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Tuning antiferromagnetism of vacancies with magnetic fields in graphene nanoflakes
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Graphene nanoflakes are interesting because electrons are naturally confined in these quasi-zero-dimensional
structures, whereas confinement in bulk graphene would require a band gap. Vacancies inside the graphene
lattice lead to localized states and the spins of such localized states may be used for spintronics. We perform
a tight-binding description of a nanoflake with two vacancies and include a perpendicular magnetic field via a
Peierls phase. The tunnel coupling strength and from it the exchange coupling between the localized states can
be obtained from the energy splitting between numerically calculated bonding and antibonding energy levels.
This allows us to estimate the exchange coupling J , which governs the dynamics of coupled spins. We predict
the possibility of switching in situ from J > 0 to J = 0 by tuning the magnetic field. In the former case, the
ground state will be antiferromagnetic with Néel temperatures accessible by experiment.
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I. INTRODUCTION

Beyond the outstanding mechanical, optical, and electronic
characteristics common to bulk graphene [1–6], graphene
nanoflakes are predicted to feature magnetic properties as
well [7–9]. These qualities make such graphene nanoislands
very interesting for spintronics and other applications [10–12].
Lattice defects can occur due to chemisorption of hydrogen
molecules, but they can also be generated on purpose by means
of ion or electron beam irradiation [13–15]. Such defects are
expected to give rise to magnetic moments of about 1 Bohr
magneton. The associated magnetic ordering can in principle
be ferromagnetic as well as antiferromagnetic [13,16–19]
and recent progress in spin sensitive measurements allows
one to probe these predictions [20–22]. In practice, however,
modifying the magnetic properties of defect-induced magnetic
graphene typically requires the preparation of new devices.
Graphene nanoflakes can be grown using chemical vapor depo-
sition (CVD), typically with zigzag boundaries and hexagonal
symmetry of the entire flake [23–25]. Hexagonal nanoflakes
with armchair boundaries can be constructed bottom-up from
aromatic molecules [26,27]. In addition, it has been reported
that the interaction of the nanoisland edges with the substrate
smoothes the boundary and enhances the symmetry of the
electronic wave functions [28]. In analogy to the hydrogen
molecule, two localized states in a double quantum dot (DQD)
can hybridize to form bonding and antibonding eigenstates
of the combined system. In return, the localized states can be
obtained by taking the even and odd superpositions of bonding
and antibonding states. The exchange coupling J describes
the coupling between the two localized spins [29,30]. In this
article, we calculate J as a function of the magnetic field and
for different flake configurations.

A typical graphene nanoflake with zigzag (or armchair)
edges, hexagonal symmetry, and two lattice vacancies is
sketched in Fig. 1. Each vacancy gives rise to localized states
and thus serves as a quantum dot [31,32]. The entire flake
with two vacancies is therefore a realization of a DQD. If
the vacancies are located at positions rvac = (0,±y), the flake
retains some symmetry which, in our case, also applies to the
probability densities of the electronic states. The complete
eigensystem is found by numerical diagonalization of a

FIG. 1. (Color online) Schematic of a hexagonal graphene
nanoflake with zigzag (armchair) boundaries. Grey (and orange)
dots—connected by solid (and dashed) lines—indicate the locations
of carbon atoms. The zigzag (armchair) terminated flake is specified
by the number of benzene rings (armchair sections) along each
edge, b (s), and the distance d (in units of the atomic distance
a = 1.42 Å) of the vacancies, located at rvac = (0,±y), from the
Cartesian origin in the flake center. The sketched island has a
(b = 4, d = 2) [(s = 2, d = 2)] configuration. The vacancies (red
dots) give rise to localized spin states (green shade) whose mutual
dynamics is described by the exchange coupling J . A magnetic field
B ‖ ez can be applied perpendicularly to the flake plane.

tight-binding Hamiltonian where nearest neighbors up to third
order can be taken into account and a perpendicular magnetic
field B ‖ ez is included via a Peierls phase. Interactions
are effectively taken into account in a second step when
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calculating J . The retained symmetry allows us to superpose
the eigenstates in a meaningful way. We calculate the exchange
coupling J as a function of the magnetic field and for different
zigzag (armchair) flake configurations, which we specify by
the number of benzene rings (armchair sections) per edge,
b (s), and the distance between the vacancies and the flake
center, d, as shown in Fig. 1. We find that J can be tuned
over several orders of magnitude within one device and can
even vanish for certain flake configurations by changing the
magnetic field. For finite J , the ground state of the system is
antiferromagnetic. The according Néel temperature depends
on the flake geometry and ranges from below 4 K to values
beyond room temperature. That is, our results are in reach of
experimental analysis via spin-polarized scanning tunneling
microscopy or SQUID magnetometry [20–22].

II. TIGHT-BINDING MODEL

We consider a tight-binding Hamiltonian with hopping
between neighbors up to third order,

H =
∑
〈i,j〉

t
(1)
ij c

†
i cj +

∑
〈〈i,j〉〉

t
(2)
ij c

†
i cj +

∑
〈〈〈i,j〉〉〉

t
(3)
ij c

†
i cj , (1)

where the hopping from atom j to a neighbor of nth order, i,
depends on the magnetic field B ‖ ez via the Peierls phase,

t
(n)
ij (B) = t

(n)
ij (0) exp

[
i
e

�

∫ Rj

Ri

A(r) · dr
]

= t
(n)
ij (0) exp

[
i
eB

2�
(yi + yj )(xi − xj )

]
. (2)

We use the Landau gauge A(r) = −Byex and zero field
hopping amplitudes t

(1)
ij (0) = 2.8 eV, t

(2)
ij (0) = 0.7 eV, and

t
(3)
ij (0) = 0.3 eV. The operator c

†
i (ci) creates (annihilates) an

electron at site Ri . At zero magnetic field, the symmetries of
the Hamiltonian are the same as the lattice symmetries, as seen
in Fig. 1: the mirror symmetries Mx : x �→ −x and My : y �→
−y as well as the rotation by π , R2 : (x,y) �→ (−x, − y). At
finite fields only the twofold rotation R2 remains.

The numerically obtained eigenstates have an arbitrary
phase. However, we find that it is possible to multiply any
eigenstate |n〉 with a phase such that 〈r|n〉 = 〈n|Mx r〉. While
the probability density |〈r|n〉|2 remains unaffected, these phase
rotations do matter for the probability densities of even and
odd superpositions of two eigenstates. In order to obtain
states localized at rvac by forming these superpositions, it
is necessary to perform these phase rotations on the (anti-
)bonding eigenstates.

III. LOCALIZED STATES AND EXCHANGE COUPLING

The graphene nanoflake with vacancies can be interpreted
as a symmetric, unbiased DQD. Such a system can be
described by the Hamiltonian

HDQD =
(

Ē t

t∗ Ē

)
, (3)

where the localized states {|+y〉,|−y〉} form the basis, t is the
hopping amplitude from site to site, and Ē is the degenerate
eigenenergy for t = 0. An arbitrary gauge is taken into account

via the phase φ, that is, t = |t |eiφ . The eigensystem of Eq. (3)
is

E± = Ē ± |t | , (4)

|ψ±〉 = (|+y〉 ± e−iφ |−y〉)/
√

2 . (5)

Thus, the hybridized bonding (|ψ−〉) and antibonding (|ψ+〉)
states are superpositions of the localized states and their energy
splitting is given by � = 2|t |.

The diagonalization of the tight-binding Hamiltonian (1)
yields the bonding and antibonding eigenstates and the
according energy spectrum. If two states |ψ±〉, bonding and
antibonding, are selected, then the according localized states
|±y〉 are obtained by superposing these (anti-)bonding states.
This corresponds to undoing the superposition in Eq. (5). The
magnitude of the hopping between the localized states is easily
obtained from the energy splitting between the (anti-)bonding
states: |t | = �/2. To do this, we need to select a pair of
bonding and antibonding states and superpose them after
rotating them with phases as described at the end of Sec. II.

We find that if hopping amplitudes beyond nearest neigh-
bors are taken into account and B is finite [33], no degeneracies
occur (except for spin, which will only be considered later).
Since R2 commutes with the Hamiltonian (1), the energy
eigenstates are also eigenstates of R2, with eigenvalues +1
(even) and −1 (odd). We consider any two states |n〉, |m〉
with (i) eigenenergies that lie next to each other in the discrete
energy spectrum, En = Em−1, and with (ii) opposite symmetry
under the twofold rotation, 〈n|R2|n〉〈m|R2|m〉 = −1. We
refer to the lower energetic state as bonding and the higher
energetic one as antibonding, see Eq. (5). In addition to R2,
the lattice also possesses the symmetries Mx and My . We
find that the probability density of any eigenstate, |〈r|n〉|2,
also possesses these symmetries. Since the localized states
are localized in the upper/lower half of the flake, their
probability densities should only possess the symmetry Mx .
This symmetry fixes the relative phase in the superposition of
the bonding and antibonding states.

The procedure described so far allows us to find the
localized states |±y〉 for any selection of (anti-)bonding states.
To describe the spin physics in the DQD, we include spin
σ = ↑,↓ and an on-site Coulomb repulsion U . It is well known
that the system has six possible states: three spin triplets
and three spin singlets [29]. In the weak tunneling regime
|t | � U , the triplet state |T0〉 = 1√

2
(c†+y↑c

†
−y↓ + c

†
+y↓c

†
−y↑)|0〉

and singlet state |S〉 = 1√
2
(c†+y↑c

†
−y↓ − c

†
+y↓c

†
−y↑)|0〉 decouple

from the other states and are effectively described by the
Hamiltonian [29,30]

HTS ≈
(

0 0
0 −J

)
, J = 4|t |2

U
, (6)

where the basis is {|T0〉,|S〉} and the Coulomb repulsion is
U = e2/4πε0|r|, with the elementary charge e and the vacuum
permittivity ε0. For |r|, we use the standard deviation of the
probability density of the corresponding localized state. The
Zeeman term gμB B · �, where g is the electron g factor in
graphene, μB is the Bohr magneton, and � = σ+y + σ−y is
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FIG. 2. (Color online) On-site probability densities for (a,b) an
(s = 5,d = 8) armchair terminated flake and (c,d) a (b = 10,d = 10)
zigzag terminated flake. For each, we plot the antibonding energy
eigenstates |1〉 (a,c) as well as the localized vacancy states |+y〉
(b,d). Due to the restriction to nearest neighbor hopping, the on-site
probability density of |0〉 is identical to the one of |1〉. The probability
density of |−y〉 looks similar to the one of |+y〉, yet mirrored about
the x-axis. There is a significant probability density at the edges for
zigzag flakes but not for armchair flakes.

the total spin, commutes with H as well as HTS and hence
does not affect the calculation of J .

IV. RESULTS

Since the nanoflake consists of a total number of N atoms,
the tight-binding Hamiltonian in Eq. (1) has dimension N ×
N . Because of spin degeneracy, the N sorted eigenenergies En

are only filled up to EN/2 (counting from the bottom of the
spectrum) by the pz electrons. To simplify our notation, we
now count eigenstates and eigenenergies with respect to the
middle of the spectrum. That is, instead of EN/2+n we will just
write En and we set E0 = 0.

We calculate the exchange coupling J for three fundamen-
tally different situations: (i) t

(1)
ij =t

(2)
ij = t

(3)
ij = 0 in Eq. (1) with

armchair terminated flakes and (ii) zigzag terminated flakes,
as well as (iii) t

(n)
ij =0 (n = 1,2,3) with zigzag boundaries.

For (i) and (ii), the localized vacancy states lie in the middle
of the symmetric energy spectrum [22,31]. Zigzag edges
are energetically favored and hence more likely to occur in
nanoflakes grown by CVD. For (iii), the localized states do
not necessarily lie in the middle of the energy spectrum, which
makes their identification nontrivial.

A. Armchair and zigzag terminated flakes with hopping up to
first nearest neighbors

For t
(n)
ij = 0 (n > 1), the on-site wave functions of eigen-

states |0 − n〉 and |1 + n〉 (i.e., states that lie symmetrically
with respect to the middle of the energy spectrum) differ
only by a phase. Moreover, we find that 〈0 − n|R2|0 − n〉〈1 +
n|R2|1 + n〉 = −1. The localized vacancy states give rise to
(anti-)bonding eigenstates at energies E0 and E1. In particular,

TABLE I. Results for various armchair terminated flakes with parameters (s,d) (see Fig. 1). For vanishing magnetic fields [33], we list the
hopping amplitude |t | (upper number) and the exchange coupling J between localized vacancy states (lower number) in meV. We underline
(underdash) J if J (B) = 0 can be reached for B < 15 T (B > 15 T). The numbers in boldface correspond to the case shown in Figs. 2(a), 2(b),
and 4(a). We display blank spaces if Eq. (6) does not apply (see main text) and “X” if d refers to a lattice site outside the flake.

�������d
s 1

(82)
3

(310)
5

(682)
7

(1198)
10

(2242)
16

(5302)
22

(9658)

1
2

4
86.997

6
¯
.
¯
0
¯
7
¯
0
¯

104.800
20.185

105.100
31.746

5
198.193

48.746

7 X
27.165

1
¯
.
¯
0
¯
3
¯
0
¯

38.267
3.421

43.067
6.041

46.041
9.933

8 X
109.233

25.445
107.573

33.687

10 X
4.003
0
¯
.
¯
0
¯
1
¯
4
¯

14.467
0
¯
.
¯
4
¯
0
¯
6
¯

20.254
1
¯
.
¯
1
¯
6
¯
7
¯

24.890
2.580

28.516
5.611

29.302
8.469

11 X
52.656

5.595
74.052
16.385

73.377
20.140

13 X X
4.468
0
¯
.
¯
0
¯
3
¯
0
¯

9.568
0
¯
.
¯
2
¯
2
¯
6
¯

14.259
0.768

18.697
2.222

20.439
3.780

14 X X
47.539

6.688
55.280
11.682

53.900
14.268
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|0〉 and |1〉 have opposite symmetry under R2. To calculate the
exchange coupling as described by Eq. (6) it is important
that (i) no third state is involved in the superposition of
localized states, min({E2 − E1,E0 − E−1}) > �, and that (ii)
terms higher than O(|t |/U ) can be neglected, |t | � U .

Armchair boundaries. Figure 2(a) and 2(b) show the on-site
probability densities of (a) the antibonding eigenstate |1〉 and
(b) the localized state |+y〉 for an (s = 5,d = 8) nanoflake.
The on-site probability density of |0〉 is the same as that of |1〉
because the on-site wave functions of these states differ only
by a phase. The on-site probability density of the localized
state |−y〉 is not shown but can be obtained by applying the
mirror symmetry My to the probability density of |+y〉. As
expected for armchair boundaries, the probability density at
the edges is negligible.

The hopping amplitude |t | and the exchange cou-
pling J resulting from the (anti-)bonding states {|0〉,|1〉}
are listed in Table I for s = 1,3,5,7,10,16,22 and d =
1,2,4,5,7,8,10,11,13,14 and at vanishing [33] magnetic field.
In the top row, we also list the total number of atoms in
parentheses. In all other rows, the upper numbers indicate
|t | and the lower numbers indicate J , both in meV. No results
are listed if condition (i) or (ii) is not met and an X is shown
if d refers to a lattice site outside the flake. Since J is always
positive, it is clear from Eq. (6) that the singlet state |S〉 is
favored. The resulting antiferromagnetism should be stable up
to the Néel temperature TN

∼= J/kB, where kB is Boltzmann’s
constant. The value of TN for a given (s,d) configuration can
be obtained by multiplying the according numerical value of
J in Table I with 11.6 K.

For d = 1 + 3n (n∈N), the lattice site of the vacancy at
(0, + y) has a nearest neighbor at (0,y + a) and for d =
2 + 3n, it has a nearest neighbor at (0,y − a), see Fig. 1.
In Fig. 3(a), we plot the exchange couplings listed in Table I.
Green circular (magenta square) markers correspond to d =
1 + 3n (d = 2 + 3n). Markers that are connected by a straight
line belong to flakes of the same size, e.g., s = 3. For armchair
boundaries and nearest neighbor hopping only, there is a
clear ordering. Both for d = 1 + 3n and for d = 2 + 3n, the
exchange coupling decreases with larger vacancy separation d

and smaller flake size s. The decline of J with increasing d

is intuitively clear from Eq. (6) as the hopping amplitude |t |
decays with increasing separation of the localized states.

The Hamiltonian (1) and hence its spectrum {En} and the
exchange coupling J depend on the magnetic field B. In
Fig. 4(a), we plot J and the eigenenergies of the corresponding
(anti-)bonding states {|0〉,|1〉} shown in Fig. 2(a) against B.
Typically, the properties of an electronic state change for
magnetic fields of the order of B = �0/A, where �0 = h/2e

is the magnetic flux quantum with Planck’s constant h and A is
the surface area occupied by the state, which we approximate
by the surface area of the flake.

We find that the Coulomb repulsion U depends only weakly
on the magnetic field while the splitting � = E1 − E0 = E1

and hence |t | depend strongly on B. That is, J (B) is mainly
determined by the behavior of E1(B). Depending on the (s,d)
configuration, the exchange coupling J can be tuned over a
certain range [Fig. 4(a)] and if a degeneracy E1(B) = E0 = 0
occurs, it is even possible to switch the coupling on (J > 0)
and off (J = 0) by tuning the system towards or away from

FIG. 3. (Color online) For t (n) = 0 (n > 1), we plot the exchange
coupling J for (a) armchair and (b) zigzag terminated flakes. In (c),
we plot J for zigzag terminated flakes and t (n) =0 (n = 1,2,3). The
values of J are listed in Tables I, II, and III, respectively. Green
circular (magenta square) markers correspond to d = 1 + 3n (d =
2 + 3n), i.e., vacancy sites (0, + y) with a nearest neighbor site at
(0,y + a) [(0,y − a)]. Straight lines connect markers that belong to
flakes of the same size, e.g., s = 3 (a) or b = 15 [(b) and (c)].

the degeneracy. In Tables I–III, we underline (underdash) J of
those flake configurations, for which a degeneracy, i.e., J (B) =
0, can be reached with a magnetic field smaller (greater) than
15 T. In Table I, however, such degeneracies occur only at
fields much greater than 15 T.

Zigzag boundaries. Figures 2(c) and 2(d) show on-site
probability densities analogous to those in Figs. 2(a) and 2(b).
In contrast to armchair boundaries, the zigzag termination
leads to a significant probability density at the flake edges, as
expected. Table II corresponds to Table I yet we parametrize
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FIG. 4. (Color online) The exchange coupling J (solid blue line
and left axis) and the eigenenergies (dashed orange line and right
axis) of the corresponding (anti-)bonding states are plotted against
a magnetic field perpendicular to the plane of the flake. The flake
parameters (s,d) and (b,d), respectively, the energy levels E0 and
E1, as well as the magnetic field at which one flux quantum passes
through the flake are indicated in the plots. The behavior of J (B) is
very specific and depends on flake size (s or b), vacancy separation
(d), edge type, and |t (n)

ij | (see also Fig. 6). (a) and (b) show J (B)
for the configurations with numbers in boldface in Tables I and II,
respectively.

TABLE II. Same as Table I, but for various zigzag terminated
flakes with parameters (b,d) (see Fig. 1) for vanishing magnetic
fields [33].

�
��d
b 4

(94)
7

(292)
10

(598)
15

(1348)
20

(2398)
30

(5398)
40

(9598)

1
2

4
143.353

2
¯
5
¯
.
¯
6
¯
8
¯
2
¯

5
34.886

2
¯
.
¯
3
¯
4
¯
5
¯7 X

8 X
7.044
0
¯
.
¯
0
¯
5
¯
4
¯

10 X
15.171

1
¯
.
¯
0
¯
0
¯
0
¯

11 X X
1.474
0
¯
.
¯
0
¯
1
¯
2
¯

13 X X
10.821

0
¯
.
¯
5
¯
1
¯
5
¯

14 X X
9.601
0.293

0.724
0
¯
.
¯
0
¯
0
¯
2
¯

the size of zigzag terminated flakes with b instead of
s (see Fig. 1) and here we use configurations with b =
4,7,10,15,20,30,40. The flake sizes are chosen such that the
number of atoms in the columns of Tables I and II roughly
match.

The exchange couplings listed in Table II are plotted in
Fig. 3(b) in the same way as for armchair boundaries and
the available data indicate a decrease of J for larger vacancy
separation d, as in the armchair case. There are not enough
data to draw a conclusion for the behavior of J with respect to
the flake size b yet the data points (b = 10,d = 14) and (b =
15,d = 14) are not in accord with the behavior observed for
armchair edges. In Fig. 4(b), we plot J and the eigenenergies
of the corresponding (anti-)bonding states {|0〉,|1〉} shown in
Fig. 2(c) against B. As for the armchair edges, degeneracies
of (anti-)bonding eigenstates occur only at fields much greater
than 15 T.

B. Zigzag terminated flakes with hopping
up to third nearest neighbors

The restriction to nearest neighbor hopping above leads to a
symmetric spectrum with the advantage that the identification
of (anti-)bonding eigenstates that lead to localized vacancy
states becomes straightforward since these eigenstates lie in
the middle of the spectrum at energies E0 and E1. Moreover,
this restriction leads to localized vacancy states that reside
only in one sublattice [31]. In reality, however, all hopping
amplitudes |t (n)

ij | (n > 0) are finite and as a consequence, the
energy spectrum is not symmetric and localized vacancy states
reside in both sublattices.

In order to describe a system which is closer to real graphene
nanoflakes, we now consider hopping amplitudes up to third
nearest neighbors and assume zigzag boundaries, since they are
energetically favored in flakes grown by CVD [23–25,28]. The
asymmetric energy spectrum makes it challenging to identify
the (anti-)bonding eigenstates that are superpositions of the
two localized states since these eigenstates lie not necessarily
in the middle of the spectrum.

For a given flake, we calculate t for all pairs of numerically
computed (anti-)bonding states, {|n〉,|m〉}, that satisfy three
criteria, two of which have been introduced before: (i)
the states need to lie next to each other in the spectrum,
m = n + 1 and (ii) they need to have opposite symmetry
〈n|R2|n〉〈m|R2|m〉 = −1. In addition, (iii) the states should
become accessible via doping in a realistic experiment [34],
|En,m − E0| � 300 meV. To calculate the exchange coupling
as described by Eq. (6), it is important that moreover (iv) no
third state is involved in the superposition of localized states,
min({En − En−1,Em+1 − Em}) > � and that (v) terms higher
than O(|t |/U ) can be neglected, |t | � U .

Figure 5 illustrates our results for a (b = 15,d = 11)
nanoflake. For this flake and at vanishing [33] magnetic field,
two pairs of states fulfill the criteria (i)–(v), namely, {|3〉,|4〉} as
well as {|11〉,|12〉}. In Fig. 5(a), we plot the hopping amplitude
that belongs to the corresponding localized states against
the energy Ē of those localized states [Eq. (4)]. Among the
states satisfying the criteria (i)–(v), the states |3〉 and |4〉 lead
to the highest hopping amplitude, namely, |t | = 11.1 meV.
Figures 5(b)–5(d) show the on-site probability densities of (b)
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TABLE III. Results for various flakes with zigzag edges—specified by (b,d), see Fig. 1—and finite hopping amplitudes up the third nearest
neighbors. For vanishing magnetic fields [33], we list the maximum hopping amplitude |t | (upper number) and the maximal exchange coupling
J (lower number) in meV. We underline (underdash) J if J (B) = 0 can be reached for B < 15 T (B > 15 T). The integer in parentheses
behind |t | and J indicates the number of (anti-)bonding pairs that satisfy the criteria (i)–(v). The numbers in boldface correspond to the case
shown in Figs. 5 and 6(a). We display a blank space if Eq. (6) does not apply (see main text).a

���������d
b 10

(598)
15

(1348)
20

(2398)
30

(5398)
40

(9598)

1
3.498
0.056

(1)
5.150
0
¯
.
¯
1
¯
8
¯
4
¯

(1)
0.914
0.008

(1)
1.833
0.050

(3)
0.426
0
¯
.
¯
0
¯
0
¯
3
¯

(2)

2 - (0)
3.494
0
¯
.
¯
0
¯
8
¯
4
¯

(3) - (0)
2.937
0
¯
.
¯
1
¯
2
¯
3
¯

(1)
0.457
0
¯
.
¯
0
¯
0
¯
4
¯

(4)

4 - (0)
5.048
0
¯
.
¯
1
¯
7
¯
1
¯

(1) - (0)
0.555
0
¯
.
¯
0
¯
0
¯
4
¯

(1)
0.426
0
¯
.
¯
0
¯
0
¯
3
¯

(3)

5 - (0)
0.239
0
¯
.
¯
0
¯
0
¯
0
¯
(1)a 3.216

0.095
(2)

1.177
0.020

(3)
0.448
0
¯
.
¯
0
¯
0
¯
4
¯

(5)

7 - (0)
5.048
0
¯
.
¯
1
¯
7
¯
1
¯

(1)
4.922
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the localized state |+y〉 and its parent states (c) |4〉 and (d) |3〉.
The on-site probability density of the localized state |−y〉 is not

FIG. 5. (Color online) Results for a (b = 15,d = 11) flake. (a)
Two pairs of (anti-)bonding states satisfy the criteria (i)–(v). For the
corresponding localized states, we plot the energy Ē (with respect to
E0) vs |t |. The hopping amplitude |t | is maximal for the pair {|3〉,|4〉}.
(b)–(d) On-site probability densities of (b) the localized state |+y〉,
(c) |4〉, and (d) |3〉. The on-site probability density of |−y〉 looks
similar to the one of |+y〉, yet mirrored about the x axis.

shown but can be obtained by applying the mirror symmetry
My to the on-site probability density of |+y〉.

For vanishing [33] magnetic fields and any given combina-
tion of b and d, we now pick the pair of (anti-)bonding states
that satisfies the criteria (i)–(v) and which has the highest
hopping amplitude. This maximal hopping amplitude |t | and
the maximal exchange coupling J are listed in Table III for b =
10,15,20,30,40 and d = 1,2,4,5,7,8,10,11,13,14 in a similar
way as in Tables I and II: the upper numbers in the table indicate
|t | and the lower numbers indicate J , both in meV. The ensuing
integer in parentheses shows the number of (anti-)bonding
pairs that satisfy the criteria (i)–(v) for this combination of b

and d. The listed values for J are plotted in Fig. 3(c).
As above, we distinguish between d = 1 + 3n (n∈N) and

d = 2 + 3n. The former case leads to a repetitive pattern of
|t | and J for, e.g., b = 15 and d = 4,7,10 and the latter case
applies for, e.g., b = 15 and d = 5,8. Such patterns occur
for various parameters, yet some of them are concealed in
Table III because the conditions (i)–(v) do not apply or the
according hopping amplitude |t | is not maximal for a given
(b,d) configuration. Throughout a pattern, we find resembling
probability densities of the localized states and numerically
close but different values for |t | and J . In all cases listed in
Table III, the flake edges play a non-negligible role; see, e.g.,
Fig. 5(d). This might be the reason why |t | and J vary strongly
with respect to b and d. For large enough b and d, we expect
that the influence of b vanishes and a smooth decay of |t | and
J with respect to d occurs; yet we do not reach this regime.

In Fig. 6, we plot J and the eigenenergies of the cor-
responding (anti-)bonding states {|En〉,|Em〉} against B for
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FIG. 6. (Color online) Similar to Fig. 2(b), but for the hopping
amplitudes between neighbors up to third order. The exchange
coupling J (solid blue line) and the energy levels Em and En of the
corresponding (anti-)bonding states (dashed orange lines) are shown.
Depending on the configuration of the zigzag terminated flake, J can
be tuned (a) only weaklyor (b) over an order of magnitude, or can be
(c) switched off (J = 0) by tuning the spectrum into a degeneracy.

three different flake configurations. As before, J is mainly
determined by the energy splitting of the (anti-)bonding eigen-
states, � = Em − En. Depending on the (b,d) configuration,
the exchange coupling J (B) can be tuned over a certain range
[Figs. 6(a) and 6(b)]; and if a degeneracy Em(B) = En(B)
occurs, it is even possible to switch the coupling on (J > 0)
and off (J = 0) by tuning the system towards or away from the
degeneracy [Fig. 6(c)]. In Table III, we underline (underdash)
J of those flake configurations, for which a degeneracy,

i.e., J (B) = 0, can be reached with a magnetic field smaller
(greater) than 15 T.

V. CONCLUSION AND OUTLOOK

We have set up a tight-binding model for hexagonal
graphene nanoflakes with zigzag edges and two vacancies
at positions rvac = (0,±y). Symmetry allows us to infer the
explicit form of the localized vacancy states from the bonding
and antibonding eigenstates. This system is a realization of
a DQD. In the weak tunneling regime, the triplet |T0〉 and
the singlet |S〉 are split by the exchange coupling J and their
dynamics decouples from other spin states. A perpendicular
magnetic field is included in the tight-binding model via a
Peierls phase and can be used to tune J by orders of magnitude,
depending on the flake configuration.

We consider flakes with armchair and zigzag edges where
we restrict the tight-binding model to hopping between nearest
neighbors. Motivated by experiments on CVD grown graphene
nanoflakes, we also discuss zigzag terminated flakes where
hopping amplitudes up to third nearest neighbors are taken
into account. In the former two cases, the calculation of
J is straightforward. In the latter case, we have calculated
J for states that can be reached via doping leading to a
shift of the chemical potential by less than ±300 meV and
that satisfy further criteria described above. For flakes with
armchair edges, the exchange coupling decays with increasing
separation of the vacancies. It remains unclear whether such
behavior also applies for zigzag terminated flakes, where edge
states play a significant role.

Due to the dependence of J (B) on the perpendicular
magnetic field it is possible to tune the system into a
degeneracy where J = 0. This in situ tunability of the
exchange coupling can be very useful for spintronics and
quantum-information-related applications because it allows
the modification of the magnetic properties without preparing
a new device. The ground-state spin configuration is antifer-
romagnetic. Depending on the lattice configuration, we have
found Néel temperatures from below 4 K to beyond room
temperature, which allows experimental testing of our results.
Ferromagnetic ordering, J < 0, is conceivable by including
nonlocal Coulomb interaction [35]. Our calculation can be
extended to include spin-orbit coupling or additional potentials
that model a Moiré pattern or boundary effects. Assigning
both vacancies to the same sublattice results in reduced
symmetry. These cases might be treatable with a modified,
less-symmetry-dependent calculation.
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