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Abstract. We investigate a two-electron double quantum dot with both spin
and valley degrees of freedom as they occur in graphene, carbon nanotubes
or silicon and regard the 16-dimensional space with one electron per dot as a
four-qubit logic space. In the spin-only case, it is well known that the exchange
coupling between the dots combined with arbitrary single-qubit operations is
sufficient for universal quantum computation. The presence of valley degeneracy
in the electronic band structure alters the form of the exchange coupling and,
in general, leads to spin–valley entanglement. Here, we show that universal
quantum computation can still be performed by exchange interaction and single-
qubit gates in the presence of an additional (valley) degree of freedom. We
present an explicit pulse sequence for a spin-only controlled-NOT consisting of
the generalized exchange coupling and single-electron spin and valley rotations.
We also propose state preparations and projective measurements with the use
of adiabatic transitions between states with (1,1) and (0,2) charge distributions
similar to the spin-only case, but with the additional requirement of controlling
the spin and valley Zeeman energies by an external magnetic field. Finally,
we demonstrate a universal two-qubit gate between a spin and a valley qubit,
allowing universal gate operations on the combined spin and valley quantum
register.
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1. Introduction

Since Loss and DiVincenzo [1] proposed quantum computing with electron spins in double
quantum dots, there has been substantial experimental progress in the field of coherent spin
manipulation in semiconductors [2–6]. The majority of these experiments have been performed
in gallium arsenide (GaAs), where the electron spin is affected by decoherence due to its
coupling to a typically large number of nuclear spins, as well as spin relaxation due to spin–orbit
coupling.

In carbon materials such as graphene or carbon nanotubes (CNTs), the hyperfine interaction
is much weaker, because 13C is the only naturally occurring carbon isotope carrying a nuclear
spin and the amount of 13C in natural carbon is merely ∼1%. Similar considerations hold
for quantum dots based on silicon (Si) and germanium (Ge), where less than 5% (8%) of all
naturally occurring Si (Ge) atoms carry a nuclear spin. In graphene, the spin–orbit coupling is
also expected to be weak [7].

However, the situation for quantum dots in graphene and CNTs compared to GaAs is
complicated by the presence of an additional orbital degree of freedom, the so-called valley
iso-spin [7, 8], with basis states |K 〉 and |K ′

〉 denoting the two inequivalent Dirac points
in the first Brillouin zone in the graphene band structure. Experimentally, spin states in
graphene quantum dots have been identified by transport measurements [9] but valley states
have not yet been observed, whereas in CNTs, a fourfold grouping of electronic states due
to spin and valley degrees of freedom has already been observed for a decade in transport
measurements [10–12]. The relaxation and dephasing times of two valley- and spin-degenerate
electrons in a CNT double quantum dot have been studied experimentally [13] by using
both transport measurements in the Pauli blockade regime [14] and pulsed-gate measurements
[15, 16].

Interestingly, the situation for quantum dots in two-dimensional silicon structures such
as Si/SiGe heterostructures or Si/metal oxide semiconductors is similar since the sixfold
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valley degeneracy in bulk silicon is partially lifted in strained systems [17, 18], giving rise
to the remaining twofold valley degeneracy. The confining potential can lead to a further
splitting of the remaining two valley states, which ultimately leads back to spin-only qubits
and operations [19]. In recent experiments with silicon-based quantum dots, coherent spin
manipulation with the exchange interaction has been performed successfully [20]. Some
control over the valley splitting has been demonstrated by conduction measurements [21].
A dependence of the valley splitting on electric fields has been predicted [22] and is a possible
reason for the different valley splittings measured in recent experiments [23, 24]. Another
material with valley degeneracy is AlAs, where the control of valley splitting by tunable
strain has been demonstrated [25, 26]. For Si [27] and graphene [8, 28, 29] as well as for
AlAs [30, 31], there have been speculations that the valley degree of freedom might serve as
an additional resource for classical or quantum information processing, i.e. as a classical bit
for valleytronics [8, 28, 30] or as a qubit [27, 29, 31]. However, the presence of an orbital
(e.g. valley) degeneracy leads to the following difficulty in quantum computing. The additional
degree of freedom modifies the form of the exchange interaction which is based on the Pauli
exclusion principle. For example, a spin triplet in the (1,1) charge configuration may not be
blocked from tunneling to a (0,2) state if the two electrons reside in different valleys. Here,
(m,n) stands for m electrons in the left and n electrons in the right quantum dot. Such a valley-
dependent spin exchange leads to spin–valley entanglement and implies that the controlled-
NOT (CNOT) gate cannot be performed in the same way as proposed in [1] as long as valley
degeneracy is present [8].

Therefore, proposals for graphene quantum dots have tried to avoid valley degeneracy [7]
by using the armchair boundary condition for quantum dots in a graphene nanoribbon [8] or
by applying a magnetic field perpendicular to the graphene sheet for quantum dots defined by
electrostatic gates [32]. In a recent proposal, Wu et al [33] suggest using only the valley degree
of freedom as a qubit and fix the spin degree of freedom by a strong in-plane magnetic field.
Also, for Si quantum dots, the possibilities of valley-only qubit manipulation are currently under
theoretical investigation [34–36].

In this paper, we consider a double quantum dot with two electrons and regard both spin
and valley degrees of freedom as potential qubits. This leads to a 16-dimensional logic space
consisting of two spin and two valley qubits (see figure 1). We show that it is possible to perform
a CNOT gate as a universal two-qubit gate exclusively on the spin or the valley qubits if the
exchange interaction and single-qubit manipulations can be implemented. For singlet–triplet
qubits the exchange interaction directly produces a CNOT gate, up to single-qubit operations.
Furthermore, we investigate how state preparation and measurements can be carried out by
adiabatically changing the asymmetry between the dots with the use of the appropriate gate
voltage control. An external magnetic field turns out to be important for both preparation and
measurement. The field allows one to break the sixfold degeneracy of the states with both
electrons in the same dot, (2,0) and (0,2), and thus allows for the selective preparation of one
such state in the initialization process. The magnetic field also selects the states that are driven
from a symmetric (1,1) back to this asymmetric (2,0) or (0,2) charge state. For quantum state
readout, the resulting charge state can then be measured with a charge detector, e.g. a nearby
quantum point contact [6]. We explain below how a projective measurement on one specific
state can be achieved by three charge measurements under different configurations of the
magnetic field or, alternatively, with a constant magnetic field and with the help of single-qubit
operations.
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Figure 1. Schematic representation of a double quantum dot formed by a
confinement potential V (x) and filled with two electrons (red dots). In the
presence of valley and spin degeneracy there are 16 states with one electron
in each dot, i.e. in the (1,1) charge configuration. In the example shown here,
the two-electron state is |s1, s2, τ1, τ2〉 = | ↑,↓, K , K ′

〉. The hopping (tunneling)
matrix element between the dots and the inter-dot bias energy are denoted by t
and ε.

This paper is organized as follows. In section 2, we introduce the model Hamiltonian
for the tunnel-coupled double quantum dot with two electrons, and derive the general form
of the exchange interaction without a magnetic field (section 2.1) and with a magnetic field
(section 2.2). Section 3 contains a pulse sequence for the CNOT gate. Our considerations and
results concerning state preparation and measurement are reported in section 4. In section 5,
we describe how a quantum register using spin and valley qubits may be constructed using
singlet–triplet qubits in two quantum dots and usual single-electron spin and valley qubits in
the other dots. Conclusions are drawn and an outlook towards possible further investigations is
given in section 6.

2. The model

We consider two electrons in a double quantum dot described by the Hamiltonian

H = H0 + HT + HB, (1)

where the two quantum dots with one orbital each are described by

H0 =
ε

2
(n̂1 − n̂2)+ U

∑
j=1,2

n̂ j(n̂ j − 1), (2)

with ε denoting the difference between the energy levels of the two dots, controllable by gate
voltages (figure 1). The additional Coulomb energy of two electrons in the same dot is denoted
by U . The number operators n̂ j ( j = 1, 2) include a sum over the spin s =↑,↓ and the valley
degree of freedom τ = ± ≡ K , K ′,

n̂ j =

∑
s,τ

ĉ†
jsτ ĉ jsτ , (3)
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where ĉ(†)j,sτ annihilates (creates) an electron in the j th quantum dot with spin and valley quantum
numbers s and τ . In the spin-only case, the Hilbert space for this model of a double quantum dot
consists of four states with a (1,1) charge distribution, one (0,2) and one (2,0) charge state [1],
where (n,m) denotes a state with n electrons in the left and m electrons in the right dot. No
further states with two electrons in one dot with a single orbital are permitted by the Pauli
principle. Including the valley degree of freedom, we end up with 16 (1,1) states, six (0,2) states
and six (2,0) states; see appendix A.

2.1. Exchange interaction

The two quantum dots are coupled by the spin- and valley-preserving hopping (tunneling),

HT = t
∑

sτ

(
ĉ†

2,sτ ĉ1,sτ + h.c.
)
, (4)

where t denotes the tunneling matrix element. We first consider the case without a magnetic
field, HB = 0, and the parameters in the regime |t | � |U ± ε| where the (1,1) charge states are
approximate eigenstates of the Hamiltonian (1). The Pauli principle implies that only those
(1,1) states are coupled to (0,2) and (2,0) states which are antisymmetric in the combined spin
and valley space. In spin space, there is one antisymmetric state for two electrons, the spin
singlet, and there are three symmetric states, the spin triplet states; for the valley space alone,
the situation is analogous. To study the symmetric and antisymmetric states in the combined spin
and valley space, we introduce vectors of Pauli matrices for the spin and valley of the electron in
the first ( j = 1) or second ( j = 2) quantum dot, as s j = (s j x , s j y, s j z)

T and τ j = (τ j x , τ j y, τ j z)
T,

and express the projection on the singlet (upper index S) and the triplet (upper index T ) sectors
as follows:

PS
spin =

1 − s1 · s2

4
, PT

spin =
s1 · s2 + 3

4
, (5)

PS
valley =

1 − τ 1 · τ 2

4
, PT

valley =
τ 1 · τ 2 + 3

4
. (6)

These operators fulfill the usual relation for projectors,
(
Pq

F

)2
= Pq

F and PS
F + PT

F = 1, where
F = spin, valley and q = S, T . The projection operator on the antisymmetric states of the
combined spin and valley space is given by Pas = PS

spin PT
valley + PT

spin PS
valley and defines the

effective low-energy Hamiltonian for the (1,1) states,

Heff = −J Pas =
J

8
((s1 · s2)(τ 1 · τ 2)+ s1 · s2 + τ 1 · τ 2 − 3). (7)

The exchange coupling J is given by J = 4t2U/(U 2
− ε2), which can be determined by a

Schrieffer–Wolff transformation on H in the same way as it is used in the spin-only case [37];
see appendix B. The eigenvalues of Heff are −J and 0 with a six and a ten-dimensional
eigenspace, respectively (see also [15]). The projection on the subspace with eigenenergy −J
is given in terms of spin and valley operators, but for the exchange coupling the origin of
the degeneracy is irrelevant. Hence, the result we obtained here holds true for any fourfold
degeneracy of the electron, provided that tunneling conserves this four-valued internal quantum
number [38].

We can consider the reduced Hilbert space of the (1,1) states belonging to Heff as a four-
qubit space with the spins in the first and the second quantum dot as the first and the second
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qubit and the valley iso-spins as qubits 3 and 4, with |↑〉 ≡ |0〉, |↓〉 ≡ |1〉, |+〉 ≡ |0〉, |−〉 ≡ |1〉.
Using the four Bell states,

|φ±〉 =
|00〉 ± |11〉

√
2

, |ψ±〉 =
|01〉 ± |10〉

√
2

, (8)

as basis states in the spin and valley space, and building a product basis,

{|φ+〉, |φ−〉, |ψ+〉, |ψ−〉}spin ⊗ {|φ+〉, |φ−〉, |ψ+〉, |ψ−〉}valley, (9)

the corresponding matrix of Heff becomes diagonal. Obviously, we can identify |ψ−〉 with the
singlet and the other three vectors with the triplet space of the spin or the valley. We call (9)
the double Bell basis.

2.2. Magnetic field

The influence of a magnetic field on the spin and the valley is given by

HB =

∑
j=1,2

hSj(n̂ j↑ − n̂ j↓)+
∑
j=1,2

hV j(n̂ j+ − n̂ j−), (10)

where the number operators are defined as n̂ js =
∑

τ ĉ†
jsτ ĉ jsτ and n̂ jτ =

∑
s ĉ†

jsτ ĉ jsτ . The
parameter hSj denotes the spin Zeeman energy in the j th quantum dot, where the spin
quantization axis is chosen along the direction of the magnetic field. The valley degeneracy in
each dot is broken by the magnetic-field component parallel to the axis of a CNT or orthogonal
to the graphene sheet. This splitting is expressed as hV j , which we refer to as the valley
Zeeman energy. It has been shown experimentally for a CNT [39] and theoretically for graphene
quantum dots [32] that the valley Zeeman splitting due to this component of the magnetic field
is much larger than the corresponding spin Zeeman splitting. On the other hand, the in-plane
components in graphene and the components orthogonal to the axis of a CNT mainly influence
the spin Zeeman energy. Therefore, the values of hSj and hV j can be set nearly independently
by an external magnetic field.

We neglect here that the magnetic fields in the dots can have different directions, which
would lead to additional avoided crossings in the spectrum of H . Under this condition, we can
still apply the Schrieffer–Wolff transformation used in [37] to obtain an effective Hamiltonian
for the 16 (1,1) states; see appendix B. We define hV = (hV 1 + hV 2)/2, hS = (hS1 + hS2)/2,
1hV = hV 1 − hV 2, and 1hS = hS1 − hS2. In the limit |t |, |1hV |, |1hS| � |U ± ε|, we find that

Heff,B =
J

8
((s1 · s2)(τ 1 · τ 2)+ s1 · s2 + τ 1 · τ 2 − 3)+

∑
j=1,2

(hSj s j z + hV jτ j z)

+
Jε

U 2 − ε2

[
τ 1 · τ 2 − 1

4
(s1z + s2z)1hS +

s1 · s2 − 1

4
(τ1z + τ2z)1hV

]
. (11)

The magnetic field might be a resource for tuning the exchange interaction, particularly in
situations where the gradient is large and the linear approximation given here is not valid (for a
more general expression, see appendix B). Nevertheless, we consider quantum gates created by
the exchange coupling without a magnetic field in the following. More precisely, we assume that
1hS and 1hV are negligible while the exchange coupling is applied. This can be achieved if J
as a function of time is tuned by varying ε. The parts of the Hamiltonian Heff,B that depend on hS

and hV commute with Heff and can therefore be regarded as single-qubit operations performed
before or after the exchange coupling is applied.
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3. Controlled-NOT gate on spin qubits

In this section, we show that it is possible to perform a CNOT gate on the spin qubits alone,

CNOTspin = CNOT ⊗ 1 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ⊗


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (12)

by applying the exchange interaction (7), supplemented with single-qubit operations on both the
spin and valley qubits. Note that in equation (12), the matrices are represented in the product
basis of the qubit states (not in the Bell basis). Because CNOT gates can be combined with
single-qubit gates to form arbitrary unitaries on any number of qubits [40, 41], our result below
implies that universal quantum computing in the subspace of the spin qubits can be realized
with the exchange interaction and single-qubit gates, despite the presence of valley degeneracy.
For an explicit construction of a CNOT gate, we define the time-evolution operator U (φ) of the
exchange interaction as

U (φ)= e−i
∫ te

0 dt ′ Heff(t ′) = 1 +
(
eiφ

− 1
)

Pas, (13)

where φ =
∫ te

0 dt ′ J (t ′) is the time-integrated exchange coupling and Heff is the exchange
Hamiltonian defined in equation (7). In the absence of valley degeneracy, e.g. τ1 = τ2 = K and
thus τ 1 · τ 2 = 1 in equation (7), the exchange interaction directly generates a

√
SWAP gate for

φ = π/2,
√

SWAP =
1 + i

2
1 +

1 − i

2
SWAP, (14)

for the spin qubits, which can be applied twice in combination with single-spin rotations to
generate CNOT [1]. Here, the SWAP gate simply exchanges the states of the two spin qubits.
While the SWAP gate itself can also be obtained from the exchange interaction, it is not
sufficient for constructing CNOT.

In the presence of valley degeneracy, a gate that interchanges the spin and valley qubits
independently can be obtained similarly as in [1], as U (±π)= SWAP ⊗ SWAP, or explicitly,
U (±π)|s1, s2, τ1, τ2〉 = |s2, s1, τ2, τ1〉. However, U (±π/2) 6=

√
SWAP ⊗

√
SWAP; instead, we

find that

U (±π/2)=
1 ± i

2
1 +

1 ∓ i

2
SWAP ⊗ SWAP. (15)

In addition to producing the required entanglement between the two spins (and between the two
valley iso-spins), this gate simultaneously also produces entanglement between the spin and the
valley. To perform CNOT on the spin (or valley) alone, we thus need a modified pulse sequence.
We find the following solution,

√
SWAPspin =

√
SWAP ⊗ 1 = ei 3π

4 (U (π/4)τ1xU (π/4)τ1z)
2
, (16)

from which we can construct a spin-only CNOT, using the result of [1],

CNOTspin = i e−i π4 s2y ei π4 (s2z−s1z)
√

SWAPspin e−i π2 s1z
√

SWAPspin ei π4 s2y , (17)

where the signs of the spin rotations about the z-axis are opposite if one uses another root of

SWAP, given as
√

SWAP
−1

spin, as in [1]. Note that
√

SWAP
−1

spin =
√

SWAP
∗

spin can be implemented
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(up to a phase) by replacing p/4 by −π/4 in equation (16). The spin y-rotations in equation (17)
implement a basis change that transforms CPHASE into the equivalent CNOT. The single-qubit
gates τ1x and τ1z in equation (16) on the first valley qubit are implemented as exp(iπ2 τ1β)= iτ1β ,
where β = x, y, z. Another possibility to write the sequence for

√
SWAPspin is

√
SWAPspin = e−i π4 U (π/4)

∏
β=x,y,z

τ1βU (π/4)τ1β, (18)

which reflects the symmetry of the gate under permutation of the Pauli matrices τ1x , τ1y and τ1z.
Note that equation (18) can easily be checked because U (φ), τ1βU (π/4)τ1β (β = x, y, z) and
√

SWAPspin are diagonal in the double Bell basis (9). Equation (17) describes a CNOT gate for
the spin qubits that does not affect the valley states. The fact that a CNOT gate exclusively on the
spin qubits can be performed as in equation (17) by using the new sequence equation (16) in a
valley-degenerate system is the first main result of this paper. By simply exchanging the single-
qubit spin and valley operators (s ↔ τ ) in the equations above, we also find a CNOT gate in
valley space which does not affect the spins. Here, we have assumed that arbitrary single-qubit
operations in spin and valley space are available. The implementation of valley rotations within
nanosecond time scales using electron valley resonance in a CNT has been proposed in [42].
Finally, we note that while full valley coherence is needed when the valley states are used as
qubits (see section 5), this is not required for the ‘valley-assisted’ spin-qubit gate

√
SWAPspin,

equation (16), and thus for CNOT, because the spin and valley operations ultimately factorize.
Even if the initial valley state is mixed, the valley iso-spin will be disentangled by the end of
the gate operation, leaving the spin qubit sector coherent. However, there is a somewhat less
stringent restriction on valley coherence: any valley qubit error (bit or phase flip) which occurs
during the gate operation can propagate into the spin sector. While we do not have sufficient
experimental data on valley coherence to determine whether this condition will be fulfilled, we
note that at least this condition is much easier to satisfy than full valley coherence. Starting
from the estimated Rabi period for electron valley resonance [42], we expect the relevant gate
operation time to be around 10 ns.

4. State preparation and measurement

Before we describe how state preparation and projective measurements can be carried out in a
valley-degenerate system, we briefly characterize the situation in the spin-only case, which has
already been explored experimentally [2, 5, 6]. In a double quantum dot without a valley degree
of freedom, the Pauli principle allows only one state with a (0,2) charge distribution. In the case
ε� U , this is the ground state of the system. Therefore, state preparation is possible by waiting
at a large value of ε until the double quantum dot relaxes to this ground state. Afterwards,
ε can be reduced to zero adiabatically which drives the system to one specific (1,1) charge
state, selected by the magnetic field (for B = 0, the spin singlet). Reading out a qubit state can
be achieved by increasing ε adiabatically, thus allowing a projective measurement on the one
specific (1,1) state that is connected to the (0,2) state, while all other states remain in a (1,1)
charge distribution. The charge distribution can then be measured with a charge sensor, e.g. a
quantum point contact.

In the presence of the valley degree of freedom, the situation is more complicated because
there are six linearly independent (0,2) states. In order to prepare the system in a well-known
initial state by a relaxation process, this sixfold degeneracy has to be lifted. This can be done
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Table 1. Charge detection in the presence of valley degeneracy. For each of the
eight different configurations of 1hS and 1hV , the letter x in the table indicates
the six basis states that make a transition to a (0,2) state if ε is adiabatically
changed from 0 to ε >U . The gray columns belong to the configurations of the
magnetic field that are used in the example in the text.

1hS > 1hV > 1hS > 0 1hS > 0 1hV > 0 1hV > 0 0>1hV 0>1hS

1hV > 0 1hS > 0 >1hV , >1hV , >1hS , >1hS , >1hS >1hV

1hS 1hS 1hV 1hV

> |1hV | < |1hV | > |1hS| < |1hS|

| ↑,↑,+,+〉

| ↑,↑,+,−〉 x x x x
| ↑,↑,−,+〉 x x x x
| ↑,↑,−,−〉

| ↑,↓,+,+〉 x x x x
| ↑,↓,+,−〉 x x x x
| ↑,↓,−,+〉 x x x x
| ↑,↓,−,−〉 x x x x
| ↓,↑,+,+〉 x x x x
| ↓,↑,+,−〉 x x x x
| ↓,↑,−,+〉 x x x x
| ↓,↑,−,−〉 x x x x
| ↓,↓,+,+〉

| ↓,↓,+,−〉 x x x x
| ↓,↓,−,+〉 x x x x
| ↓,↓,−,−〉

using the spin or valley Zeeman term, i.e. by applying a magnetic field. Measuring the charge
state after increasing the value of ε realizes a projection on a six- or a ten-dimensional subspace,
when the system goes over to a (0,2) charge state or stays in a (1,1) state, respectively. To
achieve a projective measurement on a single quantum state, several charge measurements can
be carried out in series. By applying a proper external magnetic field it is possible to influence
which states are connected to a (0,2) state by the adiabatic transition described above. Assuming
that for ε = 0 the exchange interaction J = 4t2/U is small compared to hF and 1hF with
F = S, V , the states |s1, s2, τ1, τ2〉 with s j =↑,↓ and τ j = ± are approximate eigenstates of
the Hamiltonian (1). Figure 2 shows the eigenenergies as a function of ε for the situation
1hS >1hV > 0. The six states that are converted into (0,2) states by increasing ε show a nearly
linear dependence on ε for ε >U . Which states develop into a (0,2) state depends on the signs of
1hS,1hV and |1hS| − |1hV |, giving rise to 23

= 8 different configurations to be distinguished
(table 1). In the following, we explicitly describe two procedures for implementing a projective
measurement onto one specific state.

For the first procedure, we additionally presume that the magnetic field can be changed
in order to reach different configurations for the charge measurement as given in table 1. This
means that after the first charge measurement at ε >U , which projects the state onto a six- or
a ten-dimensional subspace, and subsequently reducing ε to zero, it is possible to change the
magnetic field, perform a new adiabatic transition and make a new measurement of the charge
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Figure 2. Double-dot two-electron energy spectrum described by equation (1)
as a function of the asymmetry ε. Here, the magnetic field fulfills 1hS >

1hV > 0 and the exchange energy at ε = 0 is small compared to hF and 1hF

with F = S, V . The six darker (blue) lines indicate which states are connected
to the (0,2) space by an adiabatic transition, while the brighter (red) lines denote
states that remain in the (1,1) space even at large asymmetries. Note that the
central dark (blue) line is twofold degenerate in the limit of large ε.

distribution. We now consider the example of three charge measurements with the following
three different configurations of the magnetic field: (i) 1hS >1hV > 0; (ii) 1hS > 0>1hV ,
1hS > |1hV |; (iii)1hV > 0>1hS,1hV > |1hS|. By considering these three cases in table 1,
one finds that only the state | ↓,↑,−,+〉 belongs in all three cases to the six-dimensional
subspace corresponding to a measurement of a (0,2) charge state. Therefore, the three charge
measurements with outcome (0,2) amount to a projection on the state.
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Figure 3. Quantum register using both spin and valley qubits. The shaded area
indicates one quantum dot (number 4) occupied by one electron. Each quantum
dot is represented by two circles, one for the spin and one for the valley iso-
spin. The electrons in quantum dots 1 and 2 act as singlet–triplet (ST) qubits to
allow for universal two-qubit gates between the spin and the valley. In all other
quantum dots, we consider usual single-electron spin and valley qubits, ↑↓ and
K K ′, respectively.

For the second procedure, we use a time-independent magnetic field, for example in the
configuration 1hS >1hV > 0. Instead of changing the magnetic field, we change the state
by single-qubit operations applied when ε = 0. In our example we may apply eiπs1x/2, flipping
the first spin, after the first charge measurement and eiπs2x/2, flipping the second spin, after
the second charge measurement. The state | ↑,↑,−,+〉 is the only state that is mapped after
the first and the second spin flip to the six-dimensional subspace which corresponds to (0,2)
states after the adiabatic transition, thus measuring three times a (0,2) charge configuration is
again a projection on one specific state. If single-qubit operations for all qubits are feasible, any
|s1, s2, τ1, τ2〉 can be mapped to | ↓,↑,−,+〉 or | ↑,↑,−,+〉. Therefore, projection on any of
these 16 states can be done in this way.

5. Quantum register combining spin and valley qubits

So far, we have shown that universal two-qubit gates between spin qubits or between valley
qubits can be implemented. We now consider the situation when both the valley and the
spin serve as qubits. Note that using valley qubits in a quantum register requires valley
coherence times that are sufficiently long to allow for quantum error correction. This is a
stricter requirement than in the situation when valley operations are only needed to achieve
spin manipulation (see section 3). If both types of qubits are to be combined in the same
quantum register it is necessary to find a two-qubit gate between a spin and a valley qubit.
Here we show that this can be done using singlet–triplet qubits in the spin and valley space in
one double quantum dot. For these singlet–triplet qubits the exchange interaction leads directly
to a universal two-qubit gate, as explained in section 5.1. Then, in section 5.2, we show how to
connect these qubits to the usual single-electron spin and valley qubits. This leads effectively to
a chain of qubits where nearest neighbors are connected by universal two-qubit gates, as shown
in figure 3. If N is the number of quantum dots, the number of qubits in this register is given by
2(N − 1).
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5.1. Singlet–triplet qubits

In this subsection, we briefly investigate a different qubit implementation, in which the singlet
state |ψ−〉 ≡ |0〉 and the triplet state |ψ+〉 ≡ |1〉 (see equation (8)) in the spin and valley space are
used as the qubit basis states. Hence, we consider only a subspace of all (1,1) charge states as
the logic space. Since only one out of three triplet states is part of this logic space, the effective
Hamiltonian in the basis {|ψ−〉, |ψ+〉}spin ⊗ {|ψ−〉, |ψ+〉}valley assumes the simple diagonal form
Heff = diag(0,−J,−J, 0). Using the Makhlin invariants [43], it is now easy to show that the
unitary evolution U (π/2)= diag(1, i, i, 1) generated by this Hamiltonian is equivalent to a
CNOT gate, i.e. it equals CNOT up to single-qubit operations. Therefore, in this subspace we
are able to connect a spin and a valley qubit with a universal two-qubit gate by applying the
exchange interaction. We define σ (k)β (β = x, y, z) as the Pauli matrices in the singlet–triplet
basis for the spin (k = 1) and the valley (k = 2). Single-qubit operations can then be performed
as follows. A magnetic field gradient between the dots acts in the singlet–triplet basis as a single-
qubit rotation σ (k)x as any difference in Zeeman splitting between the first and the second spin
or valley corresponds to a rotation in the singlet–triplet basis. The gates σ (k)z can be realized by
applying the exchange interaction and valley or spin rotations as exp(iθσ (1)z )= eiθτ1xU (−2θ)τ1x

and analogously for σ (2)z by replacing τ1x with s1x . These single-qubit gates, together with the
universal two-qubit gate, allow universal quantum computing in this two-qubit space.

5.2. Two-qubit gate between a single-electron and a singlet–triplet qubit

In section 3, we have shown that any two-qubit gate can be applied between two neighboring
spin or valley qubits. We now consider three quantum dots where the spin and the valley in dots
1 and 2 are prepared in states that are linear combinations of |ψ+〉 and |ψ−〉, whereas the spin
and the valley of the third dot can be in any possible state (figure 3). To couple the single-spin
qubit in dot 3 to the singlet–triplet spin qubit in dots 1 and 2, we apply a CPHASE gate between
the spins of the electrons in the third and the second dot where the spin of the third dot is the
control qubit. The spin state of the first and the second quantum dot remains in the subspace
{|ψ+〉, |ψ−〉} after this operation. As s2z represents a change in the relative phase between spins 1
and 2, thus exchanging singlet and triplet states, it acts as a σ (1)x gate in the singlet–triplet basis;
thus this CPHASE gate between the spins is a CNOT gate in terms of the qubits if they are
defined as a usual spin-up/spin-down qubit in the third quantum dot and a singlet–triplet qubit
in the first two dots. A CNOT gate for the valley can be implemented analogously. Consequently,
any two-qubit gate between a usual single-electron and a singlet–triplet qubit can be applied.

6. Conclusions and outlook

In this paper, we have shown that in the presence of valley degeneracy, a CNOT gate on spin
qubits in a double quantum dot can be constructed from a sequence of single-qubit operations
and the exchange interaction. A CNOT gate on the valley qubits can be generated analogously.
For initialization and measurement, an inhomogeneous external magnetic field is necessary.
A projection on one specific state can be constructed from three charge measurements either
under different configurations of the magnetic field or by using single-qubit gates. We could
show that adding one double quantum dot in the singlet–triplet mode allows for a universal
quantum gate (e.g. CNOT) between a spin and a valley qubit. This connection between the spin
and the valley qubits in a quantum register implies that universal quantum computing based on
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spin and valley qubits stored in the same quantum dots is possible in principle. Nevertheless,
the realization of coherent manipulation of spin and valley qubits in carbon materials is
certainly a big challenge. An important precondition would be that the valley degree of freedom
has a sufficiently long coherence time, which is currently unknown. An alternative way to create
a spin–valley quantum register may lie in extending the singlet–triplet architecture with spin and
valley degrees of freedom beyond two qubits, e.g. along the lines of [44, 45] for spin-only qubits.

Every quantum computing approach can only be realized for sufficiently long coherence
times T2 and relaxation times T1 allowing coherent quantum gates (the latter also allowing
for high-fidelity projective measurements). At low temperatures, the electron spin relaxation
time was measured to be of the order of hours [46], the decoherence time has recently be
shown to reach 10 s [47] for isotopically enriched 28Si limited in this experiment by donor
impurities [48]. Coherent spin manipulation experiments in Si/SiGe quantum dots [20] could
already be performed showing an improvement of the dephasing time compared to GaAs. For
CNT and graphene quantum dots, theory predicts coherence times of the order of 100µs for
the natural abundance of 13C [49]. For the quantum gate schemes presented in this paper, also
the relaxation and coherence times of the valley states have to be sufficiently long (how long
depends on the specific scheme to be implemented). While the valley coherence and relaxation
times in nanotubes and graphene are to a large extent unknown, the potential sources of
decoherence are presumably the hyperfine interaction [50], atomic disorder [42], and in the case
of a dependence on an external magnetic or electric field, also the fluctuations of those fields.
A recent experiment [51] reports a lower bound of 48 ns for the valley relaxation time in Si from
a transport measurement. Possible valley relaxation processes include impurity scattering and
electron–phonon interaction. Note that the exchange interaction as the origin of two-qubit gates
in this paper works by the same mechanism as in the spin-only case. For the decoherence due
to charge fluctuations during the time that the singlet state is a mixture of (1,1) and (0,2) charge
states, the same consideration as in the spin-only case can be applied [52].

In this work, we have neglected the influence of spin–orbit interaction, although it can have
important effects on CNT quantum dots [39, 53]. It will be a very interesting task to develop
a theory for quantum computing with full orbital and spin degrees of freedom in a regime
dominated by spin–orbit coupling. Despite the proof-of-principle results provided here, there
are, obviously, some remaining open problems regarding the construction of quantum gates
with the exchange interaction with two degrees of freedom (spin and valley). It is at present not
clear whether there is a shorter sequence for the

√
SWAP gate on spin qubits than equation (16).

Also, we did not find a direct CNOT (or SWAP) gate, i.e. without the use of singlet–triplet
qubits, applied between one single-electron spin and one single-electron valley qubit, although
the exchange interaction also couples spins and valleys. Further efforts could go into finding a
simpler or even optimal gate implementation for a spin–valley qubit register. The time-evolution
operators acting on a four-qubit Hilbert space are, if we fix the irrelevant global phase, elements
of the special unitary group SU (16), which is a 162

− 1 = 255-dimensional space, whereas a
unitary operation on a two-qubit space lies in SU (4), which has only 15 dimensions, and its
two-qubit part can even be described by three real parameters [43, 54]. The sequence for the√

SWAPspin gate given in equation (16) follows from equation (18), which is relatively easy to
find as it is constructed as a product of unitary operations that are diagonal in the double Bell
basis. We now face the more general task of finding a desired quantum gate for a given sequence
of exchange interactions and single-qubit gates where the pulse lengths (gate times) are free
parameters to be determined. This can be attempted numerically by minimizing a scalar function
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that quantifies the difference between the desired gate and the gate obtained for a given set of
parameters [55]. If the desired gate is an element of SU (4)⊗ SU (4)⊂ SU (16), e.g. a two-qubit
gate between one spin and one valley iso-spin, we can quantify the deviation from this subspace
and use the Makhlin invariants to describe only the two-qubit part in both SU (4) factors. This
reduces the dimension to 231. Nonetheless, the search for quantum gates constructed with a
four-qubit interaction and single-qubit operations remains a challenging problem.
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Appendix A. Two-electron states in spin- and valley-degenerate double dots

In a quantum dot with spin and twofold valley degrees of freedom there are four possible states
if we restrict ourselves to the lowest orbital in the dot. If we consider two electrons in two
dots, i.e. two fermions in eight one-particle states, then we obtain a system with

(8
2

)
= 28 states,

where the charge configurations (1,1), (2,0) and (0,2) are possible. Note that any fermionic
state has to be antisymmetric; thus it is convenient to use the Bell states for spin and valley
as introduced in equation (8) as this basis distinguishes between antisymmetric (|ψ−〉) and
symmetric states (|ψ+〉, |φ+〉, |φ−〉). In the (1,1) charge configuration the spatial wavefunction
can be either symmetric or antisymmetric and therefore any product of a Bell state in the spin
and a Bell state in the valley degree of freedom is permitted, which leads to 16 (1,1) states.
As for (2,0) or (0,2) charge configuration, the spatial wavefunction can only be symmetric, the
product of spin and valley states has to be antisymmetric, i.e. it has to be either a product of
the antisymmetric spin singlet |ψ−〉spin and a symmetric valley state (|ψ+〉valley, |φ±〉valley) or vice
versa. This amounts to six (2,0) and six (0,2) states corresponding to two fermions in four one-
particle states,

(4
2

)
= 6. Here we provide all 28 basis states denoted by the charge configuration

and as products of Bell states for the spin and the valley degree of freedom:

(1,1)|ψ−〉spin|ψ+〉valley (2,0)|ψ−〉spin|ψ+〉valley (0,2)|ψ−〉spin|ψ+〉valley

(1,1)|ψ−〉spin|φ+〉valley (2,0)|ψ−〉spin|φ+〉valley (0,2)|ψ−〉spin|φ+〉valley

(1,1)|ψ−〉spin|φ−〉valley (2,0)|ψ−〉spin|φ−〉valley (0,2)|ψ−〉spin|φ−〉valley

(1,1)|ψ+〉spin|ψ−〉valley (2,0)|ψ+〉spin|ψ−〉valley (0,2)|ψ+〉spin|ψ−〉valley

(1,1)|φ+〉spin|ψ−〉valley (2,0)|φ+〉spin|ψ−〉valley (0,2)|φ+〉spin|ψ−〉valley

(1,1)|φ−〉spin|ψ−〉valley (2,0)|φ−〉spin|ψ−〉valley (0,2)|φ−〉spin|ψ−〉valley

(1,1)|ψ−〉spin|ψ−〉valley

(1,1)|ψ+〉spin|ψ+〉valley

(1,1)|ψ+〉spin|φ+〉valley

(1,1)|ψ+〉spin|φ−〉valley

(1,1)|φ+〉spin|ψ+〉valley

(1,1)|φ+〉spin|φ+〉valley

(1,1)|φ+〉spin|φ−〉valley

(1,1)|φ−〉spin|ψ+〉valley

(1,1)|φ−〉spin|φ+〉valley

(1,1)|φ−〉spin|φ−〉valley

(A.1)
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Appendix B. Effective Hamiltonian in the presence of a magnetic field

The Hamiltonian (1) in the presence of a magnetic field with the same direction in both dots
(see section 2.2) can be written as a 28 × 28 matrix consisting of seven independent 4 × 4
submatrices, by using the following basis set:

block 1{c†
1,↑+c†

2,↑+|0〉, c†
1,↑−

c†
2,↑−

|0〉, c†
1,↓+c†

2,↓+|0〉, c†
1,↓−

c†
2,↓−

|0〉}, (B.1)

block 2{c†
1,↑+c†

2,↑−
|0〉, c†

1,↑−
c†

2,↑+|0〉, c†
1,↑+c†

1,↑−
|0〉, c†

2,↑+c†
2,↑−

|0〉}, (B.2)

block 3{c†
1,↓+c†

2,↓−
|0〉, c†

1,↓−
c†

2,↓+|0〉, c†
1,↓+c†

1,↓−
|0〉, c†

2,↓+c†
2,↓−

|0〉}, (B.3)

block 4{c†
1,↑+c†

2,↓+|0〉, c†
1,↓+c†

2,↑+|0〉, c†
1,↑+c†

1,↓+|0〉, c†
2,↑+c†

2,↓+|0〉}, (B.4)

block 5{c†
1,↑−

c†
2,↓−

|0〉, c†
1,↓−

c†
2,↑−

|0〉, c†
1,↑−

c†
1,↓−

|0〉, c†
2,↑−

c†
2,↓−

|0〉}, (B.5)

block 6{c†
1,↑+c†

2,↓−
|0〉, c†

1,↓−
c†

2,↑+|0〉, c†
1,↑+c†

1,↓−
|0〉, c†

2,↑+c†
2,↓−

|0〉}, (B.6)

block 7{c†
1,↓+c†

2,↑−
|0〉, c†

1,↑−
c†

2,↓+|0〉, c†
1,↓+c†

1,↑−
|0〉, c†

2,↓+c†
2,↑−

|0〉}. (B.7)

We call the seven submatrices H1, . . . , H7 and find that

H1 = diag(2(hS + hV ), 2(hS − hV ), 2(hV − hS),−2(hS + hV )), (B.8)

which is not affected by the exchange interaction as block 1 only contains triplet states, and

H j = C14 +


A 0 t t
0 −A −t −t
t −t U + B 0
t −t 0 U − B

 , (B.9)

with

j = 2 : A =1hV , B = ε +1hS,C = 2hS;

j = 3 : A =1hV , B = ε−1hS,C = −2hS;

j = 4 : A =1hS, B = ε +1hV ,C = 2hV ;

j = 5 : A =1hS, B = ε−1hV ,C = −2hV ;

j = 6 : A =1hV +1hS, B = ε,C = 0;

j = 7 : A =1hV −1hS, B = ε,C = 0.

A simple unitary transformation,

W =
1

√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 (B.10)

leads to the matrix form

W H j W
†
=


0 A 0 0
A 0 2t 0
0 2t U B
0 0 B U

 + C14 ( j = 2, . . . , 7), (B.11)
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where the 2 × 2 block in the upper left corner affects only (1,1), while those in the lower right
corner affect only (2,0) and (0,2) charge states. These blocks are the part H ( j)

0 + H ( j)
B of the

Hamiltonian (1) where j = 2, . . . , 7. The rest of the Hamiltonian, H ( j)
T , which describes the

hopping, couples the subspaces which are symmetric and asymmetric in charge. Hamiltonians
written in such a matrix form occur already in the spin-only case and have been considered
in [37], where a Schrieffer–Wolff transformation is used to derive an effective Hamiltonian for
the sixteen (1,1) states. When we omit the index j for better readability, the Schrieffer–Wolff
transformation can be written as H̃ = e−SW H W † eS

≈ H0 + HB + [HT , S]/2 with S = −S† and
[H0 + HB, S] = −HT . The approximation holds for |t | � |U ± B|. We can use the result of [37]
and find that H̃ is in lowest order given by two independent 2 × 2 matrices. The matrix
describing the subspace with nearly (1,1) charge distribution has the form(

0 Ã
Ã − J̃

)
+ C12, (B.12)

with

J̃ =
4t2U (U 2

− B2
− A2)

U 4 + B4 + A4 − 2U 2 B2 − 2U 2 B2 − 2B2 A2
(B.13)

and

Ã = A

(
1 −

J (U 2 + B2
− A2)

4U (U 2 − B2 − A2)

)
. (B.14)

In the case of small gradients in the magnetic field and thus small differences in Zeeman splitting
between the dots, we can expand these terms and find in lowest order of1hV and1hS (the index
refers again to the blocks in the basis set)

J̃ 2/3 ≈
4t2U

U 2 − ε2
±

8t2Uε

(U 2 − ε2)2
1hS = J

(
1 ±

2ε1hS

U 2 − ε2

)
, (B.15)

J̃ 4/5 ≈
4t2U

U 2 − ε2
±

8t2Uε

(U 2 − ε2)2
1hV = J

(
1 ±

2ε1hV

U 2 − ε2

)
, (B.16)

J̃ 6/7 ≈
4t2U

U 2 − ε2
= J, (B.17)

and Ã ≈ A. Expressed with the Pauli matrices for the spin and the valley, this gives the effective
Hamiltonian of equation (11) for the states which have approximately (1,1) charge distribution.

Note that we did not use the double Bell basis (see section 2.1) in this appendix as this
does not provide the matrix form of the Hamiltonian with independent 4 × 4 submatrices in
the presence of a magnetic field. Without a magnetic field the result for the splitting due to
exchange interaction is J̃ = 4t2U/(U 2

− ε2)= J for all blocks 2, . . . , 7. In this case, the double
Bell basis can be obtained by linear combinations of the basis vectors used here only within the
degenerate six- and ten-dimensional subspaces. Therefore, the effective Hamiltonian is diagonal
in the double Bell basis if no magnetic field is applied.
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