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1. Introduction

Owing to the potential applications and interesting electronic 
properties, atomically thin materials have attracted a strong 
interest in recent years. A variety of two dimensional (2D) 
crystals, including graphene, boron nitride, phosphorene, sev-
eral transition metal dichalcogenides and complex oxides, has 
been prepared and studied experimentally [1–5]. Atomically 
thin materials are usually fabricated and studied in multi-layer 
structures. For example, monolayer graphene placed on a sub-
strate can hardly be observed with optical microscopy since 
the intensity of the reflected light is small resulting in low con-
trast. However, as it was demonstrated in [6, 7], the multilayer 
structure shown in figure 1, when a dielectric spacer of width 
d and refractive index n1 is placed between the substrate (with 
refractive index n2) and the graphene layer, can have important 
advantages. Namely, by tuning the width d of the SiO2 used 
as spacer material, the intensity of the reflected light changes 
drastically and consequently the visibility of the graphene 
flake [8] is improved. Theoretically, the optical visibility of 
monolayer and bilayer graphene deposited on a Si/SiO2 layer 

substrate was also studied in [9] where it was shown that the 
visibility is enhanced through a resonant transmission of light 
due to the spacer.

Optical spectroscopies are powerful contact-free methods 
to study material properties. In the context of 2D materials, 
e.g. Zhang et al [10] and Kuzmenko et al [11] used infrared 
spectroscopy to extract the tight-binding parameters in bilayer 
graphene by fitting the experimental reflectivity spectra with 
the optical conductivity calculated from the Kubo formula. If 
time reversal symmetry is broken, then the rotation of polari-
zation of the transmitted (reflected) light, i.e. the Faraday 
(Kerr) effect can be used to deduct the off-diagonal element 
of the optical conductivity ( )σ ωxy  as was shown for monolayer 
graphene by Crassee et al [12] The time reversal symmetry 
can be broken not only by external magnetic field, but also 
due to electron–electron interactions. Such an example for the 
latter is one of the possible gapped ground states of bilayer 
graphene, the so-called quantum anomalous Hall (QAH) 
state (for a general discussion of the possible gapped states 
in bilayer graphene see [13]). Nandkishore and Levitov has 
recently proposed that this QAH state could be observed by 
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measuring the Kerr rotation [14] in bilayer graphene samples. 
As an extension of [14] the optical Hall and longitudinal con-
ductivities of neutral bilayer graphene were calculated for four 
additional gapped states by Gorbar et al [15]. The measure-
ment of the Kerr (Faraday) angle has also been used recently 
to study other time reversal symmetry breaking systems, such 
as cuprate superconductors [16–19] and topological insulators 
[20, 21].

According to the textbook formula [16–19], the Kerr 
angle θK for light reflected from a conducting half space is 
proportional to the ac Hall conductivity of the conductor: 

( )θ σ ω∼ Im xyK . However, this formula is no longer valid for 
atomically thin materials since the thickness of the atomic 
layer is much thinner than the optical wavelength. For an 
atomic layer the relationship between the Hall conductivity 
and Kerr (Faraday) angle θK (θF) can be derived by solving 
the Maxwell equations on the two sides of the atomic layer 
and matching solutions at the boundary. Such a derivation is 
presented for bilayer graphene in [14], for thin films of topo-
logical insulators by Tse and MacDonald [22–24], and for thin 
films of topological Weyl semimetals by Kargarian et al [25] 
Such calculations suggest that Kerr and Faraday angle meas-
urements can also be a useful tool to characterize heterostruc-
tures fabricated recently by stacking atomically thin layers of, 
e.g. graphene, boron-nitride and transition metal dichalcoge-
nides [26–29]. This calls for a flexible and tractable theor etical 
framework allowing studies of magneto-optical properties of 
these multilayer systems.

To this end we develop a simple and versatile method to 
determine the Kerr and Faraday angles in multilayer systems. 
In our method the rotation angle θ and the ellipticity η of the 
polarization for the Kerr and Faraday effect are calculated 
from the total transfer matrix of the multilayer structure. The 
total transfer matrix can always be expressed as a product of 
many individual transfer matrices that can be classified into 
two different types: (i) transfer matrices corresponding to the 
free propagation in dielectric media, and (ii) transfer matrices 
of atomically thin layers with given electric conductivity 

tensor σ. As we will show below this kind of classification 
of the possible transfer matrices makes the calculation of 
polarization dependent reflectivity and transmittivity simple 
and general. Our approach can be easily applied to different 
multilayer structures and for an arbitrary angle of incidence 
of the electromagnetic radiation. Below we also present ana-
lytical results for Kerr (Faraday) angle which makes easier the 
interpretation of experimental results. One of the important 
results of our work is that the Kerr (Faraday) angle can be 
enhanced by properly designing the substrate for the atomi-
cally thin materials. To demonstrate how powerful our method 
is we consider the multilayer setup shown in figure 1.

The atomically thin conductor is a bilayer graphene flake 
placed on two layers of dielectric media of refractive indices 
n1 and n2. Here we only consider the QAH state of bilayer gra-
phene for which the Hall-conductivity ( )σ ωxy  is finite resulting 
in Kerr and Faraday rotation. Moreover, our method to calcu-
late the Kerr and Faraday rotation can be applied to another 
exotic state called ‘all’ state proposed by Zhang et al which 
breaks the chiral symmetry in bilayer graphene [30].

We note that a related approach based on the scattering 
matrix of the nanostructure has been used recently to study the 
effects of metalic surface states in topological insulator thin 
films [22–24, 31–34]. We believe, however, that our transfer 
matrix method is easier to use in complex nanostructures con-
sisting of several layers with different optical properties. Note 
that the transfer matrix method has been used for non-inter-
acting graphene layers in [35] to study the transmission and 
reflection, but the Kerr (Faraday) effect was not considered 
there. Thus, our work is a generalization of [35].

The paper is organized as follows. In section 2, we derive 
the two types of transfer matrices relevant in a multilayer 
structure described above. Moreover, using the total transfer 
matrix the reflection and transmission amplitudes, Kerr and 
Faraday angles and the ellipticity are given. In section 3, we 
present examples for the application of our transfer matrix 
method, and analytical formulas for the Kerr and Faraday 
angles for several special cases. In order to make our work 
more readable the main steps of the calculation of the con-
ductivity tensor of the gapped bilayer graphene is presented in 
appendix. In section 4 we make our conclusions.

2. Transfer matrix method for calculating the  
Kerr and Faraday angles

In this section we develop a general and convenient method to 
calculate the Kerr and Faraday angles via the transfer matrix of 
layered structures consisting of stacks of dielectric mat erials 
and atomically thin conducting layers, such as graphene. In 
general, the total transfer matrix of such a layered structure 
is a product of two types of transfer matrices. The first one 
corresponds to a free propagation in dielectric media and we 
shall denote it by Mfree, the second one that gives the transfer 
matrix Mb for an atomically thin material (e.g. graphene) with 
electric conductivity σ.

Regarding the geometry, we now consider an atomically 
thin sample on the x–y plane embedded between dielectrics 

Figure 1. Geometrical configuration of the measurement of 
the Kerr (Faraday) angle θK (θF). An incident light with angle 
ϑ0 propagating in vacuum with refractive index n0 reflected 
(transmitted) on an atomic layer (AL) of material (e.g. graphene) 
separated by a dielectric layer (e.g. SiO2) of thickness d with 
refractive index n1 from a thick substrate (e.g. Si) with refractive 
index n2.

d

AL (    )
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with refractive indices nR and nL at the left and right hand 
side of the sample, respectively as shown in figure  2. This 
figure  shows two plane waves with wave vectors ±kL at the 
left hand side and two plane waves with wave vectors ±kR at 
the right hand side of the interface. Here the signs  +/−  cor-
respond to the direction of the propagation of the waves with 
respect to the z axis. The electric fields of these plane waves at 
the left and right side of the interface are denoted by subscript 
R and L, respectively. The superscripts of these fields are fur-
ther distinguished by s/p corresponding to the s/p polarized 
fields, i.e. the direction of the field is perpendicular/parallel 
to the plane of incidence, respectively. The transfer matrix Mb 
connects the electric fields at the left hand side with that of the 
right hand side of the interface:
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In what follows we present our transfer matrix method for the 
most general case, i.e. for the oblique incidence case. From the 
Maxwell equations  one can derive the boundary conditions 
for the electric and magnetic fields and from that the transfer 

matrix Mb can be extracted. Namely, from = −∂
∂

Erot
t

B, 

= + ∂
∂

H jrot
t

D and ( )σ δ= zj Es  it follows that

ˆ ( )× − => <n E E 0,z (2)

ˆ ( ) σ σ× − = => < > <n H H E E ,z s s (3)

where σs is the surface conductivity of the atomically thin 
sample in units of /1 ohm, n̂z is the unit vector along the z axes, 

/< >E E  is the electric field at the left/right hand side of the 
interface and finally ( )δ z  is the usual Dirac delta function. The 
magnetic field of the plane wave in a dielectric is related to the 

electric field as = ×ε ε
µ µ

H Ek
k

r

r

0

0

. For the refractive index n 

of a dielectric medium we take ε=n r  since for dielectric 
the relative permeability constant is µ ≈ 1r . Now, from equa-
tions (2) and (3) we can extract the 4 by 4 transfer matrix Mb 
defined in equation (1) and find
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and the angles ϑR and ϑL satisfy the Snell’s law: 
ϑ ϑ=n nsin sinR R L L. Here the dimensionless conduc-

tivity σ is introduced in units of e2/h (i.e. /σ σ= e hs
2 ) and 

/( ) /α πε= ≈�e c4 1 1372
0 0  is the fine-structure constant.

One can show that the determinant of the matrix Mb is 
given by

⎛
⎝
⎜

⎞
⎠
⎟ϑ

ϑ
=

n

n
Mdet

cos

cos
.b L L

R R

2

 (10)

Note that it is independent of the conductivity σ.
The transfer matrix for free propagation in a dielectric 

medium is given by

Figure 2. The atomically thin sample is placed on the x–y plane 
(thick black line). The z axis is perpendicular to the interface. The 
figure shows the electric fields of the plane waves at the left (right) 
side of the interface.
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( )
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where k is the wave number in the dielectric, d is the thickness 
of the dielectric medium and ϑ is the angle between the direc-
tion of the propagation and the z axes. Note that =Mdet 1free .

The total transfer matrix is given by the appropriate product 
of the two building blocks, Mb and Mfree. For example the 
total transfer matrix for the layered structure shown in figure 1 
reads as

( ) ( ) ( )σ= n n d n nM M M M, , 0 , , .b btotal
2 1

free
1 0 (12)

Here for brevity, we have omitted the dependence of angles 
ϑ ϑ,0 1 and ϑ2 in two matrices Mb.

The reflection amplitude r and the transmission amplitude t 
can be extracted from the total transfer matrix Mtotal in the fol-
lowing way. Consider an incident plane wave which is a super-

position of the linear s and p polarized light, ( )= E EE ,i i
s

i
p T. 

Now the reflection and transmission amplitudes can be repre-
sented by 2 by 2 matrices:

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝
⎜

⎞
⎠
⎟= =

r r
r r

t t
t tr t, ,

ss sp

ps pp

ss sp

ps pp
 (13)

and the reflected rEi and the transmitted waves tEi satisfy the 
following equation:
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( )= − −r M M ,22
1

21 (15)

( ) [( ) ]= + = − =− − −t M M r M M M M M ,11 12 11 12 22
1

21
1

11
1

 
(16)

where the 4 by 4 matrix Mtotal is partitioned in the same way 
as in equation (4), i.e.

⎛
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⎠
⎟=M

M M
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21 22
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Note that when there is no dissipation, i.e. σ σ= = 0xx yy  and 
σ σ= −xy yx then the unitarity is valid:
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+ =+ +n

n
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L L
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where I is a 2 by 2 unit matrix. The reflectance R and the trans-
mittance T for incident light Ei are defined as

=
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Owing to the dissipation in the atomically thin conductor, 
some of the incident light is absorbed, and then the absorption 
A is given by

= − −A R T1 . (21)

Finally, according to the textbooks [36, 37] the polarization 
rotation (Kerr angle) θK and the ellipticity ηK for the reflected 
wave can be written in the form

( )θ
χ
χ

=
−

tan 2
2 Re

1
,K

K

K
2 (22)
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=
+

sin 2
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−

r

r
r

r

for incident linear s-polarized light,

for incident linear p-polarized light.

ps

ss

sp

pp

K (24)

For χ| |� 1K  equation (22) implies that the Kerr angle is given 
by θ χ≈ReK K. Similar expressions are valid for the polariza-
tion rotation θF (Faraday angle) and the ellipticity ηF in the 
case of transmitted wave, just r should be replaced by t in 
equation (24).

For dielectrics (σ = 0) our transfer matrix method gives 
the same results as derived, e.g. in the classical textbook by 
Born and Wolf [36]. If the Hall conductivity σxy is zero then no 
polarization rotation emerges, i.e. the Kerr and Faraday angles 
are zeros. Regarding single and bilayer graphene our method 
results in the same reflection and transmission amplitudes as 
used by Kuzmenko et al [11].

3. Applications of the transfer matrix method

In this section using our general transfer matrix method pre-
sented in section 2 we calculate the Kerr rotation angle for the 
geometrical arrangement shown in figure 1. To obtain simple 
analytical results useful for measurements we consider two 
special cases here: (i) the atomic layer is placed directly on 
a substrate, i.e. the middle dielectric medium with refrac-
tive index n1 in figure 1 is removed. (ii) the incident light is 
perpend icular to the plane of the atomic layer. Since in our 
applications the Kerr/Faraday angle is small, i.e. /θ � 1K F  we 
use the approximation / /θ χ≈ReK F K F.

To study numerically the Kerr effect we need to know 
the frequency dependence of the optical conductivity. As an 
example we take the bilayer gapped graphene and calculate its 
optical conductivity using our previously developed method 
[38]. To make this paper self-contained, in appendix we 
briefly summarize the main steps to obtain the conductivity. 
We also compare our results with those found in [14] and [15] 
and present some numerical results for bilayer graphene in the 
QAH state.
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3.1. Atomic layer on a thick substrate

In this case the total transfer matrix is simply Mtotal = 
σϑ ϑ( )n nM , , , ,b

2 2 0 0  where ( )σϑ ϑn nM , , , ,b
2 2 0 0  is given by 

equations (4)–(9). The Kerr angle is given by

( )
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( ) ( )// ϑ γ γ ϑ= + ±∓a n n n ncos cos ,s p
2 0 2 0 2 0 2 (27)

n ncos cos , and sin sin .0 2 0 0 2 2γ ϑ ϑ ϑ ϑ= =/ (28)

Here ϑ0 is the angle of the incident light, and in this section the 
superscript s and the upper sign refer to s polarization, while 
the superscript p and the lower sign refer to p polarization. 
At this point it is worth to consider a few special cases of the 
general formula given by equation (25).

 (i) For perpendicular incidence (ϑ = 0, ϑ = 02 , γ = 1) the 
Kerr angle is given by
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  This result agrees with that derived by Nandkishore and 
Levitov [14], and Tse and MacDonald [24].

 (ii) For free-standing graphene ( = =n n 10 2 , ϑ ϑ ϑ= =0 2, 
γ = 1) the Kerr angle reads as

θ
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σ ϑ α σ σ
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[ ]
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K 1 2 2

1

 

(30)

  where in the last step we assumed that σxx is approxi-
mately equal to π in units of e2/h (see, e.g. [39] and our 
result shown in figure A1(a)) and we neglected the term 
proportional to α in the denominator. Figure 3(a) shows 
a relatively large Kerr angle plotted as a function of fre-
quency of the incident light for s and p polarization with 
oblique incidence.

 (iii) In equation (25) neglecting terms in the denominator that 
are proportional to α or α2 we have

[ ]

( )

/
⎛
⎝
⎜

⎞
⎠
⎟

θ
α σ

≈
− ± ϑ ϑ

ϑ−

n

n n

4 Re

1

.s p xy

n

n n

K
0

0
2

2
2 sin tan

sin

0 0 0

2
2

0
2 2

0

 (31)

 (iv) Finally, the Kerr angle for p polarization at the Brewster 
angle ϑB reads

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡
⎣⎢

⎤
⎦⎥

n

n n

n

n n

Re
2

2

2
Re ,

p xy

xx xx xy

xy

xx

K
0

0
2

2
2 2 2

0

0
2

2
2

θ
σ

σ α σ σ

σ
σ

=−
+ + +

≈
−

+

( )

 

(32)

  where ( / )ϑ = n narctanB 2 0  (note that now /γ = n n0 2). In 
the last step we neglected the term proportional to α. For 
s polarization the Kerr angle is much smaller as can be 
seen in figure 3(b).

In what follows we argue that the sensitivity of the detec-
tion of the Kerr rotation can be enhanced when the incident 
angle is close to the Brewster angle. To see this, we calcu-
lated the frequency dependence of the optical conductivity 
for bilayer graphene assuming that the ground state is the 
QAH state. (The details of this calculation can be found in 
appendix.) Using this result we then obtained the Kerr angle as 
a function of the angle of incidence ϑ0 as shown in figure 3(b). 
As it can be seen the Kerr angle θK is strongly enhanced for p 
polarization when ϑ ϑ=0 B. However, using equation (19) one 

Figure 3. (a) The Kerr angle for free standing bilayer graphene and 
incident angle /ϑ π= 40  as a function of the frequency for s and p 
polarizations. (b) The Kerr angle in the case of bilayer graphene 
on a thick substrate with refractive index n2  =  1.5 (for geometry 
see the inset) as a function of the angle of incidence ϑ0 for p (red 
solid) and s (blue dashed) polarizations at frequency ω = 0.2 eV. 
The parameters for the calculation of the conductivity: γ = 0.41  eV, 
η = 0.05 eV.
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can find that at this angle the intensity of the reflected wave 
significantly drops down. Thus, for an optical study of gra-
phene or other atomically thin conducting layers the optimal 
incident angle should be close but not exactly equal to the 
Brewster angle. Similar difficulties arise for optimizing the 
signal-to-noise ratio of the detected signal in magnetic domain 
observation by magneto-optics [40].

3.2. Atomic layer on a substrate separated by a dielectric 
slab: perpendicular incidence

Here we will study the multilayer structure shown in figure 1. 
The total transfer matrix is given by equation  (12) and the 
Kerr angle reads

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

θ
α σ

α σ
=

−
+

+ − +

n a

b b a
Re

4

4
, where

xy

xy
K

0
2

2 2 2 (33)

( ) ( )= − ± +±a n n n ne ,kd
1 2

2i
1 2 (34)

α σ= ±± + −∓( )b a n a n2 ,xx0 1 (35)

and /ω=k n c1  is the wave number in the dielectric with 
refractive index n1 and ω is the frequency of the incident light. 
Here (in contrast to section 3.1) the upper/lower signs are only 
introduced to make the expressions more compact.

We now argue that in this setup an appropriate choice of 
substrate thickness d makes the detection of θK easier in a 
somewhat similar way as in monolayer graphene flakes where 
the visibility is enhanced [26, 27]. We again consider only the 
QAH state of bilayer graphene and calculate the dependence 
of the Kerr angle on the frequency ω and the thickness d of the 
SiO2 dielectric. The substrate is made of Si and the electro-
magnetic wave incident perpendicular to the interface comes 
from vacuum (n0  =  1). The optical Hall conductivity of the 
bilayer graphene is calculated at zero chemical potential and 
temperature (see appendix for details). The results for Kerr 
angle θK are shown in figure 4. One can see from figure 4 that 
the Kerr angle is enhanced along certain lines on the ω−d  
plane. This is a consequence of the Fabry–Perot type reso-
nance. Indeed, from equation (33) we can derive an approxi-
mate analytical expression for the resonance condition, which 
is given by =+ −b b 0, i.e. the first term in the denominator 
vanishes. Note, that the second term in the denominator is 
proportional to the square of the fine-structure constant and 
therefore it is generally a small term. Using the definitions 
of ±b  given by equation (35) the condition =+ −b b 0 leads to 

− =+ −n a n a 00
2 2

1
2 2 . This equation can be satisfied in two cases:

π
ω

= =d
c

n
N n n, if ,

1
2 0 (36)

⎜ ⎟
⎛
⎝

⎞
⎠

π
ω

= + =d
c

n
N n n n

1

2
, if ,

1
1 0 2 (37)

where N is an integer. For SiO2 layer (n1  =  1.5, see [41]) and Si 
substrate (n2  =  3.5, see [42]) the above condition =n n n1 0 2  
cannot be satisfied perfectly. Nevertheless, it is clearly seen in 

figure 4 that θK is strongly enhanced along lines where equa-
tion (37) is approximately satisfied.

As a brief summary of our findings in sections 3.1 and 3.2 
regarding the Kerr angle, the following conclusions can be 
drawn:

 (i) According to equation (30) the real part of the Hall con-
ductivity σxy for free-standing graphene can directly be 
determined by measuring the relatively large Kerr angle.

 (ii) From equation (32) it follows that the Kerr angle can be 
enhanced when the atomically thin material is placed on 
a bare substrate and the incident angle ϑ0 of the light is 
close to the Brewster angle ϑB.

 (iii) If the atomically thin material and the substrate are sepa-
rated by a dielectric slab then owing to a Fabry–Perot type 
resonance the Kerr angle can be enhanced if the frequency 
of the incident light is tuned according to equations (36) 
and (37).

3.3. Faraday effect for atomic layer on a thick substrate

In this section  we consider the same multilayer structure as 
shown in figure 1. except that the dielectric medium with refrac-
tive index n2 is replaced by vacuum. We consider that the incident 
light coming from the vacuum is perpendicular to the conducting 
sheet. Using the theory outlined in section 2 one can derive the 
following simple analytical expression for the Faraday angle

( )⎡
⎣⎢

⎤
⎦⎥

θ
σ

= −
+

−
+ −

+ −

a a

b b
Re , where

xy
F (38)

( )=± ± ∓a n ne ,kdi
1 0 (39)

( )( )σ= +±
± ∓ ∓b n n n ne ,kd

xx
i

0 1 0 1 (40)

Figure 4. The Kerr angle for a bilayer graphene sheet with a 
multilayer structure shown in figure 1 as a function of the frequency 
and the thickness d of SiO2 layer at perpendicular incidence. The 
dashed lines show the resonance conditions derived analytically in 
equation (37). The parameters: γ = 0.41  eV, η = 0.05 eV, n1  =  1.5, 
n2  =  3.5.
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and /ω=k n c1  is the wave number in the dielectric with 
refractive index n1 and ω is the frequency of the incident light. 
Here (in contrast to section 3.1) the upper/lower signs are only 
introduced to make the expressions more compact.

As in sections 3.1 and 3.2 for our numerical calculations 
we take bilayer graphene in QAH state. Figure 5 shows the 
Faraday angle θF as a function of the frequency ω and the 
thickness d of the substrate for perpendicular incidence. The 
enhancement of the Faraday angle that can be seen in figure 5 
is consequence of the local extrema of σxy as a function of 
ω (see figure A1(b) in appendix). However, this angle is still 
smaller by one order of magnitude than the maximum values 
of the Kerr angle shown in figure  4. Thus, measuring the 
Kerr angle is more suitable than the Faraday angle to explore 
whether the time reversal symmetry is broken or not in bilayer 
graphene.

4. Conclusions

In this work we developed a general and versatile approach to 
calculate the rotation of the polarization of reflected and trans-
mitted light (Kerr and Faraday effects) that is incident on mul-
tilayer systems consisting of atomically thin conducting layers 
and dielectrics. Introducing two kinds of transfer matrices as 
building blocks provides a powerful method to determine the 
transfer matrix of such multilayers in a simple and systematic 
way. From the transfer matrix we presented expressions for the 
intensity of the reflected and transmitted light, and the rotation 
angle and ellipticity of the light polarization. The expressions 
of these quantities are also applicable for oblique incidence 
of light. As an example we considered a geometrical arrange-
ment of the multilayers as shown in figure 1 and for several 
special cases we derived analytical results for the Kerr angle. 
In particular, we found that if the angle of incidence is close to 
the Brewster angle the Kerr angle is enhanced allowing easier 

detection. We would like to emphasize that these analytic 
results can be applied to any 2D conducting materials layered 
with dielectrics.

In our numerical calculations the atomically thin con-
ducting layer is taken to be a bilayer graphene using a four-
band model. The measurement of the Kerr and/or Faraday 
rotation provides a simple optical method to determine 
whether the ground state is the quantum anomalous Hall state 
characterized by spontaneously broken time-reversal sym-
metry or not [14, 15]. Our newly developed transfer matrix 
method is an efficient procedure to design such multilayer 
structures in which the Kerr angle can be enhanced. As an 
example we showed that the Kerr angle can be maximized by 
tuning the thickness of the SiO2 layer.

We believe that our work for calculating the Kerr and 
Faraday rotations can be applied to interpret and design exper-
iments on complex multilayers consisting of atomically thin 
conducting materials and dielectrics.
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Appendix. Calculation of the optical conductivity 
for gapped bilayer graphene

To calculate the optical conductivity of any 2D material we 
applied our general method developed earlier in [38]. In 
this approach we start with an arbitrary multi band system 
described by a matrix Hamiltonian in a Bloch wavefunction 
basis: ( )H kab , where = �a b N, 1, 2,  are the band indices 
(here N is the number of bands of the system). Here each 
matrix element ( )H kab  is a differentiable function of the wave 
number k corresponding to the Bloch states.

As an example we take the same four-band model of gapped 
bilayer graphene that is used by Gorbar et al in [15]. This was 
an extension of the two-band model used by Nandkishore et al 
in [14] to describe the broken symmetry in bilayer graphene at 
low energy. The 4 by 4 Hamiltonian is given by

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

ξ
ξγ

ξγ

=

∆
−∆

ξ

ξ

−

+

−

+

�

�

�

�

H

v k

v k

v k

v k

0 0

0 0

0 0

0 0

,

s

s

F

F

F 1

F 1

 (A.1)

where = ±±k k kix y, and ξ =± 1 and =±s 1 are valley and 
spin quantum numbers, respectively, while ≈v 10F

6 m s−1 is 
the Fermi velocity and γ = 0.381  eV is the strongest interlayer 
hopping. Here the most general gap reads as

ξ ξ∆ = + + ∆ + ∆ξ U sU s ,s T T (A.2)

where U, UT, ∆ and ∆T are constants related to different 
gapped ground states.

Figure 5. The Faraday angle as a function of ω and the thickness d 
for a bilayer graphene sheet placed on a substrate of refractive index 
n1  =  1.5 and at perpendicular incidence. The parameters: γ = 0.41  eV,  
η = 0.05 eV, n0  =  1.
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In general the complex optical conductivity ( )σ ωij  can be cal-
culated from the current–current correlation function ( )νΠ iij m  
using the usual analytic continuation [43] →ν ω η+�i im , and 
it is given by

( ) ( → )σ ω
ω

ν ω η= Π +
�

�
ei

i i ,ij ij m

2

2
 (A.4)

where i, j  =  x, y and η is the inverse lifetime of the particle. To 
calculate the current–current correlation function we applied 
our general method developed earlier in [38] in the usual 
bubble approximation. To this end it is useful to write the 
Hamiltonian as = ∑H E Qa a a, where ⟩⟨=| |Q a aa  are the pro-
jector operators, and Ea and ⟩|a  are the eigenenergies and the 
corresponding eigenvectors of the Hamiltonian H, and in our 
case a  =  1, 2, 3, 4. The projectors Qa satisfy the usual relation 

δ=Q Q Qa b ab a. Then the current–current correlation function 

( )νΠ iij m  with current operator = ∂
∂

J H

k
 (in units of /�e  which is 

taken into account in the expression of the conductivity) reads

( ) ( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑∑ν νΠ =

∂
∂

∂
∂V

K
H

k
Q

H

k
Qi

1
i Tr , whereij m

a b
ba m

i
a

j
b

k ,

 (A.5)

( ) ( ) ( )
ν

µ µ
ν

=
− − −
+ −

K
n E n E

E E
i

i
,ab m

a b

m a b

F F
 (A.6)

and ( ) /( )= +βn E 1 e 1E
F  is the usual Fermi distribution, and 

the trace is taken over the band indices. Note that to calculate 
the function ( )νK iab m  we have used the usual summation tech-
niques over the Matsubara’s frequencies [43]. Here we would 
like to emphasize that the projector operators Qa can be calcu-
lated without knowing the eigenvectors ⟩|a  of the Hamiltonian 
H. Indeed, let H be an ×N N hermitian matrix with ⩽s N 
distinct eigenvalues, …E E, ,a s, and then the matrix H can be 
decomposed in terms of projector matrices as = ∑H E Qa a a, 
where the projector matrix Qa for = …a s1, ,  (in the math-
ematical literature called Frobenius covariant [44]) is given by

∏=
−
−= ≠

Q
H E I

E E
,a

b b a

s
b N

a b1,
 (A.7)

where IN is the ×N N unit matrix. The proof of (A.7) is 
based on the Cayley–Hamilton theorem [44, 45]. This 
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(A.8)

The four eigenvalues of the Hamiltonian (A.1) are 
( ) ( )= ±E k E k1,2  and ( ) ( )= −E k E k3,4 2,1 , where

( )
( )

γ γ
γ= +

∆ +
±

−∆
+ +∆ξ ξ

ξ±E x x
2 4

,
s s

s
2

2
1
2

1
2 2 2

1
2 2 (A.3)

while ( )= �x v kF
2 and k is the magnitude of the wave vector 

( )= k kk ,x y .

theorem greatly simplifies the calculation of the current–cur-
rent correlation function both analytically and numerically. 
Moreover, one can avoid to evaluate the spectral function of 
the Green’s function used for example by Nicol and Carbotte 
in [39].

In particular, for Hamiltonian (A.1) we find the cor-
relation function for chemical potential µ = 0 and at zero 
temperature

where we introduced a notation for Zij
ab:

⎡

⎣
⎢

⎤

⎦
⎥∫π
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�
Z
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Q
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k
Q

1
d Tr ,ij

ab

i
a

j
b2

F
2 0

2

 (A.9)

and the integration is with respect to the polar angle ϕ of the 
wave vector ( )ϕ ϕ= kk cos , sin . Since the expressions for the 
projectors Qa are very lengthy we do not present them here. 
However, after taking the trace and performing the integration 

the expressions for Zij
ab are greatly simplified and here we list 

only the relevant Zij
ab

ξ γ γ

= = − = −

=
∆ ∆ − − −

− +
ξ ξ + −

+ − + − + −
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Z Z Z Z
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(A.10)

( )
γ ξ

= − = −
∆

−
ξ

− + −

Z Z
x

E E E

8i
,xy xy

s23 32 1
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 (A.11)
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= − = −
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,xy xy
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 (A.12)
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(A.13)

( )

( )

γ
= =
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− + −

Z Z
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4
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s23 32 1
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 (A.14)

( )

( )

γ
= =

+∆

−
ξ+

+ + −

Z Z
E x

E E E

4
.xx xx

s14 41 1
2 2 2

2 2 2 2
 (A.15)

Now inserting these expressions into (A.8) we find an ana-
lytical form for the current–current correlation function Πij at 
zero temperature. Then using equation  (A.4) we obtain the 
complex conductivity:
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[ ( )]
→ → →

σ ω =
ω η∆

e

h
lim lim lim Re

4
xy

0 0 0

2

T

 (A.18)

when the spin and valley degeneracy are taken into account.
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Figure A1. (a) The real (blue solid line) and imaginary part (red dashed line) of the longitudinal optical conductivity σxx (in units of e2/h) 
given by equation (A.16). (b) The real (blue solid line) and imaginary part (red dashed line) of the optical Hall conductivity σxy (in units of 
e2/h) calculated from equation (A.17), and the real part of σxy (gray dash–dot line) calculated from the two-band model according to [14]. In 
both panels the chemical potential and temperature are zero, and the parameters are ∆ = 1T  meV, γ = 0.41  eV, η = 0.05 eV. (Note that our 
parameter η = Γ2  used in [15].)

while ( ) ( )σ ω σ ω=yy xx  and ( ) ( )σ ω σ ω= −yx xy .
At this point the above form of the conductivity tensor is 

valid for arbitrary gap parameters U, UT, ∆ and ∆T. From 
now on we take = = ∆ =U U 0T  and for ∆T we use the same 
value as in [15]. We plotted the real and imaginary part of 
the complex longitudinal optical conductivity σxx given by 
equation (A.16) (see figure A1(a)), and the real and imaginary 
part of the complex optical Hall-conductivity σxy calculated 
from equation  (A.17) (see figure  A1(b)). Furthermore, we 
also compare our result with that obtained by Nandkishore 
and Levitov using the simplified two-band model for bilayer 
graphene [14] (see the gray dash–dot line in figure A1(b)). As 
can be seen from figure A1(b) the result from the two-band 
model agrees well with our four-band calculations.

Note that the current–current correlation function obtained 
from equation  (A.8) agrees exactly with that obtained by 
Gorbar et al using a different method [15]. However, the con-
ductivity tensor in equations (A.16) and (A.17) differs from 
that given in [15] by a factor ( )/ω η ω+ i . As can be shown 
numerically this analytic difference is relevant only at low fre-
quencies, namely for ⪅ω η.

Note that as a check of our calculation of the optical con-
ductivity it can be shown that
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