
Comment on “Three-Dimensional Anderson
Localization in Variable Scale Disorder”

In a recent experiment [1], the expansion of noninter-
acting ultracold fermions was studied in a random speckle
potential, and the observed density profiles were interpreted
based on 3D Anderson localization. The purpose of this
Comment is to demonstrate that slow diffusion of particles
with a broad energy distribution and an energy-dependent
diffusion coefficient leads to density profiles that agree with
the measured data of [1], but not with the behavior expected
for 3D Anderson localization.
Consider a nondegenerate Fermi gas prepared in a trap

with the semiclassical position-energy distribution Fðr; EÞ.
At time t ¼ 0 the trap is switched off and atoms start to
spread in the random potential. Assuming diffusive spread-
ing, the ensemble averaged density is

n̄ðr; tÞ ¼
Z

dR
Z

dEPEðr;R; tÞFðR; EÞ; ð1Þ

where the d-dimensional diffusion kernel PEðr;R; tÞ ¼
ð4πDEtÞ−d=2 exp ð−jr −Rj2=4DEtÞ propagates a particle
with kinetic energy E and diffusion constant DE from the
initial position R to final position r in time t. In the long
time limit, when the atoms have spread over distances
much larger than the initial cloud, the starting pointR in the
kernel can be set to zero. The remaining integral over R
yields the atomic energy distribution,

R
dRFðR; EÞ ¼

CνðEÞ expð−βEÞ, where C is a normalization constant,
νðEÞ is the density of states, and βmeasures the distribution
width, generally due to temperature as well as disorder.
Equation (1) then reduces to

n̄ðr; tÞ ¼ C
Z

dE
νðEÞ

ð4πDEtÞd=2
exp

�
−

r2

4DEt
− βE

�
: ð2Þ

Thus, the density profile of a diffusing atomic cloud
consists of a rather sharp central region, due to slowly
diffusing particles piling up close to the center, followed by
a (stretched)-exponential tail (see Ref. [2] for an analyti-
cally tractable example). Indeed, the tails of the profile (2)
are determined by a saddle point of the expression in the
exponent. When the energy dependence of the diffusion
coefficient is a pure power law DE ¼ ℏEa=mEa

0 (with E0

an appropriate energy scale), this yields to leading
order

n̄ðr; tÞ ∼ expf−jr=sðtÞj2=ðaþ1Þg; ð3Þ

valid for r2 ≫ sðtÞ2 ¼ s2aℏt=½mðβE0Þa�, with sa of order
unity. This is a stretched exponential with exponent 2=
ðaþ 1Þ depending on dimensionality and type of disorder.
The experiment [1] uses a very strong and smooth random

potential, with an axial correlation longer than the deBroglie

wavelength of most atoms, such that DE ∝ E5=2, over a
sizable range of energies down to the rms potential strength
[2]. The density tail is then the stretched exponential
j log n̄ðr; tÞj ∝ r4=7. It is important to note that Eq. (1)
describes atoms in an intermediate energy interval. Atoms
with higher energies appear ballistic in the finite field of
observation, whereas atoms with lower energies should
localize. The value 4=7 for the exponent is just an estimate,
although it lies in a reasonable range judging from the
supplemental notes of [1]. Our main point here is that the
density profiles of [1] are characteristic of a slowly diffusive
component and are incompatible with the localization
scenario which should lead to a power law tail (see
below).
Even for the strongest disorder the data in Fig. 3(d) of [1]

suggest that the rms radius of the cloud keeps growing
instead of saturating on the observed time scale. Although
it is difficult to determine an accurate slope, the residual
dynamics could correspond to a diffusion coefficient of
40 μm2=ms, which is much larger than the “quantum of
diffusion” ℏ=m ≈ 1.5 μm2=ms of a potassium atom [2].
Thus, these data are compatible with diffusion at energies
above the mobility edge. For some of the data in Fig. 3(d),
occasionally, the size of the atomic cloud even appears to
shrink. Systematic contraction is of course incompatible
both with diffusion as well as localization, and should be
analyzed with great care in view of the particle losses that
limit the lifetime of the trapped gas—a task that is beyond
the scope of the present Comment.
Last, there is an additional argument against a locali-

zation scenario. The cloud spreads to a rather large
distance, of the order of 1 mm. If atoms are localized
on such a large scale, they must originate from the critical
energy interval next to the mobility edge, where the
localization length diverges. But the resulting stationary
density tail is well known to be a power law, n̄ ∼ r−(3þð1=νÞ)
(here ν is the localization length exponent), instead of an
exponential [2]. While this result was derived for a short-
range, statistically isotropic potential, such power-law tails
are expected to occur for any generic random potential,
including anisotropic ones. Indeed, their existence is based
solely on the fact that the localization length diverges as a
power law when the mobility edge is approached from
below, which is the generic behavior at the Anderson
transition.
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