 Cos V210 V210
X V21, Cor X
0 X \2t, X Coo
[
Cio=4Uy +2U - 2e, (A19)
Cop=4Up+2U, (A20)

where the symmetry with respect to exchange of the DQDs
leads to Cyz=Cpgy4, where A,B e{T,S,1,0}.

To represent the matrix elements in terms of the system
parameters, the single QD quantization energy fiw,, tunnel-
ing matrix element within an isolated DQD t#, the bias €, and
the interdot distances a; and a,, we have to adopt a model
for the binding potential of a DQD and the orbitals of Hund-
Mulliken approximation. We assume that the QD orbitals are
Wannier functions obtained by orthogonalization of the
Fock-Darwin ground states centered at the positions of the
QDs within a DQD, (a,+a;,0) and (-a,*a;,0). The Wan-
nier orbitals are of the generic form

|Wq,l> = N(l ¢q,l> - g| ¢q,0>) s (A21)

(Wo.00=N(= gl +|b,00). (A22)
where |¢>q’,(0)) is the Fock-Darwin ground state on the dot
belonging to the qubit g=L,R and the inner (I) or outer (O)
QD [Eq. (12)]. The Wannier orbitals are determined by
the overlap of these wave functions, S =<¢£1|_¢q’0>
=exp[—d}(2b—1/b)], through the mixing g=(1-V1-S%)/S
and normalization constant N=1/+1-2gS+g>.

The Coulomb interaction matrix elements for the DQD
centered at +a,=*d,ag and QDs within a DQD displaced by
+a;==+d ap from the center of the DQD are then expressed
as

Uy= cN4{ fldy—d;,0) +2g°(1 + §?)£(d,,0)

+g*f(d, + dy,0) + 25%¢*f(d,.d))

ddi) d, 4,
—4gSfa’z—2,2 +gfdz+2,2 ,

(A23)
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Up= CN4{f(d2 +d;,0) + 282(1 + Sz)f(dz,())

+8*f(dy = dy,0) + 28%¢*f(dy, dy)

_ 4gs[f(d2 + %,%) + g2f<d2 - d‘,d‘>”, (A24)

Uy= CN4{(1 + 84)f(d270) + gZ{f(dl +dy,0)

+ f(dy = dp,0) + 28%[f(d5,0) + f(dy,dy) ]}

d, d d, d
—2¢S(1 + g% {f(dz + j;‘) +f(dz - 5‘,5‘)}},

(A25)
dy d
Ty= cM{S{(l + 3g2)f<d2 + 3‘51)
dy d
+ (g4+3g2)f<dz— j;‘)]
—-(g+ gS)[(l + Sz)f(dz’o) + Szf(dz,dl)]

—gf(d2+d],0)—g3f(d2—d],0)}, (A26)

T,= cN“{s[u + 3g2)f(d2 -— —)

+(g*+ 3gz)f(d2+ %%)}
-(g+ 83)[(1 + Sz)f(dz,o) + Szf(dz,dl)]

—gf(d2—dl,0)—g3f(d2+dl,0)}, (A27)
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Xs= cN4{ (8% +2g% + g*SH)f(d,,0)
+g°[f(d, + dy,0) + f(d) — d,,0) + 25%f(d.d))]

d, d d, d
-25(g +g3)[f<dz + j;‘) +f(d2 - 5‘,31)”,

(A28)

Xp= CN4{52(1 + 84)f(d2’d1) + gzD‘(dl +dy,0) + f(d, — d;,0)
+2(1+ 8%)£(dy,0)] - 25(g + &)

A2 fan-22)]
2T 270272 ’

in terms of the overlaps of the harmonic oscillator wave
functions S, the mixing factor g, and the function

(A29)

f(d.0) = b exp[- ad,Dllg(a(d, D), (A30)
where a(d,l)=bd*—(b—1/b)I>. We use the contraction factor
b=w/ w, to measure the magnetic field strength. The overall
strength of the Coulomb interaction is set by ¢
=/ 2e2/Khw0aB, where e is the electron charge, « is the
dielectric constant, and fw is the single isolated QD quan-
tization energy.’

To model the dependence of the matrix elements on the
externally controllable tunneling matrix element 7, we use the
connection between the tunneling and the overlap S=S(z)
that holds for the quartic double well, Eq. (13) and assume
that it holds throughout the gate operation.
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