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Universal Quantum Computation with the Exchange Interaction
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Experimental implementations of quantum computer architectures are now

being investigated in many different physical settings. The full set of require-

ments that must be met to make quantum computing a reality in the laboratory

[1] is daunting, involving capabilities well beyond the present state of the art. In

this report we develop a significant simplification of these requirements that can

be applied in many recent solid-state approaches, using quantum dots [2], and

using donor-atom nuclear spins [3] or electron spins [4]. In these approaches, the

basic two-qubit quantum gate is generated by a tunable Heisenberg interaction

(the Hamiltonian is Hij = J(t)~Si · ~Sj between spins i and j), while the one-qubit

gates require the control of a local Zeeman field. Compared to the Heisenberg

operation, the one-qubit operations are significantly slower and require substan-

tially greater materials and device complexity, which may also contribute to

increasing the decoherence rate. Here we introduce an explicit scheme in which

the Heisenberg interaction alone suffices to exactly implement any quantum

computer circuit, at a price of a factor of three in additional qubits and about

a factor of ten in additional two-qubit operations. Even at this cost, the ability

to eliminate the complexity of one-qubit operations should accelerate progress

towards these solid-state implementations of quantum computation.
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The Heisenberg interaction has many attractive features [2,5] that have led to its being

chosen as the fundamental two-qubit interaction in a large number of recent proposals: Its

functional form is very accurate — deviations from the isotropic form of the interaction,

arising only from relativistic corrections, can be very small in suitably chosen systems. It

is a strong interaction, so that it should permit very fast gate operation, well into the GHz

range for several of the proposals. At the same time, it is very short ranged, arising from the

spatial overlap of electronic wavefunctions, so that it should be possible to have an on-off

ratio of many orders of magnitude. Unfortunately, the Heisenberg interaction by itself is not

a universal gate [6], in the sense that it cannot generate any arbitrary unitary transformation

on a collection of spin-1/2 qubits. So, every proposal has supplemented the Heisenberg

interaction with some other means of applying independent one-qubit gates (which can be

thought of as time-dependent local magnetic fields). But the need to add this capability to

the device adds considerably to the complexity of the structures, by putting unprecedented

demands on “g-factor” engineering of heterostructure materials [7,4], requiring that strong,

inhomogeneous magnetic fields be applied [2,5], or involving microwave manipulations of the

spins that may be slow and may cause heating of the device [4]. These added complexities

may well exact a high cost, perhaps degrading the quantum coherence and clock rate of

these devices by orders of magnitude.

The reason that the Heisenberg interaction alone does not give a universal quantum gate

is that it has too much symmetry: it commutes with the operators Ŝ2 and Ŝz (for the total

spin angular momentum and its projection on the z axis), and therefore it can only rotate

among states with the same S, Sz quantum numbers. But by defining coded qubit states,

ones for which the spin quantum numbers always remain the same, the Heisenberg interac-

tion alone is universal [8–10], and single-spin operations and all their attendant difficulties

can be avoided.

Recent work has identified the coding required to accomplish this. Starting with early

work that identified techniques for suppressing phase-loss mechanisms due to coupling with

the environment [11–13], more recent studies have identified encodings that are completely
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immune from general collective decoherence, in which a single environmental degree of free-

dom couples in the same way to all the spins in a block. These codes are referred to both

as decoherence-free subspaces (and their generalization, the decoherence-free subsystems)

[14,8,10], and also as noiseless subspaces and subsystems [15,16,9]. The noiseless properties

of these codes are not relevant to the present work; but they have the desired property that

they consist of states with definite angular momentum quantum numbers.

So, in principle, the problem has been solved: the Heisenberg interaction alone is uni-

versal and can be used for quantum computation. However, a very practical question still

remains: how great is the price that must be paid in return for eliminating single-spin op-

erations? In particular, how many applications of the Heisenberg interaction are needed to

complete some desired quantum gate operation? The only guidance provided by the exist-

ing theory [8–10] comes from a theorem of Solovay and Kitaev [17–19], which states that

“efficient” approximations exist: given a desired accuracy parameter ǫ, the number N of

exchange operations required goes like N ≈ K logc(1/ǫ), where c ≈ 4 and K is an unknown

positive constant. However, this theorem provides very little useful practical guidance for

experiment; it does not show how to obtain the desired approximating sequence of exchange

operations, and, since K is unknown, it gives no clue of whether the number of operations

needed for a practical accuracy parameter is 10 or 10000. In the following we remedy these

inadequacies by showing that the desired quantum logic operations can be obtained exactly

using sequences of exchange interactions short enough to be of practical significance for

upcoming experiments.

In the scheme we analyze here, we use the smallest subspace with definite angular-

momentum quantum numbers that can be used to encode a qubit; this subspace is made up

of three spins. It should be noted [10] that in principle the overhead in spatial resources could

be made arbitrarily small: asymptotically the rate of encoding into such noiseless subsystems

converges to unity. The space of three-spin states with spin quantum numbers S = 1/2,

Sz = +1/2 is two dimensional and will serve to represent our coded qubit. A good explicit
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choice for the basis states of this qubit are |0L〉 = |S〉| ↑〉, |1L〉 =
√

2/3|T+〉| ↓〉−
√

1/3|T0〉| ↑〉.

Here |S〉 =
√

1/2(| ↑↓〉 − | ↓↑〉) is the singlet state of spins 1 and 2 (see Fig. 1a) of the

three-spin block, and |T+〉 = | ↑↑〉 and |T0〉 =
√

1/2(| ↑↓〉 + | ↓↑〉) are triplet states of these

two spins. For these states we have constructed an explicit exchange implementation of the

basic circuit elements of quantum logic [6]; in particular, we discuss how one obtains any

coded one-qubit gate, and a specific two-qubit gate, the controlled NOT (cNOT).

It is easy to understand how one-qubit gates are performed on a single three-spin block.

We note that Hamiltonian H12 generates a rotation U12 = exp(i/h̄
∫

J ~S1 ·~S2dt) which is just a

z-axis rotation (in Bloch-sphere notation) on the coded qubit, while H23 produces a rotation

about an axis in the x-z plane, at an angle of 120o from the z-axis. Since simultaneous

application of H12 and H23 can generate a rotation around the x-axis, three steps of 1D

parallel operation (defined in Fig. 1a) permit any one-qubit rotation, using the classic

Euler-angle construction. In serial operation, we find numerically that four steps are always

adequate when only nearest-neighbor interactions are possible (eg, the sequence H12-H23-

H12-H23 shown in Fig. 2a, with suitable interaction strengths), while three steps suffice if

interactions can be turned on between any pair of spins (eg, H12-H23-H13, see Fig. 2b).

We have performed numerical searches for the implementation of two-qubit gates using

a simple minimization algorithm. Much of the difficulty of these searches arises from the

fact that while the four basis states |0L, 1L〉|0L, 1L〉 have total spin quantum numbers S = 1,

Sz = +1, the complete space with these quantum numbers for six spins has nine states, and

exchanges involving these spins perform rotations in this full nine-dimensional space. So, for

a given sequence, eg the one depicted in Fig. 2c, one considers the resulting unitary evolution

in this nine-dimensional Hilbert space as a function of the interaction times t1, t2, ... tN . This

unitary evolution can be expressed as a product U(t1, . . . , tN) = UN(tN ) · · ·U2(t2)U1(t1),

where Un(tn) = exp(itnHi(n),j(n)/h̄). The objective of the algorithm is to find a set of

interaction times such that the total time evolution describes a cNOT gate in the four-

dimensional logic subspace U(t1, . . . , tN) = UcNOT ⊕ A5. The matrix A5 can be any unitary
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5× 5 matrix (consistent with U having a block diagonal form). The efficiency of our search

is considerably improved by the use of two invariant functions m1,2(U) identified by Makhlin

[20], which are the same for any pair of two-qubit gates that are identical up to one-qubit

rotations. It is then adequate to use an algorithm that searches for local minima of the

function f(t1, . . . , tN) =
∑

i(mi(UcNOT) −mi(U(t1, . . . , tN)))2 with respect to t1, ...tN (mi is

understood only to act on the 4 × 4 logic subspace of U). Finding a minimum for which

f = 0 identifies an implementation of cNOT (up to additional one-qubit gates, which are

easy to identify [20]) with the given sequence (i(n), j(n))n, i(n) 6= j(n) of exchange gates.

If no minimum with f = 0 is found after many tries with different starting values (ideally

mapping out all local minima), we have strong evidence (although not a mathematical proof)

that the given sequence of exchange gates cannot generate cNOT.

The optimal serial-operation solution is shown in Fig. 2c. Note that by good fortune this

solution happens to involve only nearest neighbors in the 1D arrangement of Fig. 1a. The

circuit layout shown obviously has a high degree of symmetry; however, it does not appear

possible to give the obtained solution in a closed form. (Of course, any gate sequence

involving non-nearest neighbors can be converted to a local gate sequence by swapping

the involved qubits, using the SWAP gate, until they are close; here however the minimal

solution found does not require such manipulations.) We have also found (apparently)

optimal numerical solutions for parallel operation mode. For the 1D layout of Fig. 1a,

the simplest solution found involves 8 clock cycles with just 8*4 different interaction-time

parameters (H12 can always be zero in this implementation). For the 2D parallel mode of

Fig. 1b, a solution was found using just 7 clock cycles (7*7 interaction times).

It is worthwhile to give a complete overview of how quantum computation would proceed

in the present scheme. It should begin by setting all the computational qubits to the

|0L〉 state. This state is easily obtained using the exchange interaction: if a strong H12 is

turned on in each coded block and the temperature made lower than the strength J of the

interaction, these two spins will equilibrate to their ground state, which is the singlet state.

The third spin in the block should be in the | ↑〉 state, which can be achieved by also placing
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the entire system in a moderately strong magnetic field B, such that kBT << gµBB < J .

Then, computation can begin, with the one- and two-qubit gates implemented according to

the schemes mentioned above. For the final qubit measurement, we note that determining

whether the spins 1 and 2 of the block are in a singlet or a triplet suffices to perfectly

distinguish [7] |0L〉 from |1L〉 (again, the state of the third spin does not enter). Thus, for

example, the AC capacitance scheme for spin measurement proposed by Kane [3] is directly

applicable to the coded-qubit measurement.

There are several issues raised by this work that deserve further exploration. The S =

1/2, Sz = +1/2 three-spin states that we use are a subspace of a decoherence-free subsystem

that has been suggested for use in quantum computing by exchange interactions [10,16]. Use

of this full subsystem, in which the coded qubit can be in any mixture of the Sz = +1/2 and

the corresponding Sz = −1/2 states, would offer immunity from certain kinds of interactions

with the environment, and would not require any magnetic field to be present, even for

initialization of the qubits. In this modified approach, the implementation of one-qubit

gates is unchanged, but the cNOT implementation must satisfy additional constraints –

the action of the exchanges on both the S = 1 and the S = 0 six-spin subspaces must be

considered. As a consequence, implementation of cNOT in serial operation is considerably

more complex; our numerical studies have failed to identify an implementation (even a good

approximate one) for sequences of up to 36 exchanges (cf. 19 in Fig. 2c). On the other

hand, we have found implementations using 8 clock cycles for 1D and 2D parallel operation

(again for the 1D case H12 can be zero), so use of this larger Hilbert space may well be

advantageous in some circumstances.

Finally, we note that further work is needed on the performance of quantum error correc-

tion within this scheme. Our logical qubits can be used directly within the error correction

codes that have been shown to produce fault tolerant quantum computation [21]. Spin de-

coherence will primarily result in “leakage” errors, which would take our logical qubits into

states of different angular momentum (eg, S = 3/2). Our preliminary work indicates that,

with small modifications, the conventional error correction circuits will not cause uncon-
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trolled propagation of leakage error. In addition, the general theory [22,21,8,10] shows that

there exist sequences of exchange interactions which directly correct for leakage by swap-

ping a fresh |0L〉 into the coded qubit if leakage has occurred, and doing nothing otherwise;

we have not yet identified numerically such a sequence. If fast measurements are possible,

teleportation schemes can also be used in leakage correction.

To summarize, the present results offer a new alternative route to the implementation

of quantum computation. The tradeoffs are clear: for the price of a factor of three more

devices, and about a factor of ten more clock cycles, the need for stringent control of magnetic

fields applied to individual spins is dispensed with. We are hopeful that the new flexibility

offered by these results will make easier the hard path to the implementation of quantum

computation in the lab.
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FIGURES
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FIG. 1. Possible layouts of spin-1/2 devices. a) One-dimensional layout. We consider two

different assumptions about how the exchange interactions can be turned on and off in this layout:

1) At any given time each spin can be exchange-coupled to at most one other spin (we refer to this

as “serial operation” in the text), 2) All exchange interactions can be turned on simultaneously

between any neighboring pair of spins in the line shown (“1D parallel operation”). b) Possible

two-dimensional layout with interactions in a rectangular array. We imagine that any exchange

interaction can be turned on between neighboring spins in this array (“2D parallel operation”). Of

course other arrangements are possible, but these should be representative of the constraints that

will be faced in actual device layouts.
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FIG. 2. Circuits for implementing single-qubit and two-qubit rotations using serial operations.

a) Single-qubit rotations by nearest-neighbor interactions. Four exchanges (double-headed arrows)

with variable time parameters τi are always enough to perform any such rotation, one of the two

possible layouts is shown. b) Non-nearest neighbor interactions. Only three interactions are needed,

one of the possible layouts is shown. c) Circuit of 19 interactions that produce a cNOT between

two coded qubits (up to one-qubit gates before and after). The durations of each interaction are

given in units such that for t = 1/2 the rotation Uij = exp(iJt~Si · ~Sj/h̄) is a SWAP, interchanging

the quantum states of the two spins i,j. The t̄i parameters are not independent, they are related to

the tis as indicated. The uncertainty of the final digits of these times are indicated in parentheses.

With these uncertainties, the absolute inaccuracy of the matrix elements of the two-qubit gate

rotations achieved is no greater than 6× 10−5. Further fine tuning of these time parameters would

give the cNOT to any desired accuracy. In a practical implementation, the exchange couplings

J(t) would be turned on and off smoothly; then the time values given here provide a specification

for the integrated value
∫

J(t)dt. The functional form of J(t) is irrelevant, but its integral must

be controlled to the precision indicated. The numerical evidence is very strong that the solution

shown here is essentially unique, so that no other choices of these times are possible, up to simple

permutations and replacements t → 1 − t (note that for the Heisenberg interaction adding any

integer to t results in the same rotation). The results also strongly suggest that this solution is

optimal: no one of these 19 interactions can be removed, and no other circuit layout with fewer than

19 has been found to give a solution. We have also sought, but not found, shorter implementations

of other interesting two-qubit gates like
√

SWAP [2,5].
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