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Fluctuating parametric drive of coupled classical oscillators can simulate dissipative qubits
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We investigate a system composed of two coupled oscillators subject to stochastic fluctuations in its internal
parameters. In particular, we answer the question whether the well-known classical analogy of the quantum
dynamics of two-level systems (TLSs), i.e., qubits, provided by two coupled oscillators can be extended to
simulate the dynamics of dissipative quantum systems. In the context of nanomechanics, the analogy in the
dissipation-free case has already been tested in multiple experimental setups, e.g., doubly clamped or cantilever
string resonators and optically levitated particles. A well-known result of this classical analogy is that the
relaxation and decoherence times of the analog quantum system must be equal, i.e., T1 = T2, in contrast to
the general case of quantum TLSs. We show that this fundamentally quantum feature, i.e., T1 �= T2, can be
implemented as well in the aforementioned classical systems by adding stochastic fluctuations in their internal
parameters. Moreover, we show that these stochastic contributions can be engineered in the control apparatus of
those systems, discussing, in particular, the application of this theory to levitated nanoparticles and to nanostring
resonators.
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I. INTRODUCTION

Enquiries on quantum-classical analogies have attracted
much interest [1–5], and it is well established that the dynam-
ics of a quantum N-level system described by Schrödinger’s
equation can be simulated by classical systems, e.g., coupled
classical harmonic oscillators [6–14]. To date, several papers
have outlined that this similarity between the two dynamics
leads to the observation of purely quantum-mechanical effects
in classical systems, e.g., Rabi oscillations [6,15,16], Landau-
Zener transitions [17], and also Stückelberg interferometry
[12,18–20]. Quite surprisingly, some of these effects have
been reported also in macroscopic systems [14], pushing this
analogy even out to the macroscopic world. As a consequence,
classical coupled oscillators constitute the simplest platform
to study how a classical system can mimic quantum dynamics.

Mechanics was indeed the first playground of physics.
Nowadays, it is, maybe surprisingly, still investigated in the
modern quest for the nanoscale miniaturization of physical
devices [21,22]. An astounding degree of control has been
achieved in mechanical systems over the past years [23–26].
This has fostered the hope [27,28] to reach mesoscopic quan-
tum superposition of massive objects and to study quantum
effects of gravity in the laboratory [25,29,30] with the aim
of uncovering some of the elusive aspects of the quantum-
classical border [28,31].
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This work is meant to give some new insights about the
quantum-classical analogy, drawing from the aforementioned
mapping of quantum evolution by means of classical oscil-
lators. In particular, we address the issue of the trivial form
of the relaxation term [9,12,15,16] in the Schrödinger equa-
tion for the simulated quantum two-level system (TLS), i.e.,
the fact that all the components of the Bloch vector (BV)
decay with the same characteristic time. It is well known,
instead, that in the quantum case there are two relaxation
times, the longitudinal T1 and the transverse T2. These are
linked to the relaxation of the populations and of the co-
herences of the TLS state. Furthermore, they are related by
the equation T −1

2 = (2T1)−1 + T −1
φ , which also defines the

phase relaxation time Tφ [32]. Our aim is to show how
noise can induce dissipation mechanisms with such quantum
features, which were not grasped by the previous classical
model. The addition of stochastic fluctuations and the solution
of the associated Langevin dynamics [33] adds quantumness
to the system, meaning that it provides the phenomenology of
this model with a pure phase relaxation time, dependent on
the noise strength.

The quantum phase is the defining concept of quantum me-
chanics, giving rise to quantum superpositions, interference
phenomena, and many-body entanglement. The perturbation
of microscopic quantum systems leads to the loss of phase
coherence, and, on a macroscopic scale, the emergence of our
classical reality. Decoherence is then a detrimental aspect for
quantum information systems [32]. However, the interaction
of quantum systems with the external degrees of freedom
of the environment is unavoidable. The attempt to suppress
the coupling between the system and environment has been
complemented with the modeling of the effects of these inter-
actions on the reduced system dynamics. While an accurate
model can be achieved in simple systems, the computational
complexity scales exponentially with the system size. To cope

2643-1564/2024/6(1)/013284(10) 013284-1 Published by the American Physical Society

https://orcid.org/0000-0001-7756-5542
https://orcid.org/0000-0001-9053-2200
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.013284&domain=pdf&date_stamp=2024-03-14
https://doi.org/10.1103/PhysRevResearch.6.013284
https://creativecommons.org/licenses/by/4.0/


LORENZO BERNAZZANI AND GUIDO BURKARD PHYSICAL REVIEW RESEARCH 6, 013284 (2024)

k1(t) h k2(t)
x1, m x2, m

f(t)

FIG. 1. Schematics of the classical-mechanical model under con-
sideration. Two masses m are connected through a spring with the
time-independent spring constant h, and each of them is connected
to the neighboring wall by springs with time-dependent spring con-
stants k1(t ) and k2(t ), with k2(t ) − k1(t ) = �k(t ) . We also include
friction by means of a damping coefficient γ equal for both masses.
Moreover, we include an external driving force f (t ). This external
driving has the purpose of initially feeding energy into the system
that is then driven parametrically [26,40] via the modulation of the
spring constants.

with this, simulation of dissipation is a valuable tool [34]. The
common approach consists in adding classical noise to the
analog system. In this way the open-quantum system, that one
is interested in simulating, is mapped onto another system,
more controllable, the dynamics of which is proven to be
analog. Our work also follows this direction by providing a
very simple classical analog system in which aspects of quan-
tum dissipation can be simulated and even visualized [14].
The approach to analog simulation of quantum dissipation via
classical noise has a precedent in the context of many-body
quantum systems [35], and the relation between classical and
quantum noise in open systems dynamics has been thoroughly
investigated and described [36–38]. The novelty of this pa-
per lies in the fact that the system is completely classical.
Therefore it constitutes a furthest simplification of the afore-
mentioned results that, moreover, can be readily tested in the
laboratory.

II. THE CLASSICAL TWO-LEVEL ATOM

Let us start from a system of coupled classical-mechanical
oscillators consisting of two bodies with equal mass m con-
nected with springs to each other and to the adjacent fixed
walls, as depicted in Fig. 1. This system is described by the
following linear coupled classical equations of motion for the
positions x1 and x2 of the two masses,

mẍ1 + mγ ẋ1 +
[

k − �k(t )

2

]
x1 + h(x1 − x2) = f (t ), (1)

mẍ2 + mγ ẋ2 +
[

k + �k(t )

2

]
x2 + h(x2 − x1) = 0, (2)

where we assumed that the masses m and the damping coeffi-
cient γ of the two oscillators are equal for convenience. The
time-dependent spring constants k1,2(t ) = k ∓ �k(t )/2 here
account for the parametric driving mechanism that we are go-
ing to discuss extensively later. The (linear) coupling between
the two oscillators is given by h. The inhomogeneous term on
the right-hand side of the first equation describes the effect of
an external time-dependent deterministic or fluctuating force.
This term has the purpose of injecting energy into the system
by displacing the oscillator x1 from its equilibrium position.
We discuss later what happens when we let the system evolve
once it has been initialized in a certain state. Therefore, in

the following we consider the time evolution of the system
after the initial time t = 0 at which the inhomogeneous force
stops. In the rest of the paper, then, we set the inhomogeneous
term f (t ) = 0. Nonetheless, since we have introduced friction
through the γ coefficient, it would generally be the case that
a fluctuating force of thermal origin will also appear in δ f (t ).
For simplicity, we delegate the treatment of the more general
case δ f (t ) �= 0 to Appendix A. In any case, the suppression of
this thermal noise term can be accomplished with little effort
in real systems by lowering the temperature of the thermal
bath or by using feedback mechanisms [23,24,39].

Following Ref. [9], let us now divide Eq. (2) by m and
introduce the quantities ω2

0 ≡ k+h
m , �2

c ≡ h
m , �2

d (t ) ≡ �k(t )
2m .

After this relabeling we can rewrite Eq. (2) in the following
matrix form:(

d2

dt2
+ γ

d

dt
+ ω2

0

)[
x1

x2

]
+

[−�2
d −�2

c

−�2
c �2

d

][
x1

x2

]
=

[
0

0

]
.

(3)

Assuming that the oscillators are not overdamped, we are now
going to make the ansatz x1,2(t ) = Re[ψ1,2(t ) eiω0t ]. Basically
this consists in factorizing the oscillation into an oscillating
component at the carrier frequency ω0 times an amplitude
modulation ψ1,2(t ). If we make the further assumption that
the envelope ψ1,2 is a slowly varying function of time, we can
drop the second derivative in our equations of motion. This
has been called the slowly varying envelope approximation
(SVEA) [9]. Furthermore, we assumed γ � ω0 [9,12], which
is typically the case in state-of-the-art micro/nanomechanics
since γ = ω0/Q, where Q is the quality factor, which usually
varies between 103 and 106 for most of the systems of interest
[23]. These modifications lead to a matrix equation for the
complex valued amplitudes alone, written in a vectorial form,
i.e., utilizing the vector ψ = [ ψ1, ψ2 ]

T
,

iψ̇ = H(t )ψ − i
γ

2
ψ = 1

2
[�σx + ε(t )σz]ψ − i

γ

2
ψ, (4)

where � ≡ �2
c/ω0 and ε ≡ �2

d/ω0. In the absence of friction
γ = 0, the two-component-amplitude equation (4) is an anal-
ogy of the Schrödinger equation for a driven TLS (taken with
h̄ = 1) [41].

It is customary now to introduce a harmonic form for
the driving term, and we will specifically use ε(t ) = ε0 +
D cos ωt . It has already been shown that this parametric
driving induces a coherent dynamics that is quite faithfully
resembling a quantum TLS. In fact, we could introduce either
density matrix or Bloch vector (BV) equivalent representa-
tions [42–44], with the definitions

ρ =
[ |ψ1|2 ψ∗

1 ψ2

ψ∗
2 ψ1 |ψ2|2

]
, r =

⎡
⎢⎢⎣

ψ∗
1 ψ2 + ψ∗

2 ψ1

i(ψ∗
2 ψ1 − ψ∗

1 ψ2)

|ψ2|2 − |ψ1|2

⎤
⎥⎥⎦. (5)

It must be noted, however, that in the general case, neither ψ

or ρ have modulus or trace equal to 1 nor is the dynamical
map of Eq. (4) trace preserving. The modulus or trace of the
state would be dependent on the energy fed into the system
by the inhomogeneous driving f (t ) for t < 0. From the point
t = 0 onward anyway, the only source of damping of energy
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(probability in the quantum analogy) will be the non-
Hermitian trivial part of the Hamiltonian. We are going to get
rid of this part in the next section by a simple coordinate trans-
formation. The Hamiltonian with γ = 0 is conservative in
the classical language and Hermitian in the quantum analogy;
therefore that part is energy/trace conserving. Notwithstand-
ing these caveats, we call our ψ and ρ states nonetheless.

Since the Hamiltonian in Eq. (4) can be written in the form
H(t ) = B(t ) · σ, this quantum classical analogy leads to the
so-called classical Bloch equations (BEs) [9], i.e.,

ṙ = B(t ) × r − γ r. (6)

Here B(t ) = [ �, 0, ε(t ) ]
T

is the magnetic field vector, and
its modulus, B, is the angular velocity with which the Bloch
vector precesses. In a magnetic resonance description this
describes the Larmor precession of a spin with Bloch vector r
around a magnetic field along B.

The resemblance of quantum dynamics shown by Eq. (6)
is striking considered that they have been derived by purely
classical means. However, there is one evident issue in these
equations, which makes the classical simulation less faithful,
i.e., that the relaxation terms are not equal to the general
relaxation present, e.g., in dissipative spin dynamics. More
precisely, we know from the theory of either light-matter
interaction or magnetic resonance that the components of the
BV relax with two characteristic times [32,43,44]: T2 is the
relaxation time of the x and y components of the BV, and
hence the ones containing the coherences, while T1 is the re-
laxation time for the z component, related to level populations
in the quantum language. In the following we will explain
how this hallmark quantum feature can be implemented in the
aforementioned analogy.

III. FLUCTUATIONS IN THE DRIVE

We make a change of coordinates to go into the diabatic
basis, i.e., ψ ′ = [ψ+

ψ−] ≡ exp( iθ
2 σy)[ψ1

ψ2
]. After this rotation by

the angle θ = arctan [�/ε0], the Schrödinger equation takes
the form

iψ̇ ′ = 1

2

[
�σz + ε0

�
ε′(t )σz − �

�
ε′(t )σx

]
ψ ′ − i

γ

2
ψ ′, (7)

where ε′(t ) = D cos(ωt ) and � =
√

ε2
0 + �2. It is also use-

ful to renormalize the state vector in order to get rid of the
trivial decay with rate γ /2 and thus to ensure a normalized
state vector, as customarily required by the quantum analogy.
Therefore we rename ψ± → Nψ ′

± e−γ t/2, where N [E (0)]

depends on E (0) = ∫ 0
−∞ f (t )ẋ1(t ) dt , i.e., the energy fed into

the system before our simulation has started.
Our aim is to add fluctuations to the dynamics of the

coupled oscillators system. We accomplish this by adding a
stochastic term to the driving. Along this route, we write the
driving term ε(t ) with an additive Langevin force (which actu-
ally is a multiplicative noise term for the stochastics problem
[45], since it multiplies a random variable):

ε′(t ) = D cos (ωt ) + d (t ). (8)

Here, d has the dimension of a frequency. We consider for
the noise term a stationary and Gaussian Ornstein-Uhlenbeck
process [33,45,46] such that

〈d (t )〉 = 0, 〈d (0)d (t )〉 = G

τc
exp

(
− |t |

τc

)
,

where G is the noise strength.
Therefore we have to solve the following coupled stochas-

tic differential equations [47],

iψ̇ = [H0 + H1(t )]ψ

= 1

2

[
�σz + D cos (ωt ) + d (t )

�
(ε0σz − �σx )

]
ψ, (9)

where H0 = 1
2�σz, and H1(t ) = Hd (t ) + Hs(t ) contains the

time-dependent parts of the Hamiltonian, both deterministic
Hd (t ) ∝ cos(ωt ) and stochastic Hs(t ) ∝ d (t ). In order to
solve this system of stochastic equations, we rely on the cumu-
lant expansion method. This method was pioneered by Kubo
[48] and then refined by others [49–55]. These tools have
been applied to magnetic resonance in molecular samples
[56]. The extension to colored noise with correlations between
the longitudinal and transverse component will be particularly
useful [57,58].

The aforementioned stochastic formalism allows one to
replace the full stochastic differential equation with a differ-
ential equation for the averages of the stochastic variables,
or of their higher moments. Since we are interested in the
motion of the BV, we will need the second moments of ψ±.
This leads us straightforwardly to the stochastic analog of the
BE. Since we need to get to an equation of motion for the
average of the BV, this will contain the second moments of
the stochastic variables ψ±. The effective density matrix, with
obvious changes from Eq. (5), is now ρ(t ) = ∑

± ψ∗
i ψ j |i〉〈 j|.

A. Magnetic resonance analogy

Now we are going to exploit the formal analogy between
Eq. (6) and the equations of magnetic resonance of a single
spin in radio-frequency magnetic spectroscopy. This theory
is outlined in Refs. [44,56–61]. It has been lately applied
to studies of decoherence problems in qubits [62–64]. The
approach goes as follows. From Eq. (4) we can write a von
Neumann equation for the density matrix defined above, i.e.,
iρ̇(t ) = [H(t ), ρ(t )] = L(t )ρ(t ). Switching to the interaction
picture, we get rid of the deterministic part of the Hamilto-
nian for the time being. Thus we set ρ ′(t ) = U†(t )ρ(t )U(t ) ,
H′(t ) = H′

s(t ), where Hs(t ) is the stochastic-only part of the
starting Hamiltonian [see Eq. (9)] and U(t ) is defined by
dU(t )

dt = −i〈H(t )〉U(t ) with U(0) = 1 [44]. The previous equa-
tion then becomes [65]

iρ̇ ′(t ) = L′(t )ρ ′(t ) = [H′
s(t ), ρ ′(t )]. (10)

Now we seek a solution by iteration [47,54] and write

ρ ′(t ) = ρ(0) − i
∫ t

0
L′(t1)ρ(0)dt1 (11)

−
∫ t

0

∫ t1

0
L′(t1)L′(t2)ρ ′(t2)dt1dt2. (12)
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Going on like this, we get to [47,54]

ρ ′(t ) = Y (t |0)ρ(0) ⇒ 〈ρ ′(t )〉 = 〈Y (t |0)〉ρ(0), (13)

since ρ(0) = ρ ′(0) is not random, and where we
have introduced the nonlocal kernel Y (t |0) = 1 +∑+∞

n=1(−i)n
∫ · · · ∫ L′(t1) . . .L′(tn)dt1 . . . dtn. Differentiating

and assuming that 〈Y (t |0)〉 is invertible, then

〈ρ̇ ′(t )〉 = 〈Ẏ (t |0)〉ρ(0) = 〈Ẏ (t |0)〉〈Y (t |0)〉−1〈ρ ′(t )〉, (14)

where K′(t ) ≡ 〈Ẏ (t |0)〉〈Y (t |0)〉−1 is a nonstochastic su-
peroperator by construction, since it connects averaged
quantities. We expand K′(t ) in orders of G and truncate this
series at the second order. Utilizing 〈Ls(t )〉 = 0, we see that
the cumulants indeed simplify to the moments of Ls(t ):

〈ρ̇ ′(t )〉 = KII(t )〈ρ ′(t )〉,

KII(t ) = −
∫ t

0
dt ′〈L′

s(t )L′
s(t − t ′)〉. (15)

This is equivalent to the Born approximation in open quantum
systems. For that to be a good approximation it is sufficient
that |Ls(t )|τc � 1, since this is the relative error between
successive orders. The above requirement is equivalent to
demanding that the timescales of the noise and of the deter-
ministic evolution are well separated, i.e., that 〈L(t )〉 varies
significantly on a timescale which is much slower than the
noise memory time. Therefore we will say that the truncated
series is a coarse-grained description of the full dynamics of
ρ(t ).

Since the timescales are well separated and the noise
spectrum exponentially decays, we can extend the limit of
integration to +∞; therefore we can see that our expansion
is in fact an expansion in Gτc � 1, since τc is the width of the
interval where the integrand gives an important contribution.
The extension of the integration interval leads to

〈ρ̇ ′(t )〉 = KII(+∞)〈ρ ′(t )〉

= −
∫ +∞

0
dt ′〈L′

s(t )L′
s(t − t ′)〉〈ρ ′(t )〉. (16)

This is the Markov approximation of our non-Markovian pro-
cess. We then arrive at

〈ρ̇(t )〉 = −i[〈H(t )〉, 〈ρ(t )〉]

−
∫ +∞

0
〈[Hs(t ), [U†(t − t ′, t )Hs(t − t ′)

× U(t − t ′, t ), 〈ρ(t )〉]]〉dt ′, (17)

where U(t − t ′, t ) ≡ U(t − t ′)U†(t ). We approximate U(t −
t ′, t ) with exp (iH0 t ′), which is justified if Dτc � 1 [44]. That
basically means that in the relaxation term of the second-order
cumulant equation, the time evolution operator is U(t ) =
exp(−iH0t ) (to show this it is sufficient to plug in t ′ = t in the
previous relation and invert). This procedure is customary in
radio-frequency magnetic resonance in liquids and is usually
called the nonviscous-liquid approximation [44]. To compute

the relaxation times we will make use of [44]

〈ρ̇(t )〉 + i[〈H(t )〉, 〈ρ(t )〉]

≈ −
∫ +∞

0
〈[Hs(t ), [e−iH0t ′

Hs(t − t ′)eiH0t ′
, 〈ρ(t )〉]]〉dt ′

= − e−iH0t
∫ +∞

0
dt ′〈[H∗

s (t ), [H∗
s (t − t ′), 〈ρ∗(t )〉]]〉eiH0t

≈ U(t )〈ρ̇ ′(t )〉U†(t ). (18)

This basically means that 〈ρ̇ ′(t )〉(t ) ≈ 〈ρ̇∗(t )〉(t ) if we
remember to sum the correct first-order term when
we turn back to the Schrödinger picture. Therefore
our approximation is equivalent to assuming KII(+∞) ≈
− ∫ +∞

0 dt ′〈L∗
s (t )L∗

s (t − t ′)〉 (please note that this expression
still depends on t) in Eq. (15), the superoperator L∗

s =
[eiH0t Hs(t )e−iH0t , ◦ ] being

L∗
s (t ) = d (t )

2�
{ε0[σz, ◦ ] − �e−i�t [σ+, ◦ ] − �ei�t [σ−, ◦ ]}.

(19)

Now we split the density matrix in its spin components
{σz, σ+, σ−}, i.e., r = Tr[ρS(t)σ] = Tr[ρH(0)σ(t)].

The equation of motion for rα (t ) with α = +,−, 0, where
we renamed rz as r0, is then (averages of these components are
intended, but we do not write them to ease the notation)

2�2 ṙ′
+(t ) = − [

2ε2
0k0 + �2k−

]
r′
+

+ �2k+e−i2�t r′
− − 2�ε0k+e−i�t r′

0, (20)

2�2 ṙ′
−(t ) = − [

2ε2
0k0 + �2k+

]
r′
−

+ �2k−ei2�t r′
+ − 2�ε0k−ei�t r′

0, (21)

2�2 ṙ′
0(t ) = − �2[k− + k+]r′

0

− �ε0k0ei�t r′
+ − �ε0k0e−i�t r′

−. (22)

Here we wrote kα = ∫ +∞
0 〈d (t )d (t − t ′)〉eiα�τ dt ′ = G ×

1+iα�τc
α2�2τ 2

c +1 , and ∓ is a shorthand for {−1, 1}, thus α ∈
{−1, 0, 1}. Furthermore, we dropped the subscript of ε0. We
now rename these terms using Redfield’s notation [59]:

〈ṙ′
α (t )〉 = −

∑
β

exp[i(β − α)�t]Rα,β 〈r′
β (t )〉. (23)

Now Eqs. (20)–(23) can be solved perturbatively after
Laplace-transforming them. In this way we finally obtain the
relaxation times and the Lamb’s shift δ�, in closed form.
These are found to be

T −1
1 = R0,0 − 2 Re

( R0,+R+,0

i� + R+,+

)
, (24)

T −1
2 = Re

(
R+,+ + R0,+R+,0

i� − R0,0

)
, (25)

δ� = Im

(
R+,+ + R0,+R+,0

i� − R0,0

)
− |R+,−|2

2�
. (26)

013284-4



FLUCTUATING PARAMETRIC DRIVE OF COUPLED … PHYSICAL REVIEW RESEARCH 6, 013284 (2024)

FIG. 2. Decay of the polarization r′
z = Tr(σzρ ) of the Bloch

vector (orange), and of the coherences Re(r′
+) = Tr(σ+ρ ) (purple),

for ε0 = 1.5�, G = 0.5�. Solid lines are the plot of the numerical
solution to the Redfield equation (23). Dashed colored lines pic-
ture the exponential decay with times given by Eqs. (24) and (25)
[r′

i (0) = ri(0)]. Dotted gray and black lines represent the correspond-
ing plot, neglecting the oscillating terms on the right-hand side of
Eq. (20) (secular approximation). (a) Correlated noise, Gτc = 0.25,
and (b) white noise limit, Gτc = 0.

These results agree with those reported by Refs. [57,58].
Here, the Ri, j constants are given by

R0,0 = G �2

�2
(
1 + �2τ 2

c

) , (27)

R0,+ = G �ε0

2�2
, (28)

R+,0 = G �ε0(1 + i�τc)

�2
(
1 + �2τ 2

c

) , (29)

R+,+ = G

2

[
2ε2

0

�2
+ �2(1 − i�τc)

�2
(
1 + �2τ 2

c

)]
, (30)

R+,− = −G �2(1 + i�τc)

2�2
(
1 + �2τ 2

c

) . (31)

Now, substituting these results into Eqs. (24)–(26), we see
that correlations turn out to be fourth-order corrections in
those expressions for the relaxation times and the frequency
shift. In Appendix B we show that the fourth-order term of the
cumulant expansion (15) is vanishing due to the Gaussianity
of the noise process and its zero average. In Fig. 2 we plot
Re[r′

+] (purple) and r′
z (orange) in the interaction picture as a

function of time. The solid lines in the plot are the numerical
solution of Eq. (20), while the dashed exponentials are the
result of the perturbative solution given by Eqs. (24) and (25).
The gray and black dotted lines are the solution obtained by
discarding the correlations from the beginning, or by applying

FIG. 3. Trajectory of the BV on the unit Bloch sphere for differ-

ent initial conditions, i.e., r(0) = [1/
√

3, 1/
√

3, 1/
√

3]
T

(purple),

r(0) = [1/
√

2, 1/
√

2, 0]
T

(yellow), and r(0) = [0, 0, −1]
T

(blue).
Both are plotted in the case of resonant driving ω = � and for
(a) G = 0.3�, D = 0.5�, and �τc = 0.5, and (b) G = 0.3�, D =
�, and τc = 0. All BV trajectories decay to the infinite-temperature
state at the center of the Bloch sphere.

the secular approximation to Eq. (23). We must stress also
that these plots do not show the common exponential decay
arising from the friction-induced damping that we dropped
passing from Eq. (7) to Eq. (9). Theoretically, the only con-
straints we have on the noise parameter are the ones imposed
by the condition of validity of the cumulant expansion, i.e.,
Gτc � 1 [47], and of the nonviscous liquid approximation
Dτc � 1[44]. Obviously, these parameters need to be fine
tuned in experimental realizations Sec. IV, also to account for
other timescales that can be relevant in those physical systems.

Equations (24), (25), and (23) imply that T −1
2 �= (2T1)−1,

the difference amounting to the pure dephasing rate,

T −1
φ = (T2)−1 − (2T1)−1 ≈ Gε2

0

�2
+ G2�2ε2

0τc

�4
(
1 + �2τ 2

c

) , (32)

where we neglected R0,0 and R+,+ in the denominator of
Eqs. (24) and (25), since they lead to corrections of higher
order in G. This analytically approximate result and the graphs
of Fig. 2 showing exponential decay with different charac-
teristic times demonstrate that the addition of noise to the
parametric driving of this coupled classical oscillator sys-
tem induces a dephasing dynamics, resolving the problem of
equal relaxation times pointed out in the previous models by
Refs. [9,12]. It is evident from the formula (32) above that the
dephasing rate vanishes for ε0 = 0. We discuss the possibility
for measurement of this dephasing time briefly in Sec. IV.

In Fig. 3 we show the BV dynamics on the unit Bloch
sphere. These are plotted using Eq. (20) after transforming
to the laboratory frame (x, y, z) and to the Schrödinger pic-
ture. Both panels represent the time evolution of the BV for
the resonantly driven TLS. The three different initial con-
ditions give rise to three trajectories on the sphere: r(0) =
[1/

√
3, 1/

√
3, 1/

√
3]

T
(purple), r(0) = [1/

√
2, 1/

√
2, 0]

T

(yellow), r(0) = [0, 0, −1]
T

(blue). Figure 3(a) shows the
system subject to noise with a memory time Gτc = 0.15 and
Fig. 3(b) for memoryless noise, i.e., Gτc = 0.

B. Why infinite temperature?

It has already been shown by Kubo [66] that the stationary
states of systems governed by stochastic Hamiltonians are

013284-5



LORENZO BERNAZZANI AND GUIDO BURKARD PHYSICAL REVIEW RESEARCH 6, 013284 (2024)

the infinite-temperature states, i.e., ρ (t → +∞) ∝ 1. As is
evident from Fig. 3, the BV of our system always collapses to
the center of the sphere, i.e., the infinite-temperature state, so
the previous result applies here as well. Hereafter, we explain
why this is the case for our system, following [37].

We recast the Redfield equation in a Kossakowski-
Lindblad form [67,68]. Since we have seen in this section that
the oscillating terms do not give an important contribution to
the decay of the BV, we ignore those terms here, therefore
applying a secular approximation. The resulting master equa-
tion, under the Born-Markov approximation from Eqs. (15)
and (19), is then

〈ρ̇ ′(t )〉 = KII(t )〈ρ ′(t )〉

≈ − G2

4�2

(
ε2

0k0[σz, [σz, 〈ρ ′〉]] + �2k+[σ+, [σ−, 〈ρ ′〉]]
+ �2k−[σ−, [σ+, 〈ρ ′〉]]). (33)

Then we transform back to the Schrödinger picture and apply
the secular approximation:

〈ρ̇〉 ≈ − i[〈H〉, 〈ρ〉] − G2

4�2

[
2ε2

0k0(〈ρ〉 − σz〈ρ〉σz )

+ �2Re(k+)(〈ρ〉 − 2σ+〈ρ〉σ− − 2σ−〈ρ〉σ+)

+ i�2Im(k+)[σz, 〈ρ〉]]. (34)

Here, the first term in the square brackets describes dephas-
ing, while the second term leads to quantum jumps, and
the third term is the Lamb shift. Now since the rates for
upward and downward transitions are the same, i.e., γ± =
G2�2Re(k+)/2�2, we can ascribe an infinite effective tem-
perature to the system, since we do not have detailed balance
[37,69]. Clearly this is not a true temperature, since we do not
describe a thermal bath with which the system can thermalize.
Nonetheless, it is a nontrivial consequence of our model and
indeed an interesting limit of the discussed quantum-classical
analogy.

IV. PROPOSALS FOR EXPERIMENTAL TESTS

We now briefly analyze some experimental setups in which
the discussed quantum analog could be implemented. Among
the many possible experimental test beds, we chose levitated
nanoparticles and nanomechanical string resonators, since
these systems are currently attracting much interest thanks to
the great degree of control and isolation from the environment
that they guarantee [25,28,70,71]. Nonetheless, a realization
with macroscopic setups could also be within reach [14],
favoring the possibility of a macroscopic quantum analogy of
unprecedented depth.

A. Levitated nanoparticles

In levitation experiments dielectric particles are trapped in
the focus of a laser beam using radiation pressure. The har-
monic modes of oscillation are the center-of-mass coordinate
of the particle, with the equilibrium position being the focus of
the laser. The oscillation along the laser beam can be frozen
so that the motion is effectively restricted to the two modes
belonging to the focal plane. The two modes have different

eigenfrequencies due to the polarization of the laser, which
creates an elliptically shaped potential well. These modes can
be coupled by harmonically varying the polarization direction
of the trapping laser [10,16]. Therefore, periodically varying
the polarization angle according to θ = δ cos(ωt + ϕ) realizes
a parametric driving of the coupled oscillator system. When
the frequency of this harmonic driving is in resonance with
the mode splitting, the strong-coupling regime can be reached
and Rabi oscillations can be implemented in which the energy
can be exchanged coherently between the modes.

Stochastic terms in the parametric drive can be engi-
neered utilizing, for instance, laser intensity fluctuations [24].
Nonetheless, in order to obtain a dephasing dynamics in our
system, it is essential to have an offset parameter such as ε0

in Eq. (9) that shifts the working point of the system slightly
off the center of the avoided crossing. This makes the driving
term appear as θ = δ cos(ωt + ϕ) + δ0, with δ0 ∼ δ. Thus
one needs to be able to induce some asymmetry between the
mode eigenfrequencies independently of the coupling/driving
mechanism. Otherwise, a shift of the polarization angle of the
trapping laser in this system will only lead to a redefinition
of the mode frequencies. However, in these systems the mode
eigenfrequency is defined by the polarization of the laser [72].
Therefore we think that in this setup the effect described here
cannot be observed. We cannot exclude that more complicated
configurations exist in which this mode frequency asymmetry
can be adiabatically tuned, independently from the driving.
In this way, taking Eq. (8) from Ref. [16], we can map it to
an equation similar to ours by the coordinate transformation
[a′
b′] = exp(i θ

2 σy)[a
b], where θ = arctan(δ0/ωδ ).

B. Nanomechanical string resonators

Considering nanoscale string resonators, we propose ex-
ploiting the dielectric protocols for coupling and driving
the in-plane and out-of-plane modes of a nanomechanical
doubly clamped beam [15,17,18,20,73–75]. On the other
hand, similar physics can be implemented in nanomechan-
ical systems with a piezoelectrical driving setup [76–78].
Considering a doubly clamped string resonator, we have
that the two modes (in-plane and out-of-plane) have differ-
ent eigenfrequencies, that is, k1 �= k2, due to the rectangular
cross section. The oscillations of these two modes will be
driven dielectrically. The parametric driving term can be writ-
ten as �k ≈ − ε0(εd −1)

2π
α2LF (x)[V 2

dc + 2VdcVac(t )] = C[V 2
dc +

2VdcA cos(ωt )] [74], where ε0 and εd are the dielectric per-
mittivity of vacuum and of the dielectric composing the beam
(e.g., SiN), L is the total length of the beam, α is the attenu-
ation parameter of the electric field inside the dielectric, and
F (x) depends on the geometry of the device. In this way the
system is governed by equations of motion completely analo-
gous to Eq. (2), where, in the language of Ref. [15], the force
f (t ) is the radio-frequency drive that initializes the system, h
is the coupling provided by the cross derivatives of the electric
field generated by the gold electrodes, and ω1 = √

2k1/m and
ω2 = √

2k2/m are the frequencies of the in-plane and out-of-
plane modes, where m is the total mass of the beam. In our
language then ε0 ≈ C(Vdc − V0)2 is proportional to the dc part
of the voltage driving, where V0 is the voltage corresponding
to the center of the level splitting, and ε′(t ) is given by the ac
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part CA(Vdc − V0)Vac cos(ωt ). In this way the coupled modes
of these nanomechanical string resonators are described by the
same equations that we used, and we think they can simulate
the dephasing dynamics here described.

V. CONCLUSIONS

We showed how the analogy between classical coupled
oscillators and quantum TLS can be extended to include a
decoherent dynamics of the TLS. We computed the relax-
ation times for BV components and demonstrated that a pure
dephasing Tφ [Eq. (32)] time appears in the TLS dynamics
as a consequence of the addition of noise to the parametric
driving of the classical system. This analogy can be exploited
to effectively simulate or probe quantum decoherence dy-
namics and dissipation via classical means, resulting in an
effective simulation of decoherence. However, the simulation
in its present form cannot grasp decay processes such as
spontaneous emission. Another drawback of the model here
presented is that it scales exponentially with respect to the
size of the corresponding quantum image. In fact, to simulate
a collection of N qubits, 2N coupled classical oscillators are
required [4]. This poses obvious limitations on the practical
utility of this approach.

Simulation of open-quantum-system dynamics by addition
of classical noise to analog, more controllable, physical sys-
tem has spurred much interest lately [35,37]. In particular,
Ref. [37] studied how classical noise can mimic quantum
dissipation and derived very clear analogies between the two
frameworks, considering, for instance, the spin-boson prob-
lem. In a more complicated framework, Ref. [35] studied how
a wide class of master equations for many-body systems can
be simulated in easily controllable systems subject to classical
noise. Our analysis constitutes a simplification of these earlier
attempts, since it does not require any quantum system at all,
therefore enabling a purely classical simulation of quantum
dissipation problems, that in principle can be implemented
in systems even beyond the nanoscale. Some other dissipa-
tive phenomena, e.g., spontaneous emission, are still out of
reach for these kinds of simulation due to fundamental issues
[36,37]. Also, in the system discussed here, the equality be-
tween the upward and downward transition rate in Eq. (34)
withholds the possibility to simulate spontaneous decay
processes.

Notably, the system investigated here can be valuable also
for frequency noise detection in the aforementioned mechan-
ical systems. Usually, this kind of noise is hard to investigate
because of the interplay of the thermal fluctuations. However,
we see that in the system treated here these fluctuations are
fully decoupled from the frequency noise and do not affect the
relaxation times that we found (see Appendix A). Therefore
one could measure frequency noise features from the expected
decay times.
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APPENDIX A: NONHOMOGENEOUS FORCING CASE

We now analyze what happens considering the full case,
i.e., the one with inhomogeneous forcing. We will be as-
suming that in this case Eq. (4) can be easily modified by
adding a vector with two noisy complex components, i.e.,
f (t ) = [ f1(t ) f2(t ) ]T . This is not too far from the treatment
of Ref. [9], even if we should also account for the nonsta-
tionarity of the time factors introduced by the SVEA, that
we will nonetheless neglect for simplicity. Therefore we will
consider f1,2(t ) as a noise realization of a stationary Gaussian
process. Let us consider then the larger vectorial (let us call
it a combined Hilbert-Liouvillean) space, where the following
vector lives:

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ1

ψ2

ψ∗
1 ψ1

ψ∗
1 ψ2

ψ∗
2 ψ1

ψ∗
2 ψ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

So that we can treat everything on the same foot. Assuming
that both D and G are small parameters with respect to � =√

�2 + ε2
0 , the dynamics of this large vector can be described

in the following way [79]:

〈�̇(t )〉 =K(t )〈�(t )〉

=
[

K(t ) ∅2×4

F4×2(t ) K(t )

]
〈�(t )〉

+
[

〈 f (t )〉∫
dt ′〈 f̃ (t )eit ′H0 f (t − t ′)〉

]
, (A1)

where the minor K(t ) is an operator that governs the time
evolution of the second moments in the Liouvillean space.
This is the analog of Eq. (15). Considering the nonhomoge-
neous term of the equation above (A1) (that is, the sextuple
at the end of the right-hand side), we readily see that the first
two entries vanish if this external noise has zero average. The
remaining four entries (or rows) constitute a nonhomogeneous
driving term that can pump the populations and the coher-
ences, depending on the cross- and self-correlations of f1 and
f2. Nonetheless, this term cannot lead to an exponential decay
of the coherences.

Let us now focus on the lower left block. This is a 4 × 2
matrix with the following form:

F (t ) = 〈 f̃ (t )〉 = 〈 f ∗(t ) ⊗ 12 + 12 ⊗ f (t )〉

=
[〈 f ∗

1 (t )〉12

〈 f ∗
2 (t )〉12

]
+

[
0 〈 f (t )〉

〈 f (t )〉 0

]

=

⎡
⎢⎢⎢⎢⎣

〈 f ∗
1 〉 〈 f1〉
0 〈 f ∗

1 + f2〉
〈 f ∗

2 + f1〉 0

〈 f2〉 〈 f ∗
2 〉

⎤
⎥⎥⎥⎥⎦.
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Note that if 〈 f 〉 = 0, i.e., if the fluctuation has zero aver-
age, that is the case considered in the main text, then the
super-superoperator is

K(t ) =
[

K(t ) ∅2×4

∅4×2 K(t )

]
, (A2)

and notably, the dynamics of vector � factorizes Eq. (A1) into
the dynamics restricted to the two subspaces. In other words,
if � ∈ V then V ′

1 ≡ span{e1, e2} and V ′
2 ≡ span{e3, e4, e5, e6}

are subspaces of V = V ′
1 ⊗ V ′

2 preserved by the dynamics.
It is useful then to decompose the space V as a direct
product V = V1 ⊗ V2, where V1 ≡ span{e1, e2} and V2 ≡ span
{e1, e2, e3, e4}. The space V2 is the tetradic space. Now the
equation restricted to subspace V1 is just the equation for
the mean values of the stochastic variables, i.e., our state
vector, which we will write making use of the cumulant
expansion,

〈ψ̇〉 = K(t )〈ψ〉, (A3)

where

K(t ) = − i〈H(t )〉

−
∫ +∞

0
〈〈H1(t ) eit ′H0 H1(t − t ′)〉〉 e−it ′H0 dt ′, (A4)

and where 〈〈◦〉〉 is the cumulant. Here the cumulant sign
is actually important because the perturbation is H1(t ) =
D cos (ωt )+d (t )

2�
(ε0σz − �σx ) with 〈H1(t )〉 �= 0.

The dynamics in V2 space is described by the following
dynamic operator:

K(t ) = − i〈L(t )〉

−
∫ +∞

0
〈〈L1(t ) eit ′L0L1(t − t ′)〉〉 e−it ′L0 dt ′, (A5)

where L1(t ) = Ld (t ) + Ls(t ). This is the analog of Eq. (15)
[47]. We can show that in the perturbative regime, this dynam-
ics actually reduces to the previous result (18) by considering
that the deterministic part of the driving cancels in the cumu-
lants. To see this, let us expand the cumulant as

〈〈L1(t ) eit ′L0L1(t − t ′)〉〉
= 〈L1(t ) eit ′L0L1(t − t ′)〉 − 〈L1(t )〉 〈eit ′L0L1(t − t ′)〉,

(A6)

which follows from the definition of the cumulant and the fact
that eit ′L0 is nonstochastic. Now we write L1(t ) = Ld (t ) +
Ls(t ), where 〈Ls(t )〉 = 0, which yields

〈〈L1(t ) eit ′L0L1(t − t ′)〉〉 = 〈Ls(t ) eit ′L0Ls(t − t ′)〉, (A7)

since the terms containing the deterministic driving part in the
right-hand side cancel with each other. With this we have for
the second-order cumulant expansion,

K(t ) = −i〈L(t )〉 − 1

4�2

⎡
⎢⎢⎢⎢⎣

�2(k+ + k−) −2�ε0k0 −2�ε0k0 −�2(k+ + k−)

−2�ε0k+ 2�2k− + 4ε2
0k0 2�2k+ 2�ε0k+

−2�ε0k− −2�ε0k− 2�2k− + 4ε2
0k0 2�ε0k−

−�2(k+ + k−) 2�ε0k0 2�ε0k0 �2(k+ + k−)

⎤
⎥⎥⎥⎥⎦, (A8)

with no dependence on the driving in the dissipator.

Note that in this way we cannot be assured that the higher
orders vanish because the perturbation has a nonzero stochas-
tic average. However, if we take their expressions from [50],
we can see by inspection that third- and fourth-order terms
vanish nonetheless.

APPENDIX B: FOURTH-ORDER CALCULATION

To obtain the correction due to the correlations, we should
then complement our analysis by a fourth-order expansion of
Eq. (14, thus refining our coarse-grain description by another
order. Since the noise is Gaussian and stationary, odd orders in
the perturbation Hs vanish. Using again the nonviscous liquid

approximation we get

KIV(+∞) ≈
∫∫∫ +∞

0
dt1dt2dt3[〈L∗

s (t )L∗
s (t1)L∗

s (t2)L∗
s (t3)〉

− 〈L∗
s (t )L∗

s (t1)〉〈L∗
s (t2)L∗

s (t3)〉
− 〈L∗

s (t )L∗
s (t2)〉〈L∗

s (t1)L∗
s (t3)〉

− 〈L∗
s (t )L∗

s (t3)〉〈L∗
s (t1)L∗

s (t2)〉]. (B1)

However, the time dependence of Ls(t ) = (t )
�

[ε0σz − �σx, ◦]
is restricted to the noise realization, which is the only part
relevant for the integral. Nonetheless, since the process is
Gaussian, 〈(t )(t1)(t2)(t3)〉 = 〈(t )(t1)〉〈(t2)(t3)〉 +
〈(t )(t2)〉〈(t1)(t3)〉 + 〈(t )(t3)〉〈(t1)(t2)〉, and the
operator part is all commuting, we find that the fourth-order
contribution vanishes altogether.
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