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Analysis and mitigation of residual exchange coupling in linear spin-qubit arrays
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In recent advancements of quantum computing utilizing spin qubits, it has been demonstrated that this platform
possesses the potential for implementing two-qubit gates with fidelities exceeding 99.5%. However, as with other
qubit platforms, it is not feasible to completely turn qubit couplings off. This study aims to investigate the impact
of coherent error matrices in gate set tomography by employing a double quantum dot. We evaluate the infidelity
caused by residual exchange between spins and compare various mitigation approaches, including the use of
adjusted timing through simple drives, considering different parameter settings in the presence of charge noise.
Furthermore, we extend our analysis to larger arrays of exchange-coupled spin qubits to provide an estimation
of the expected fidelity. In particular, we demonstrate the influence of residual exchange on a single-qubit Y gate
and the native two-qubit SWAP gate in a linear chain. Our findings emphasize the significance of accounting for
residual exchange when scaling up spin-qubit devices and highlight the tradeoff between the effects of charge
noise and residual exchange in mitigation techniques.
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I. INTRODUCTION

Spin qubits [1,2] have emerged as a promising platform for
quantum information processing due to their long coherence
times and gate performance [3–5]. Electrostatically formed
quantum dots in Si- and Ge-based heterostructures hosting
a single spin of an electron or a hole show potential scal-
ability [6,7]. All of the requirements for spin manipulation
have been fulfilled, such as electrical control of spin states
with intrinsic or extrinsic spin-orbit coupling, and gate volt-
age control of nearest-neighbor exchange coupling. However,
only a finite on-off ratio of the exchange interaction is ex-
perimentally feasible, since the voltage has to be tuned rather
high on short time scales and leaves the issue of residual ex-
change in qubit devices of several kHz [3,8,9]. The fidelity of
quantum gates is limited in the presence of residual exchange
interaction and suffers from correlated errors [10,11]. These
errors can represent a rather significant issue for quantum
error correction [12,13] and thus deserve particular attention.

In our analysis we assume electron spin qubits in silicon;
however, for small residual exchange in a strong magnetic
field this analysis should be applicable to other spin-qubit plat-
forms as well. We consider the effects of residual exchange on
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idling qubits, as well as single-qubit and two-qubit gates. We
calculate gate fidelities and error generators, and then propose
ways to mitigate the effects of residual exchange coupling. As
a starting point we investigate a double quantum dot (DQD)
and find optimal driving times and mitigation schemes for the
case of two qubits, which can similarly be employed to edge
qubits in spin-qubit arrays with one-sided residual exchange.
We further extend the description to a linear array of spins and
expand previous studies on fixed or residual exchange cou-
plings [14–16]. We provide a parameter-dependent estimate
for the fidelity of single-qubit operations with two residual
exchange couplings to nearest-neighboring spins.

This paper is organized as follows: In Sec. II we investigate
the DQD case, and discuss mitigation schemes to overcome
residual ZZ coupling for a nondriven (Sec. II A) and driven
(Sec. II B) DQD with one and two drives. In Sec. III we
extend the description to linear spin-qubit arrays. We cover
the identity, ZZ , and CZ operations in Sec. III A and calculate
the fidelity of Y gates in Sec. III B. Finally, we also show
the impact of residual exchange in a native SWAP gate in
comparison to the impact of the finite magnetic gradient field
in Sec. III C.

II. DOUBLE QUANTUM DOT WITH ALWAYS-ON
EXCHANGE

First we investigate a DQD in the (1,1) charge regime expe-
riencing residual exchange using the two-qubit Hamiltonian

H = J (t )
(
SL · SR − 1/4

)+ SL · BL + SR · BR, (1)

with the tunable exchange interaction J (t ) between spins SL

and SR, and the magnetic field Bα = (0, Bα
y (t ), Bα

z ) at the
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FIG. 1. (a) Double quantum dot setup, where L and R label
the left and right spin, respectively, and J denotes the exchange
coupling between the two spins. A gradient of Bz across the ar-
ray enables individual addressing and the gradient of By,0 along
the z direction in the quantum dots enables electrical control of
the spin via an effective magnetic driving field BL

y,1 and BR
y,2.

(b) Two-dimensional spin-qubit array with nearest-neighbor ex-
change interaction. (c) One-dimensional spin chain with residual
exchange when, e.g., driving a single qubit k or performing a
CPHASE or a SWAP operation on qubits k + 3 and k + 4. The
time evolution of a linear qubit array with residual exchange can be
separated into the time evolution of the operating qubits and nearest
neighbors (black and gray boxes) and ZZ interactions of all other
qubit pairs.

position of spin Sα , where α ∈ {L, R} [see Fig. 1(a)]. In ad-
dition to the homogeneous magnetic field, a gradient field
in the z direction enables individual addressing of the left
and right sites of the DQD, Bα

z = Bz + bα
z . In the y direction,

a static gradient field and oscillating plunger gate voltages
cause oscillating effective magnetic fields at the quantum
dots Bα

y (t ) = Bα
y,0 + Bα

y,1 cos(ω1t + φ1) + Bα
y,2 cos(ω2t + φ2).

Here, ω1 = BL
z and ω2 = BR

z are the resonance frequencies
on the left and right qubits, respectively. We define �Bz =
BR

z − BL
z , �By = BR

y,2 − BL
y,1, and Ey = BR

y,2 + BL
y,1.

A. Residual exchange without a drive

We first consider the idle evolution, i.e., Bα
y,1 = Bα

y,2 =
0. In the rotating frame H̃ (t ) = R†HR + iṘ†R with R =
exp[−it (BL

z SL
z + BR

z SR
z )] we can find a time-independent

Hamiltonian in the rotating wave approximation (RWA) with
Bα

y,0 � Bα
z and J � 2�Bz leading to the time evolution

U0(t ) = 1
2

(
1 + ei

∫
J
2 dt
)
II + 1

2

(
1 − ei

∫
J
2 dt
)
ZZ, (2)

which equals a CPHASE gate up to a global phase fac-
tor and single-qubit rotations [17]. Using the formula F =
(d + |Tr[U †

idealUactual]|2)/d (d + 1) for the fidelity of a unitary
gate U with respect to the target gate Uideal in d = 4 dimen-
sions [18], we find for the idle operation, FII = [1 + |1 +
exp(i

∫
Jdt/2)|2]/5. With constant exchange, J = const., we

obtain the idle gate after waiting a time τII = 4nπ/J and a
ZZ gate after waiting a time τZZ = 2(2n + 1)π/J , of which
we make use in the next section. Here, we work in the rotating
frame of the interaction picture with respect to the resonance
frequencies of the noninteracting Hamiltonian (J = 0). We
also derive a time evolution in which J � 2�Bz does not
hold in Appendix A, explaining gate set tomography (GST)
results with additional Hamiltonian errors other than ZZ and
II . However, for always-on residual exchange the change of
rotating frames between operations is not trivial and makes
timing of pulses important. We stay in the rotating frame
of eigenfrequencies of the noninteracting Hamiltonian and
restrict ourselves to J � 2�Bz for the remainder of this work,
which coincides with the operating regime of most recent
experiments.

B. Driven qubits with residual exchange

To perform single-qubit gates we resonantly drive both
qubits via the terms Bα

y,1 cos(ω1t + φ1) and Bα
y,2 cos(ω2t +

φ2), with ω1 = BL
z and ω2 = BR

z , as depicted in Fig. 1(a).
In the rotating frame with R = exp[−it (BL

z SL
z + BR

z SR
z )] the

Hamiltonian can be approximated in the RWA in the standard
basis {|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉} as

H̃ = 1

4

⎛
⎜⎜⎜⎜⎝

0 −ie−iφ2 BR
y,2 −ie−iφ1 BL

y,1 0

ieiφ2 BR
y,2 −2J 0 −ie−iφ1 BL

y,1

ieiφ1 BL
y,1 0 −2J −ie−iφ2 BR

y,2

0 ieiφ1 BL
y,1 ieiφ2 BR

y,2 0

⎞
⎟⎟⎟⎟⎠, (3)

where we assume J � 2�Bz, Bα
y,2 � �Bz, and Bα

y,1 � 2Bα
z .

The corresponding time evolution is given in Eq. (A3) in
Appendix A. In the case of Y gates, i.e., φ1 = φ2 = 0, we
obtain

U (t ) = ei J
4 t

2
[−i(Ey f + − �By f −)Y I

− i(Ey f + + �By f −)IY

+ iJ ( f + − f −)XX + (g+ − g−)YY

− iJ ( f + + f −)ZZ + (g+ + g−)II], (4)

where the full time dependence is contained in the functions

f ± = 1

�±
y

sin

(
�±

y

4
t

)
, g± = cos

(
�±

y

4
t

)
, (5)

and we define �+
y =

√
E2

y + J2 and �−
y =

√
�B2

y + J2 . Fig-
ure 2 shows the coefficients of Eq. (4) for a drive, i.e., a Y
gate, on the right qubit. Analogously, when setting φ1 = φ2 =
π/2 we obtain the time evolution for the XX gate. The time
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FIG. 2. Driven Y gate on the right qubit with residual exchange. (a) Absolute values of coefficients in Eq. (4) with Bz,1 = 20 GHz, Bz,2 =
20.2 GHz, BL

y,1 = 0 MHz, BR
y,1 = 2 MHz, and J = 200 kHz. The gray dotted vertical lines correspond to the conventional driving times

τ = 2π/BR
y,1 for a Y gate and the red dotted line corresponds to a π/2 rotation around the y axis. The numerical results perfectly match the

analytical approximation in our calculation. (b) Pauli transfer matrix (PTM) and (c) error generator matrix for a π/2 rotation around the y axis.

evolution for the gates Y X and XY are obtained by setting the
respective values for φ1 and φ2.

1. Drive on a single qubit

To describe the IY gate we only include one drive Bα
y,2

and set the other drive Bα
y,1 = 0. We obtain the time evolution

operator in Eq. (A4) of Appendix A. After the driving time
τIY = 2π (2n + 1)/�2, where �2 = �+

y |Bα
y,1=0 = �−

y |Bα
y,1=0 =√

(BR
y,2)2 + J2 and n ∈ Z, the time evolution results in

U2(τIY ) = (−1)n+1iei π (2n+1)J
2�2

(
BR

y,2

�2
IY + J

�2
ZZ

)
, (6)

which consists of the desired IY gate and an additional ZZ
term. The appearance of the undesired ZZ contribution can
be mitigated by choosing J small compared to BR

y,2, which
remains a hardware optimization problem.

To show the limitations of the fidelity for a single-qubit
gate IX , XI , IY , or Y I we calculate the upper bound given by
(d + Trabs[UactualU

†
ideal])/[d (d + 1)] as defined in Appendix B

and choose Uideal = IY . Since the expression is invariant un-
der diagonal matrix operations, one could equally choose
Uideal = IX instead. We find an upper bound for the fidelity
of an IY gate to be

FIY �
(
1 + 4

∣∣BR
y,2

/
�2

∣∣2)/5, (7)

which can be achieved by optimizing the pulse time. Since
|�By| � |�−

y | and |Ey| � |�+
y |, the limiting fidelity is deter-

mined by J .
To give an example that can be compared to experimen-

tal observations of residual exchange, we calculate the Pauli
transfer matrix PTM = Tr[σ j
(σi )] for a π/2 rotation around
the y axis with 
(σi ) = UσiU −1 and the error generator
log(PTM−1

idealPTMactual ) resulting from solely coherent errors
and show the results in Figs. 2(b) and 2(c). The driving time
for this gate corresponds to the red dotted vertical line in
Fig. 2(a). The PTM of an ideal Yπ/2 gate consists of the large
bars along the diagonal shown in Fig. 2(b). Here, however, we
obtain finite coefficients in the off-diagonals, i.e., at {IX, ZY },
{IY, ZX }, {IY, ZZ}, etc., which are due to the residual ex-
change. The blue bars indicate negative values while red
bars are positive coefficients. The error generator shown in
Fig. 2(c) compares the ideal and actual PTM. In experiments,

coherent and stochastic errors can be extracted from the error
generator using GST [19,20]. Here, the error generator only
consists of the Hamiltonian projection, i.e., coherent errors,
since we do not consider any noise effects.

On the other hand, if a single qubit is driven for a
time 2τIY = 4πn/�2, then the time evolution results in
a perfect identity gate up to a global phase, U (2τIY ) =
i(−1)n exp[inπJ/(�2)]II . This way the II gate does not suffer
from an additional ZZ term. Thus, when driving one qubit
during the waiting time between operations and readout, the
system is protected from incorporating unwanted ZZ terms.
We compare the performance of the drive-induced II gate to
the discussed case of no drive in Appendix E with respect to
corrections to the RWA. For large driving fields BR

y,2, crosstalk
effects from residual driving BL

y,2 on the left qubit become
relevant. Using synchronization [21–23] and smooth pulse
protocols [14,24], one can compensate crosstalk errors during
gate operations.

2. Error mitigation for single-qubit gates

We have shown that one-shot single-qubit gates of type IX ,
XI , IY , or Y I cannot be ideally implemented with residual
exchange. Although a sequence including ideal z rotations
could mitigate residual ZZ terms, note that IZ and ZI rotations
are obtained by incorporating the respective phase into the
drive and thus leave the residual ZZ term after the sequence
(see Appendix C for more details). However, when applying
U2(τIY ) twice in a row [see Eq. (C4) for full time evolution]
and choosing the residual exchange for the second shot equal
to the first one J̃ = J , but driving with a π -phase shift for the
second unitary, such that B̃R

y,2 = −BR
y,2, we can write

Ũ2(τ̃IY )U2(τIY ) = − (−1)n+ñ

�2
2

ei π (n+ñ+1)J
�2

× {[−(BR
y,2

)2 + J2
]
II + i

(−2BR
y,2J

)
ZX

}
,

(8)

with n, ñ ∈ Z. If J = BR
y,2 the II term disappears and the re-

maining ZX term can be used to compose IY = (ZZ )(ZX ) =
eiϕU0(τZZ )Ũ2(τ̃IY )U2(τIY ) up to a global phase ϕ using U0 as
described in Sec. II A. The same procedure is possible with
different combinations of phases φ1 and φ2. To demonstrate
the validity for this application, we calculate and compare the
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FIG. 3. Realizations of a single-qubit Y gate. Driving time (up-
per plot) and numerical infidelity (lower plot) for the single-drive
(blue) and the multidrive IY gate via the auxiliary ZX (red), as a
function of the exchange J in a DQD. Single-drive gate U2(τIY ) as
in Eq. (6) with BR

y,2 = 10 MHz and 100 MHz (blue) is compared
to the mitigation sequence Eq. (8) (red) when quasi-static Gaussian
charge noise with standard deviation σJ = 0.01J is present. Lines
in light color show the noise-free behavior with a slope determined
by the validity of the approximations made (BR

y,2, J � �Bz). The
horizontal dashed gray line gives the result for the infidelity due to
Gaussian noise with σJ = 0.01J within the RWA. For the numeri-
cal calculations the following parameters were used: BL

z = 20 GHz,
BR

z = 20.2 GHz, BL
y,0 = 0.1 MHz, BR

y,0 = 0 MHz.

numerical infidelity of a single drive as in Eq. (6) for driving
amplitudes BR

y,2 = 10, 100 MHz (blue) and the ZX composed
as in Eq. (8) (red) for increasing exchange value (with BR

y,2 =
J) in Fig. 3. The upper plot shows the corresponding driving
times. The light-colored lines represent the numerical result
without noise, while the dark colors show the performance
in the presence of quasi-static Gaussian charge noise on the
exchange value J with standard deviation σJ = 0.01J .The
flattening of the dark blue curve towards low exchange values
is explained by corrections due to the RWA (J � �Bz), and
the constant offset for the noisy ZX case (gray dashed line)
is determined by the ratio σJ/J as discussed in Appendix D.
The slope of the blue curves is well described by the analytic
expression in Eq. (7). The slope of the red curves, however,
arise due to corrections to the RWA used to obtain Eq. (3).
We find that despite the longer driving time, the mitigation
technique composing a ZX gate performs better than the sin-
gle drive with low driving amplitude BR

y,2. Further calculations
indicate that if including fluctuations of the drive amplitude
due to charge noise, this advantage is still present.

Note that in gate set tomography (GST) usually X and
Y gates refer to a π/2 rotation, i.e., IXπ/2 = exp(iσxπ/4) =
(IX + II )/

√
2 and IYπ/2 = exp(iσyπ/4) = (IY + II )/

√
2. To

obtain the respective gates one can adapt the values of J , �By,

and Ey such that a certain part of the identity II remains
in the Hamiltonian. As an explicit example we can obtain
IYπ/2 = (ZZ )(ZX + ZZ )/

√
2 = eiϕU0(τZZ )Ũ2(τ̃ )U2(τ ) with

global phase ϕ, where τ̃ = τ = 4[arccot(B2/�2) + nπ ]/�2,
n ∈ Z, and J̃ = J , B̃y = By, and J = √

2By.

3. Drive on both qubits

To perform the YY gate we consider Eq. (4). Here, we find
cosine functions for the YY and II terms and sine functions for
all other contributions. If we require the driving time τYY to
be τYY = 4πn/�+

y and simultaneously τYY = 4πm/�−
y , i.e.,

4πn/�+
y = 4πm/�−

y , with integers n and m, then we find the
condition

J =
√

m2E2
y − n2�B2

y

n2 − m2
. (9)

Inserting Eq. (9) into the time evolution in Eq. (4) leads to

U (τYY ) = 1
2 e

i nπJ
�+

y {[(−1)n − (−1)m]YY

+ [(−1)n + (−1)m]II}. (10)

For n m even, i.e., (−1)n = (−1)m, the time evolution results
in the identity operation with a global phase factor and also
provides a cancellation of the ZZ terms which arise without a
drive. However, for n m odd, i.e., (−1)n = −(−1)m, we obtain
an ideal YY gate with an overall global phase factor. The same
arguments hold for the XX , Y X , and XY gates. The robustness
of this gate in the presence of charge noise is similar to the
behavior of the ZX gate in Fig. 3. Hence, the overall slope
again determines the validity of the RWA and the amount of
noise sets the level to which the fidelity saturates and thus the
validity of the protocol compared to the naive implementation.

III. LINEAR QUBIT ARRAYS WITH RESIDUAL
EXCHANGE

So far we have only considered the performance of a DQD
with residual exchange. However, when scaling up spin-qubit
devices, a finite exchange between neighboring spins will
be present. Therefore, we consider a chain of N qubits in a
magnetic gradient field, in which only nearest neighbors 〈i, j〉
are connected by exchange Ji j as in Fig. 1(c). We note that
next-nearest-neighbor interactions are small compared to the
already small residual nearest-neighbor interaction [25]. We
write the Hamiltonian as

H (t ) =
N∑

〈i, j〉
Ji j (t )(S(i) · S( j) − 1/4) +

N∑
i=1

S(i) · B(i), (11)

with the magnetic field B(i) = [0, B(i)
y (t ), B(i)

z ] at the position
of spin S(i), where i, j ∈ {1, . . . , N}. We have a homogeneous
and gradient field in the z direction B(i)

z = Bz + b(i)
z for in-

dividual addressing. In the y direction a static gradient field
together with oscillating gate voltages creates oscillating mag-
netic fields at the QDs, B(i)

y (t ) = B(i)
y,0 + B(i)

y,1 cos(ω(i)t + φ(i) ).
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A. Residual exchange

First, we only consider the undriven system, i.e., B(i)
y,1 = 0

for all i. Following Sec. II A, in the rotating frame H̃ (t ) =
R†HR + iṘ†R with R = exp(−it

∑N
i B(i)

z S(i)
z ) we can find a

time-independent diagonal Hamiltonian in the RWA H̃ ≈∑
〈i, j〉 Ji j (S(i)

z S( j)
z − 1/4) if |Ji j | � 2|B(i)

z − B( j)
z |, leading to

the time evolution

U (t ) =
∏
〈i, j〉

1

2

{[
exp

(
i
Ji j

2
t

)
+ 1

]
I

− 4

[
exp

(
i
Ji j

2
t

)
− 1

]
S(i)

z S( j)
z

}
. (12)

When expanding the product in Eq. (12) we find the first term
to be the identity and all other terms to contain at least one S(i)

z
in the tensor product. Using properties of the tensor product
and the trace, the fidelity for the time evolution being the
identity gate is then given by

FI = 1 + d
∣∣∏〈i, j〉

1
2

[
exp

(
i Ji j

2 t
)+ 1

]∣∣2
d + 1

, (13)

with Hilbert space dimension d = 2N . Apparently, the resid-
ual exchange between qubits leads to a tunable N-qubit
CPHASE-like gate. For the idle operation on all qubits the
exchange couplings can be tuned to the same value Ji j = J ,
and after waiting time t = 4πn/J with integer n the time
evolution equals the identity. Otherwise, the time evolution
constantly changes the relative phases between the states of
neighboring qubits or results in Z gates on part of the array.
This can be used for two-qubit gates between neighboring
gates or to perform z rotations on some of the qubits.

B. Driven qubit arrays

Next, we add the drive to the Hamiltonian Eq. (11). In
the rotating frame described by R = exp(−it

∑N
i ω(i)S(i)

z ), the
Hamiltonian is

H̃ ≈ HJ + HB + Hz, (14)

where HB describes the driving term

HB =
∑

i

B(i)
y,1

2

[
cos(φ(i) )S(i)

x − sin(φ(i) )S(i)
y

]
, (15)

with 2|B(i)
y,0|, |B(i)

y,1| � 2ω(i), and Hz includes the remaining Bz

contribution in the rotating frame,

Hz =
∑

i

(
B(i)

z − ω(i)
)
S(i)

z . (16)

The first part of Eq. (14) is due to the exchange interaction,
which can be approximated in the far off-resonant regime of
two neighboring driving frequencies |ω(i) − ω( j)| 
 Ji j as

HJ =
∑
〈i, j〉

Ji j
(
S(i)

z S( j)
z − 1

/
4
)
, (17)

and in the resonant regime ω(i) = ω( j), i.e., neighboring qubits
are driven with the same frequency, as

HJ =
∑
〈i, j〉

Ji j

[
S(i)

z S( j)
z + 1

2

(
S(i)

+ S( j)
− + S(i)

− S( j)
+
)− 1

4

]
. (18)

A combination of some off-resonantly and other resonantly
driven qubit pairs leads to a combination of the expressions in
Eqs. (17) and (18). For the case in which ω(i) = B(i)

z , which
corresponds to driving each qubit with its own resonance
frequency, and hence, |ω(i) − ω( j)| = |B(i)

z − B( j)
z | 
 Ji j , the

Hamiltonian becomes

H̃ ≈
∑
〈i, j〉

Ji j
(
S(i)

z S( j)
z − 1

/
4
)

−
∑

i

B(i)
y,1

2

[
sin(φ(i) )S(i)

x − cos(φ(i) )S(i)
y

]
. (19)

1. Single driven qubit

If only a single qubit is driven, note that Ji j terms con-
taining only nondriven qubits i and j can be separated in
the time evolution since in that case S(i)

z and S( j)
z commute

with all other operators and lead to a similar expression as in
Eq. (12). The total time evolution is given by the product of
the latter and the nontrivial matrix exponential of the remain-
ing term containing the driven qubits. To show an example
we assume a drive on a qubit 1 < k < N as depicted in the
black box in Fig. 1(c) (for qubits 1 and N there is only one
neighbor, which simplifies the time evolution to the previously
discussed case of a DQD) and write the time evolution as
U (t ) = Ui, j �=k (t )Uk (t ) with

Ui, j �=k (t ) =
∏

〈i, j〉,i, j �=k

exp

(
i
Ji j

4
t

)[
cos

(
Ji j

4
t

)
I − 4i sin

(
Ji j

4
t

)
S(i)

z S( j)
z

]
, (20)

Uk (t ) = eit
Jk−1,k+Jk,k+1

4
1

2

[−iB(k)
y,1( f+ + f−)Y (k) − iB(k)

y,1( f+ − f−)Z (k−1)Y (k)Z (k+1)

− i(EJ f+ − �J f−)Z (k−1)Z (k) − i(EJ f+ + �J f−)Z (k)Z (k+1)

+ i(g+ − g−)Z (k−1)Z (k+1) + (g+ + g−)I
]

(21)

where Y (i) and Z (i) are the Pauli operators on qubit i. Here, we defined EJ = Jk−1,k + Jk,k+1, �J = Jk,k+1 − Jk−1,k , �
(k)
+ =√

E2
J + (B(k)

y,1)2 , �
(k)
− =

√
(�J )2 + (B(k)

y,1)2 , and the functions

f± = 1

�
(k)
±

sin

(
�

(k)
± t

4

)
, g± = cos

(
�

(k)
± t

4

)
, (22)
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FIG. 4. (a) Numerical time-dependent infidelity 1 − F for an IY I gate when driving qubit k with B(k)
y,1 = 10 MHz. The minimum and thus

optimal driving time shifts for increasing J0. The light red dashed line corresponds to the mean time τY = π/B(k)
y,1 + π/

√
(B(k)

y,1 )2 + J2
0 and the

time Fmax corresponds to the numerical maximum of Eq. (23). (b) Optimal driving times (upper plot) and infidelity (lower plot) depending on
the exchange value for B(k)

y,1 = 1, 10, 100 MHz. Here, we chose Bz,1 = 20 GHz, Bz,2 = 20.2 GHz, and Bz,3 = 20.4 GHz. (c) IY I gate in three
steps: Each transition frequency (solid arrows) is addressed separately while synchronizing the off-resonant transitions (dashed arrows). The
energy of the depicted states are split due to magnetic field B(k)

z and residual exchange coupling J0.

containing the time dependence up to a global phase.
We restricted ourselves to φ(k) = 0. For arbitrary φ(k) the
time evolution is shown in Appendix F. Equations (21)
and (22) describe the time evolution analogously to Eqs. (4)
and (5) in the case of a single drive and a second neigh-
bor. However, in contrast to Eq. (5), here f± and g± as
introduced in Eq. (22) are defined by the difference and
sum of the nearest-neighbor exchange instead of the driving

amplitude. The fidelity of performing a Y gate on qubit k
is given by FY (k) = {d + |Tr[Ui, j �=k (t )Uk (t )Y (k)]|2}/[d (d + 1)]
with d = 2N . Since Ui, j �=k is purely diagonal we can even find
an upper bound FY (k) � {d + |Trabs[Uk (t )Y (k)]|2}/[d (d + 1)],
where Trabs is defined in Appendix B. Here, we emphasize
that for a given driving time τ we can always choose Ji j =
4mπ/τ with integer m, such that Ui, j �=k (τ ) = I . In this case we
find

FY (k) = d + |Tr[Uk (t )Y (k)]|2
d (d + 1)

=
1 + d

4

∣∣ B(k)
y,1

�
(k)
+

sin
(�

(k)
+
4 t

)+ B(k)
y,1

�
(k)
−

sin
(�

(k)
−
4 t

)∣∣2
d + 1

. (23)

In the case of, e.g., three spin qubits, the dimension is d =
8. We will assume Ui, j �=k (τ ) = I for fidelity calculations in
the remainder of this work. We find an increased fidelity
for B(k)

y,1 
 Jk−1,k, Jk,k+1 and driving time τ ≈ 2π/�k
±. In

Fig. 4(a) the numerical time-dependent infidelity is shown
for different exchange values Jk−1,k = Jk,k+1 = J0. If J0 is
small, a sufficiently good choice for the driving time is τY =
π/B(k)

y,1 + π/
√

(B(k)
y,1)2 + J2

0 , shown as the light red line labeled
by “mean time” in Fig. 4(a). The exact optimal timing (red
dashed line labeled with Fmax time) can be obtained by solving
for the maximum of Eq. (23) numerically. Using this numeri-
cally optimized gate time, Fig. 4(b) shows the Y gate fidelity
depending on J0 for driving amplitudes B(k)

y,1 = 1, 10, and
100 MHz. Similar to Fig. 3, the corrections to the RWA flat-
ten the fidelity of B(k)

y,1 = 100 MHz at low residual exchange
J0 < 0.1 MHz. The slope, however, is well described by the
fidelity in the RWA in Eq. (23).

In order to characterize the error of a single-qubit gate we
calculate the error matrix Merr = Uk (τY )Y (k) in Appendix G.
The error matrix Merr describes the error that is left after the
operation, which can then be taken into account for following
operations.

Moreover, in the case of a spin-qubit chain, the en-
ergy levels are split by the exchange interactions Jk−1,k and

Jk,k+1 in addition to the Zeeman splitting B(k)
z [17] [see

Fig. 4(c)]. In particular, in the case of a Y gate on qubit
k there exist several frequencies B(k)

z ± Jk−1,k ± Jk,k+1, be-
tween conditional Y rotations, that have to be addressed
simultaneously. As depicted in Fig. 4(c), in our example
those are ω(|↑↑↓〉 ↔ |↑↓↓〉) = ω(|↓↑↑〉 ↔ |↓↓↑〉) = B(k)

z ,
ω(|↑↑↑〉 ↔ |↑↓↑〉) = B(k)

z + 2J0, and ω(|↓↑↓〉 ↔ |↓↓↓〉) =
B(k)

z − 2J0. So far, however, we only assumed a single driving
frequency B(k)

z . Another idea to mitigate this effect could
be to drive all frequencies at the same time by choosing
an appropriate drive. However, when doing so, the off-
resonant transitions will not be completely mitigated. In
fact, numerical simulations show that a single frequency
performs better than driving with all transition frequen-
cies at the same time. Instead of a single-shot Y gate on
qubit k, one mitigation scheme, similar to those proposed
in Refs. [16,17,26], is to drive each transition separately
while compensating the off-resonant rotations by synchro-
nization, see Fig. 4(c). In particular, when driving with
frequency ω(k) = B(k)

z for time τ = 4π (n + 1/2)/B(k)
y,1 this

leads to the condition B(k)
y,1 = 2(2n + 1)J0/

√
4m2 − (2n + 1)2

with integers n and m. A realistic example is then B(k)
y,1 =

2J0/
√

3 with the shortest driving time τ = √
3π/J0. However,
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when driving with ω(k) = B(k)
z ± 2J0 the additional condi-

tion B(k)
y,1 = 4(2n + 1)J0/

√
4l2 − (2n + 1)2 with integer l has

no exact solution. Instead, one can approximate the second
condition, e.g., using n = 2, m = 5, l ≈ 9, and thus B(k)

y,1 =
2J0/

√
3 ≈ 20J0/

√
299, leading to longer driving times τ =

5
√

3π/J0. The overall three-step Y gate then has a driving
time of τY = 11

√
3π/J0. Using this set of parameters, we esti-

mate a fidelity F = [1 + d sin(5
√

13π/4)4]/(d + 1) ≈ (1 +
0.99905d )/(d + 1). In the case of N = 3 qubits it yields
F ≈ 0.99916. We can then assume charge noise on the ex-
change value J0 as Gaussian distributed quasi static noise
with standard deviation σJ and roughly estimate a fidelity
decay ∝ exp(−σ 2

J τ 2
Y /2). Due to the increased driving time

this mitigation scheme can improve the Y gate fidelity only
for sufficiently low charge and dephasing noise. We further

note that for increased exchange interaction J0 additionally
superexchange between qubit k − 1 and k + 1 lowers the en-
ergy of the |↑↑↓〉, |↓↑↑〉, |↑↓↓〉, and |↓↓↑〉 states in Fig. 4(c).
The energy shift is equal for all these states, and thus does not
affect the transition frequencies.

2. Extension to two-dimensional arrays

In order to estimate the effect of residual exchange in
two-dimensional (2D) arrays we calculate the Y gate fidelity
analogously to Eq. (23) when qubit k has a total of four
exchange-coupled neighbors, as shown in Fig. 1(b). Assuming
the same value J0 for all exchange couplings, the fidelity again
has the form FY (k) = {d + |Tr[Ui, j �=k (t )Uk (t )Y (k)]|2}/[d (d +
1)] and with Ui, j �=k (τ ) = I , as before, simplifies to

FY (k) = d + |Tr[Uk (t )Y (k)]|2
d (d + 1)

=
1 + d

26

∣∣3 sin
(B(k)

y,1t

4

)+ 4B(k)
y,1

�4
sin

(
�4
4 t
)+ B(k)

y,1

�̃4
sin

(
�̃4
4 t
)∣∣2

d + 1
, (24)

with �4 =
√

(B(k)
y,1)2 + 4J2

0 and �̃4 =
√

(B(k)
y,1)2 + 16J2

0 . In
contrast to the case with two neighbors, we find additional
off-resonant transitions and thus obtain Rabi frequencies �4

and �̃4. A synchronization of off-resonant drives in several
driving steps as explained for the case with two neighbors
would require additional steps and even longer gate times
than in the shown case. Increasing qubit fidelities, hence,
remains a hardware problem with the aim of generating pulse
amplitudes much stronger than the residual exchange between
two qubits or advanced pulse-shaping techniques [16] to stay
beneath a certain error threshold.

3. Drive on all qubits simultaneously

We have shown that at the cost of larger driving times it is,
in principle, possible to control spin-qubit arrays with resid-
ual exchange interactions. However, the algorithms that are
executable on a quantum processor are limited by the relevant
gate times and the qubit lifetimes in the device. Optimal con-
trol parameters such as a large driving strength increase the Y
gate fidelity. Similar to the case of the DQD, we now consider
a simultaneous drive on several qubits. Since an analytical
treatment of a system with N � 3 qubits results in a nontrivial
solution for the eigenvalues and eigenvectors, we numerically
calculate the approximate fidelity of a simultaneously driven
Y gate on three, five, and seven spin qubits in Fig. 5 as
blue, yellow, and green solid lines, respectively (labeled as
UYYY ). Here, we use a driving amplitude B(i)

y,1 = 10 MHz for
all qubits i = 1, ..., N and optimize the driving time by maxi-
mizing the fidelity numerically. As an example, for N = 7 and
J0 = 1 MHz the optimal time is found to be τ = 0.624 µs.
We further estimate the simultaneous Y gate fidelity on all
qubits and compare it to the performance of driving every
second inner qubit in Fig. 5, i.e., qubit 2 for N = 3, qubits
2 and 4 for N = 5 (see upper inset of Fig. 5), and qubits 2, 4,
and 6 for N = 7, simultaneously with numerically optimized
gate times using Eq. (23). For this calculation the Hamiltonian

obtained in the RWA was used, as we found that the RWA is
sufficient for a driving field of B(i)

y,1 = 10 MHz. Thus, in the
shown infidelities only slight corrections to the RWA in the
regime below J < 0.05 are expected. The fidelity is shown as
dashed lines (labeled as UIY I ) lying slightly below the UYYY

values. We also show the fidelity of a Y gate on all qubits
when first driving every second inner spin (UIY I ) and then all
other spins (UY IY as shown in the inset for N = 5) in dotted
lines labeled as UY IY UIY I . In this case we assume the outer Y

FIG. 5. Residual-exchange-dependent fidelity for a Y gate on
every second inner qubit (UIY I ), a Y gate on all qubits in two steps
(UY IY UIY I ), and a simultaneous drive on all qubits (UYYY ). Different
colors indicate the number of qubits N = 3, 5, 7. In the case of N = 3
qubits the fidelity of UIY I and UY IY UIY I are equal, since we use the
approximated Hamiltonian, and the outer Y gates can be realized
as described in the DQD case. The driving amplitude was chosen
as B(i)

y,1 = 10 MHz for all qubits i = 1, ..., N and the fidelity scaled
to a Hilbert space of dimension d = 210 space for comparison. The
fidelity is calculated using the Hamiltonian obtained in the RWA.
The inset shows which qubit drives correspond to the respective time
evolution for N = 5.
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gates to be perfect, since these can be mitigated by the ZX
gate as discussed for the DQD in Sec. II B 2. We find that the
fidelity for UIY I is slightly larger than for the UYYY case, and
both fidelities are larger than the fidelity of the UY IY UIY I case.
We conclude that in residually exchange-coupled spin-qubit
arrays a gate on all qubits is better performed by directly driv-
ing all qubits instead of performing multiple steps, because in
the absence of compensation between two gate steps, errors
can spread and affect the fidelity of future operations.

C. SWAP gate in qubit arrays

So far we have found that, generally, CPHASE gates are
ideally possible in an array with residual exchange. Since
we assume nearest-neighbor connectivity in a linear chain,
the SWAP gate enables entanglement between any pairs of
qubits in the array. Here, we consider the effect of residual
exchange on a single-pulse SWAP gate. To realize such a

native SWAP gate on qubit pair k and k + 1 (where for gen-
erality we assume 1 < k < N − 1), the exchange interaction
Jk,k+1 is intentionally switched on, while the driving term
is switched off (B(i)

y,1 = 0 for all i). Ideally, a π pulse on
the exchange interaction between the qubits then corresponds
to swapping the respective qubit states. In contrast to the
previously described gates, the operation regime for such a
SWAP gate requires J 
 �Bz. The gray box in Fig. 1(c)
shows such an intentional exchange pulse between qubits
k + 3 and k + 4 (instead of k and k + 1) in a residually cou-
pled qubit array. In the rotating frame H̃ (t ) = R†HR + iṘ†R

with R = exp[−it
∑N

i �=k,k+1 B(i)
z S(i)

z − it (B(k)
z + B(k+1)

z )(S(k)
z +

S(k+1)
z )/2] we can find a time-independent Hamiltonian in

the RWA H̃ ≈ ∑
〈i, j〉�=〈k,k+1〉 Ji j (S(i)

z S( j)
z − 1/4) + Jk,k+1(S(k) ·

S(k+1) − 1/4) with |Ji j | � 2|B(i)
z − B( j)

z | for i, j �= k, k + 1,
leading to the time evolution U (t ) = Ui, j /∈{k,k+1}(t )Uk,k+1(t ),
where

Ui, j /∈{k,k+1}(t ) =
∏

〈i, j〉,i, j /∈{k,k+1}
exp

(
i
Ji j

4
t

)[
cos

(
Ji j

4
t

)
I − 4i sin

(
Ji j

4
t

)
S(i)

z S( j)
z

]
. (25)

Note the similarity of this expression to Eq. (20). When choosing Ji j = 4lπ/τ , where l ∈ Z and τ is the gate time, this results
in the idle operation, thus we again assume Ui, j �=k (τ ) = I . The operator Uk,k+1(t ) describes the time evolution between qubits
k − 1, k, k + 1, and k + 2. The residual exchange between k − 1 and k, and k + 1 and k + 2 results in a decrease of the fidelity
FSWAPk,k+1 = {d + |Tr[Uk (t )SWAP(k,k+1)]|2}/[d (d + 1)] determined by

FSWAPk,k+1 = 1

d + 1
+ d

24(d + 1)

[
4 cos2

(
Jk−1,kt

4

)
cos2

(
Jk+1,k+2t

4

)
+ J2

k,k+1

(
4∑

μ=1

sin
(�μt

4

)
�μ

)2

+ 4Jk,k+1 cos

(
Jk−1,kt

4

)
cos

(
Jk+1,k+2t

4

)
sin

(
Jk,k+1t

2

)( 4∑
μ=1

sin(�μt )

�μ

)]
, (26)

where �μ =
√

4J2
k,k+1 + (�Bz ± Jk−1,k ± Jk+1,k+2)2 and

�Bz = B(k+1)
z − B(k)

z . The index μ ∈ {1, 2, 3, 4} refers to all
four possible combinations of + and − in the expression
for �μ. For 2Jk,k+1τ = π (n + 1/2) with even integer n
the fidelity increases. The remaining oscillations with
frequencies �μ and J0 can in principle be synchronized,
however such a condition significantly increases the gate
time. Instead, the fidelity can be increased if the ratios
Jk,k+1/Jk−1,k , Jk,k+1/Jk+1,k+2, Jk,k+1/�Bz become as large as
experimentally feasible. Note that in the case of no residual
exchange �1 = �2 = �3 = �4.

To estimate the effect of residual exchange compared to
the effect of a finite magnetic field gradient, we consider
the error matrix Merr = Uk,k+1(τSWAP)U †

SWAP in Appendix G.
Ultimately, we find that the main source of coherent errors in
the case of a SWAP gate is the magnetic gradient field rather
than the residual exchange. Both effects are suppressed by
increasing the value of Jk,k+1 between the operating qubits.

IV. CONCLUSIONS

We investigated the effect of residual exchange on the
quantum gate performance of spin qubits. For the DQD we

derived an analytical description for the gate time and fidelity
of single and simultaneous Y gates, and suggested high-
fidelity mitigation schemes. We showed that these mitigation
protocols work under realistic conditions and that they can (to
some extent) also be applied to the outer qubits of a spin-qubit
chain.

Furthermore, we derived the time evolution of single-qubit
and two-qubit gates in linear arrays suffering from residual
exchange between nearest neighbors. We find that the identity
operation can be realized by aligning the residual exchange
couplings for a full period of 4π/J . A CPHASE or CZ gate
can be realized by choosing the exchange between the control
and target qubits to be half of the other exchange values in the
chain. On the other hand, a Y gate operation on a spin with two
or more exchange-coupled neighbors is always suffering from
residual exchange and can be reduced by a high ratio between
driving and exchange value. In the case of a Y gate on a single
qubit with two coupled neighbors we find appropriate gate
time conditions minimizing the infidelity, but also suggest
a three-step driving protocol addressing the respective fre-
quencies resonantly while compensating for the off-resonant
transitions via synchronization and briefly discuss the case
of a two-dimensional qubit array. We also provide a numer-
ical fidelity calculation for simultaneous Y gates on all spin

013153-8



ANALYSIS AND MITIGATION OF RESIDUAL EXCHANGE … PHYSICAL REVIEW RESEARCH 6, 013153 (2024)

qubits in a chain of three, five, and seven quantum dots
to give an estimated expectation for present and near-term
devices.

Finally, we studied the SWAP gate as a two-qubit gate
working in the regime J � �Bz, which breaks commutativity
of exchange pairs. We provide a description for the resulting
four-qubit system and find the ratio J/�Bz as the dominant
fidelity-limiting factor compared to Jon/Joff .

In all cases discussed in this work, we showed that the
performance of mitigation schemes strongly depends on rel-
ative values of magnetic driving, Zeeman field, and residual
exchange, but also on crosstalk and several noise sources. All
these parameters determine the validity of the approximations
made: For low crosstalk and high driving fields and Zeeman
splitting compared to the residual exchange, pure driving
without mitigation might be better, especially in the presence
of rather high charge noise. However, when J ≈ By,1 and
charge noise is reasonable, mitigation will increase the qubit
gate fidelity. Furthermore, we suggest here to consider driving
schemes with appropriate exchange interactions suppressed
between qubits that are not frequently operated to further
increase the fidelity of quantum algorithms in spin-qubit
arrays.

This analysis assumes the Zeeman splitting to be much
smaller than the energy splitting to higher orbital and val-
ley states and thus the spin states representing the qubit to
be well isolated from those. Moreover, spin-orbit interaction
and anisotropic exchange play a very minor role for elec-
trons in silicon. In other spin-qubit platforms such as holes
in germanium, this effect is nonnegligible. However, if the
residual exchange is small compared to the global Zeeman
field, splitting the spin-up and spin-down states, transverse
components of the exchange coupling are mostly suppressed
and only the parallel Jzz components contribute. Hence, the
concepts discussed in this work are expected to be similarly
applicable to other platforms.

Open questions that should be addressed in future work
include the analysis and mitigation of the effects of residual
exchange for other quantum gates such as Hadamard gates, T
gates, and entangling two-qubit gates. Furthermore, the com-
bination of the presented mitigation schemes with optimized
quantum control techniques may allow for shorter gates times
and even higher gate fidelities.

Ultimately, experimental conditions will set the fidelity
bounds for quantum operations. Our results provide the
data needed for decision-making between naive qubit gates
and mitigation, leading to the right optimization, taking
into account both coherent and incoherent errors. The
ideal choice of control parameters, such that the gate fi-
delity stays beneath the error threshold for fault-tolerant
quantum computing, will enable the implementation and up-
scaling of quantum computing in spin-qubit platforms in the
future.
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APPENDIX A: DOUBLE QUANTUM DOT

Here, we provide a more detailed description of the time
evolution for a DQD in the (1,1) charge regime starting
from the Hamiltonian (1). If we set Bα

y,1 = Bα
y,2 = 0 and

move into the rotating frame H̃ (t ) = R̃†HR̃ + i ˙̃R†R̃ with
R̃ = exp[−it (BL

z + BR
z )(SL

z + SR
z )/2], we can find a time-

independent Hamiltonian in the RWA, leading to the time
evolution

Ũ0(t ) = iei J
2 t �Bz

2�
sin

(
�

2
t

)
(ZI − IZ )

+ 1

2

[
1 + ei J

2 t cos

(
�

2
t

)]
II

+ 1

2

[
1 − ei J

2 t cos

(
�

2
t

)]
ZZ

− iei J
2 t J

2�
sin

(
�

2
t

)
(XX + YY ), (A1)

where � = √
�B2

z + J2. After time τCP = 2πn/� with n ∈
Z, the resulting time evolution holds

Ũ0(τCP ) = 1
2

[
1 − ei J

2
2nπ
� (−1)n

]
ZZ + 1

2

[
1 + ei J

2
2nπ
� (−1)n

]
II,

(A2)

and equals a CPHASE gate up to a global phase factor
and single qubit rotations [17]. However, since the rotating
frame for single-qubit gates is usually R = exp[−it (BL

z SL
z +

+BR
z SR

z )/2], and the exchange is never switched off but at a
finite value, we need to take into account the rotation from
R̃ into R. Usually this is done by accounting for the z ro-
tations by the phase of a subsequent drive. Nevertheless, in
the presence of residual exchange this does not simply equal
a z rotation, as discussed in Appendix C. For this reason,
we use the rotating frame R in Eq. (2) in the main text and
assume J to be small, such that we can neglect the additional
terms.

The GST results for the identity gate neglecting noise
and stochastic errors can be extracted as ln(UactualU

−1
ideal ) =

ln(Uactual ) = −iH̃t = −it (wXX XX+ wYY YY +wZZZZ + dII +
c1ZI + c2IZ ), where wXX , wYY , wZZ , d , c1, and c2 are
coefficients of the respective gate and do not have to be
equal to the coefficients in the original Hamiltonian since
the imaginary exponential function is not bijective. However,
as discussed in the main text, it is not trivial to change
rotating frames between operations with always-present
exchange. Thus, when applying pulse sequences that have
ideal gate solutions in different rotating frames, errors might
occur from these frame changes due to inappropriate pulse
timing.
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As a next step, we find a generalized expression for the time evolution corresponding to the Hamiltonian in Eq. (3) in the
presence of driving. Allowing φ1 and φ2 to be arbitrary angles, the time evolution is given by

U (t ) = e−iH̃t = 1
2 ei J

4 t {+i sin(φ1)(Ey f + − �By f −)XI + i sin(φ2)(Ey f + + �By f −)IX

− i cos(φ1)(Ey f + − �By f −)Y I − i cos(φ2)(Ey f + + �By f −)IY

+ [sin(φ1) sin(φ2)(g+ − g−) + iJ cos(φ1) cos(φ2)( f + − f −)]XX

+ [cos(φ1) cos(φ2)(g+ − g−) + iJ sin(φ1) sin(φ2)( f + − f −)]YY

+ [sin(φ1) cos(φ2)(−g+ + g−) + iJ cos(φ1) sin(φ2)( f + − f −)]XY

+ [cos(φ1) sin(φ2)(−g+ + g−) + iJ sin(φ1) cos(φ2)( f + − f −)]Y X

− iJ cos(φ1) cos(φ2)( f + + f −)ZZ + (g+ + g−)II}, (A3)

where f ± and g± are defined as in Eq. (5). One can calculate
GST error bars again by ln[Uactual(IY )−1]. In particular, if only
driving one qubit we obtain a time evolution given by

U2(t ) = iei J
4 t
(−BR

y,2 f IY − J f ZZ + gII
)
, (A4)

with f = f +|Bα
y,1=0 = f −|Bα

y,1=0 and g = g+|Bα
y,1=0 = g−|Bα

y,1=0

since �2 = �+
y |Bα

y,1=0 = �−
y |Bα

y,1=0. GST Hamiltonian
errors are then mainly given by the coefficients of
ln[Uactual(IY )−1] = wY I (t )Y I + wZX (t )ZX + d (t )II .

APPENDIX B: UPPER FIDELITY BOUND NEGLECTING Z
ROTATIONS

We assume that the time evolution Uactual can be calculated
via a solution of the time-dependent Schröedinger equation.
To quantify how good the actual time evolution matches the
desired gate operation Uideal, the fidelity is usually calculated
by F = (d + |Tr[U †

idealUactual]|2)/[d (d + 1)], where d is the
dimension of the Hilbert space. One might say it gives the
amount c0,...,0 of identity of the matrix M = UactualU

†
ideal =∑3

i1,...,iN =0 ci1,...,iN

⊗N
n σin , where σin are the Pauli matrices

of qubit n with in ∈ {0, 1, 2, 3} and N is the number of
qubits. The Pauli matrices σ1, σ2, and σ3 are traceless and
Tr[M1 ⊗ M2] = Tr[M1]Tr[M2] for any matrices M1 and M2.
Nevertheless, if we assume z rotations to be trivial and easily
implemented, it is advantageous to find an invariant quantity
under z rotations. These are in general given by Rz(�θ ) =⊗N

n=1 exp(iθiσ3/2), where N is the number of qubits and �θ =
(θ1, . . . , θN ) are the rotation angles. Note that z rotations are
always purely diagonal, but do not form the complete diagonal
subspace of the vector space of 2n × 2n unitary matrices.

Let us assume that a diagonal unitary d × d matrix D is
multiplied to another unitary matrix M with the same di-
mensions. Then, Tr[DM] = ∑d

k=1 DkkMkk does in general not
equal Tr[M]. However, since D is a diagonal unitary matrix,
one has |Dkk| = 1 and thus

Trabs[DM] :=
d∑
k

|DkkMkk| =
d∑
k

|Mkk| (B1)

stays invariant, i.e., Trabs[DM] = Trabs[M]. Obviously,
|Tr[DM]| = |∑d

k DkkMkk| �
∑d

k |DkkMkk| = ∑d
k |Mkk| =

Trabs[DM].

Hence, let us consider a z rotation Rz(θ ) acting on the
actual time evolution Uactual,

|Tr[U †
idealRz(θ )Uactual]| = |Tr[Rz(θ )UactualU

†
ideal]| (B2)

= |Tr[Rz(θ )M]| (B3)

� Trabs[Rz(θ )M] = Trabs[M]. (B4)

If we find a z rotation Rz(�θ ), such that F becomes maximal,
Trabs[M] is invariant. In the case where a z rotation leads to
a perfect gate up to global phases, we even find |Trabs[M]| =
Tr[Rz(θ )M]. However, the reverse implication is not correct.
If one calculates Trabs[M] > |Tr[M]|, one does not necessarily
find Rz(�θ ) only containing single qubit rotations, such that
|Tr[Rz(θ )M]| = Trabs[M]. Instead, we find an upper bound for
the fidelity,

F � d + Trabs[UactualU
†
ideal]

2

d (d + 1)
. (B5)

For a single-qubit gate in the double quantum dot case in
Sec. II, we estimate

Trabs[U (t )(IY )] = 2

∣∣∣∣∣�By

�−
y

sin

(
�−

y

4
t

)
+ Ey

�+
y

sin

(
�+

y

4
t

)∣∣∣∣∣
(B6)

� 2

(∣∣∣∣∣�By

�−
y

∣∣∣∣∣+
∣∣∣∣∣ Ey

�+
y

∣∣∣∣∣
)

, (B7)

and thus find the fidelity bound of

FIY � F max
IY = 1

5
+ 1

5

(∣∣∣∣∣�By

�−
y

∣∣∣∣∣+
∣∣∣∣∣ Ey

�+
y

∣∣∣∣∣
)2

. (B8)

In particular, when restricting to a single drive, we obtain
Eq. (7).

APPENDIX C: MITIGATION SCHEMES FOR
SINGLE-QUBIT GATES IN A DOUBLE QUANTUM DOT

To mitigate unwanted ZZ terms in Eq. (6), a sequence
including perfectly implemented z rotations and the choice
of J = BR

y,2 leads to an IY gate with a global phase factor.
Similarly, the description for the Y I , XI , and IX gates can
be obtained. However, IZ and ZI rotations are obtained by
incorporating the respective phase φ2 = π/2 into the drive,
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thus leaving the evolution with a residual ZZ term after the sequence. When doing so, we find

U2(τIY )|φ2= π
2

= −i(−1)nei π (2n+1)J
2�2

(
BR

y,2

�2
IX + J

�2
ZZ

)
(C1)

�= −i(−1)nei π (2n+1)J
2�2

(
BR

y,2

�2
IX + J

�2
ZI

)
= (IZ )U2(τIY ). (C2)

Apparently, these virtual rotations do not correspond to actual rotations around the z axis. Instead, a mitigation technique can be
implemented with a second drive on the same qubit,

Ũ2(τ̃IY )U2(τIY ) = − (−1)n+ñ

�2�̃2
e

i π (2n+1)J
2�2

+ π (2ñ+1)J̃
2�̃2

(
BR

y,2IY + JZZ
)(

B̃R
y,2IY + J̃ZZ

)
(C3)

= − (−1)n+ñ

�2�̃2
e

i π (2n+1)J
2�2

+ π (2ñ+1)J̃
2�̃2

[(
BR

y,2B̃R
y,2 + JJ̃

)
II + i

(
B̃R

y,2J − BR
y,2J̃

)
ZX

]
. (C4)

Choosing appropriate values as described in the main text
results in Eq. (8) and thus in a ZX gate. A subsequent native
ZZ gate finally leads to an IY gate implementation.

APPENDIX D: SENSITIVITY TO NOISE

Since charge noise is often the factor limiting the fi-
delity, we address here the sensitivity of the above mitigation
schemes with respect to small fluctuations of the exchange
coupling in a double quantum dot. Therefore, neglecting other
error sources such as, e.g., dephasing and crosstalk, we can
write the fidelity for each gate in first order [assuming cos(x ≈
0) ≈ 1],

FIY ≈ 1

5
+ 4

5

∣∣∣∣∣∣∣
BR

y√(
BR

y

)2 + J2

∣∣∣∣∣∣∣
2

, (D1)

FZX ≈ 1

5
+ 4

5

∣∣∣∣∣∣
2BR

y J(
BR

y

)2 + J2

∣∣∣∣∣∣
2

, (D2)

FYY ≈ 1

5
+ 4

5

∣∣∣∣∣∣∣
J√

E2
y + J2

− J√
�B2

y + J2

∣∣∣∣∣∣∣
2

, (D3)

and find the ZX and YY gates to be more sensitive to exchange
noise than the conventional IY gates. Thus, our mitigation
schemes only apply for reasonably low charge noise on the
exchange, as shown in Fig. 3. The lower infidelity bound due
to quasi-static noise on the exchange value is determined by
the standard deviation-to-exchange ratio as shown in Fig. 6.
However, since the qubit frequency BR

z is also suffering from
charge noise, we suggest to compare the benchmarking results
of both conventional IY and YY gates (where J should be
as small as possible) and the mitigated ZX and YY gates as
in Eqs. (8) and (10) to achieve the highest possible fidelity
in a specific setup. Although the approximations made seem
to be reasonable, the neglected terms can lead to a reduced
infidelity when parameters sensitive to the approximations,
such as Bα

y and J , are increased. Moreover, in experimen-
tal setups, longer gate times and gate sequences compete

with relaxation and dephasing times of the qubit, and thus
their applicability needs to be checked on the respective
device.

APPENDIX E: MITIGATION FOR THE IDLE OPERATION

In Secs. II A and II B we have found two implementa-
tions of the idle operation to mitigate the effect of residual
exchange. In the lower plot of Fig. 7 we compare the numeri-
cal gate performance of the two implementations U0(τII ) in
Eq. (2) and U2(2τI2) in Eq. (A4) for two different driving
amplitudes. We find the implementation U2(2τIY ) to have
lower infidelity due to shorter driving times. The finite in-
fidelity is determined by corrections to the RWA. The gate
times τII = 4nπ/J and 2τIY = 4π (2n + 1)/�2 are shown in
the upper plot.

APPENDIX F: TIME EVOLUTION FOR A SINGLE DRIVE
ON ONE QUBIT IN ARRAYS

In general, the time evolution of a drive on qubit k with
arbitrary phase φ(k) is given by

FIG. 6. Numerical infidelity results for a DQD with residual
exchange using the following parameters: BL

z = 20 GHz, BR
z =

20.2 GHz, BL
y,0 = 0.1 MHz, BR

y,0 = 0 MHz.
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Uk (t ) = eit
Jk−1,k+Jk,k+1

4 exp(−it

[
Jk−1,kS(k−1)

z S(k)
z + Jk,k+1S(k)

z S(k+1)
z + By,1

2

(
e−iφ(i)

Sk
+ − eiφ(i)

Sk
−
)])

= eit
Jk−1,k+Jk,k+1

4
1

2

{
iB(k)

y,1( f+ + f−)
[
sin(φ(k) )X (k) − cos(φ(k) )Y (k)

]
+ iB(k)

y,1( f+ − f−)
[
sin(φ(k) )Z (k−1)X (k)Z (k+1) − cos(φ(k) )Z (k−1)Y (k)Z (k+1)

]
− i(EJ f+ − �J f−)Z (k−1)Z (k) − i(EJ f+ + �J f−)Z (k)Z (k+1)

+ i(g+ − g−)Z (k−1)Z (k+1) + (g+ + g−)I
}
, (F1)

where X (i), Y (i), and Z (i) are the Pauli operators on qubit i.
When φ(k) = 0 we obtain the time evolution given in Eq. (21).

APPENDIX G: ERROR MATRIX COEFFICIENTS

For a better understanding of the error occurring during
a nonideal operation we calculate the error matrix Merr =
UactualU

†
ideal. It corresponds to the error that is left after the

operation, i.e., Uactual = MerrUideal.
In the case of a single Y gate in a linear qubit array we

can write Merr = Uk (τY )Y (k) = ∑3
i, j,k=0 ci jk σi ⊗ σ j ⊗ σk . In

Fig. 8(a) we plot the absolute coefficients |ci jk|. The main
error sources arise from coefficients of ZXI and IXZ , which
are generally given by

|c310| = 1

2

∣∣∣∣∣ EJ

�
(k)
+

sin

(
�

(k)
+
4

t

)
+ �J

�
(k)
−

sin

(
�

(k)
−
4

t

)∣∣∣∣∣, (G1)

and |c310| = |c013|. To optimally control the qubit, this rotation
needs to be taken into account for the following operations, or

FIG. 7. Lower plot shows numerical infidelity results for an idle
gate in a DQD with residual exchange using the following param-
eters: BL

z = 20 GHz, BR
z = 20.2 GHz. Performance of U0(τII ) in

Eq. (2) (green) and U2(2τIY ) in Eq. (A4) with two different driving
amplitudes BR

y,2 = 10 MHz and 100 MHz are compared. The upper
plot shows the corresponding driving times of the respective gates.

it can be reduced by increasing the driving strength B(k)
y,1 and

by reducing the residual exchange values Jk−1,k and Jk,k+1.
In the case of a SWAP gate we calculate the error ma-

trix Merr = Uk (τSWAP)U †
SWAP = ∑3

i, j,k,l=0 ci jkl σi ⊗ σ j ⊗ σk ⊗
σl and show the contributing errors in Fig. 8(b). Here, we use
Jk−1,k = Jk+1,k+2 = J0. We find the main sources of coherent
errors IXXI , IYY I , IZZI , IXY I , and IY XI to be dominated
by the magnetic gradient field rather than the residual ex-
change, which also appears in the simple two-qubit case
without additional residual exchange J0 = 0 to outside qubits.
By increasing the intentional exchange value of Jkk+1, this

(a)

(b)

FIG. 8. Absolute values of the coefficients of the error matrix
Merr for (a) a single-qubit Y gate and (b) a two-qubit SWAP gate on a
qubit k (and k + 1) within a qubit chain with residual exchange cou-
plings present. We chose By,k = 100 MHz in (a), and Jk,k+1 = 1 GHz
and a gradient field of �Bz = 200 MHz in (b).
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effect decreases together with the effect of residual exchange.
In contrast to the previously investigated single-qubit gates,
a finite on-off ratio of the experimentally feasible exchange

interaction does not essentially limit the performance of a na-
tive SWAP gate compared to the error due to a finite magnetic
gradient.
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