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Exchange-only quantum computation is a version of spin-based quantum computation that en-
tirely avoids the difficulty of controlling individual spins by a magnetic field and instead functions
by sequences of exchange pulses. The challenge for exchange-only quantum computation is to find
short sequences that generate the required logical quantum gates. A reduction of the total gate time
of such synthesized quantum gates can help to minimize the effects of decoherence and control errors
during the gate operation and thus increase the total gate fidelity. We apply reinforcement learning
to the optimization of exchange-gate sequences realizing the CNOT and CZ two-qubit gates which
lend themselves to the construction of universal gate sets for quantum computation. We obtain a
significant improvement regarding the total gate time compared to previously known results.

I. INTRODUCTION

Quantum computing has been a strongly growing field
in the last years due to its potential to solve certain prob-
lems efficiently that are hard on a classical computer.
The growth of the field is driven by advances in gate
fidelity and the number of qubits for scalable quantum
computing platforms. Among those platforms are super-
conducting qubits [1, 2], Rydberg atoms [3], trapped ions
[4], and spin qubits in semiconductor quantum dots [5].
Specifically, spin qubits are promising with respect to
scaling due to their small size and synergy with silicon-
based technology and due to recent advances in gate fi-
delity [6–8]. In the original spin-qubit setting [9], each
qubit is represented by the spin of an electron or hole
trapped in a semiconductor quantum dot. Computa-
tions in such single-electron or single-hole spin qubits are
based on controlling the exchange interaction between
the spins and the local time-dependent magnetic fields
acting on individual spins. A logical two-qubit universal
gate, such as the controlled-NOT (CNOT) gate, is im-
plemented by using exchange-interaction-based SWAPα

operations controlled by inter-dot voltage combined with
magnetic-field-controlled single-qubit gates. These phys-
ical SWAPα gates are the result of the exchange opera-
tion, where α is the normalized time parameter for which
the exchange interaction is pulsed and the SWAP gate is
switched on. This means that α denotes the gate time
in units of π/J where J is the strength of the exchange
interactions when switched on. One of the challenges
for quantum computing based on spins in quantum dots
is the single-spin control that necessitates the modula-
tion of a strongly non-homogeneous magnetic field on
short time scales or the realization of a strongly inhomo-
geneous magnetic field using on-chip micro-magnets [10].
The necessity for this is completely avoided in an alterna-
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tive approach which encodes one logical qubit using three
physical spins. For this encoding, the exchange interac-
tion is sufficient to implement universal quantum gates
[11, 12], and thus the control of the local magnetic field is
no longer necessary. This paradigm of quantum compu-
tation is referred to as spin exchange-only computation
and has been subject to great experimental advances re-
cently [13].

Various approaches to exchange-only computation ex-
ist, described in [14]. This physical platform has since
been theoretically and experimentally investigated, and
a large number of practical implementations of quantum
dot systems for three-spin qubits have been developed,
for more detail refer to [5].

We will consider the exchange-only computational
model, described in Ref. [11], where each qubit is en-
coded using three physical spins (spin- 12 particles), and
where one- and two-qubit quantum gates on the logical
qubits are implemented by sequences of SWAPα gates
(switching on and off the exchange interaction between
pairs of spin particles) applied to the physical qubits.
The exchange interaction can be completely switched off
by a sufficiently large voltage barrier between the quan-
tum dots (then the gate is off), and only through pulsing
the voltage, the exchange interaction is switched on.

The cost of disposing of single-spin rotations in
exchange-only quantum computation is twofold, (1) the
necessity of an extended physical system, i.e., a larger
number of physical spins to represent the qubit register,
and (2) logical quantum gates that need to be synthesized
by a sequence of several physical exchange operations,
rather than a single application of exchange in the stan-
dard spin qubit paradigm. More specifically, in the case
of two-qubit gates, several applications of the exchange
interaction between at least five pairs of spins are in-
volved in controlling the system of two logical qubits, see
Fig. 1. A vital aspect for exchange-only computation to
be practically relevant is thus to optimize the efficiency
of the gates needed for quantum computation. This is
where this paper provides a novel method that is shown
to allow for a substantial improvement by applying re-
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FIG. 1. A possible two-dimensional arrangement of physical
spins where each rectangle with three spins (labeled 1,2,3)
defines one logical qubit. The definition of the logical qubit
depends on the order of the physical qubit because each log-
ical qubit, a|0⟩l + b|1⟩l is defined for the total-spin-0 sub-
space as |0⟩l = (|010⟩ − |100⟩)/

√
2, |1⟩l = (2|001⟩ − |010⟩ −

|100⟩)/
√
6, for the total-spin-1 subspace, see [15]. Here,

|ijk⟩ = |i⟩1|j⟩2|k⟩3 where the numbers 1,2, and 3, correspond
to the labels in the figure. We clearly see that the definition
depends on the order of the physical qubits (spins), specifi-
cally the spins labeled 1 and 2 host a singlet in state |0⟩l and a
triplet in state |1⟩l. Further, note that the coupling of neigh-
boring logical qubits depends on the arrangement and on the
order of the physical qubits (within one row or within neigh-
boring rows). This results in three distinct coupling scenar-
ios between pairs of logical qubits (highlighted in gray, blue,
and green) which we label “33” (gray), “11” (blue), and 2D
(green) which are all considered in this paper. The exchange
couplings that can be used in each scenario are indicated with
red arrows.

inforcement learning (RL). Efficiency can be looked at
in several terms: minimizing the number of pulses, time
steps, or total time necessary. In this paper, we will fo-
cus on minimizing the total gate time for a fixed value
J of the exchange coupling when switched on. We will
consider both, the case of exchange gates applied in par-
allel when possible and exchange gates applied sequen-
tially which can be advantageous for avoiding cross-talk
[13]. Minimizing the time needed for a desired gate is
beneficial with respect to gate fidelity as noise acts on
the system for a shorter time while the gate sequence is
performed. For pulses of fixed duration with varied ex-
change strength, as in [13], the actual time needed for
the sequence will depend only on the number of pulses
(sequential) or number of time steps for pulses applied
in parallel. However, we note that there is a lower limit
to the gate time set by the maximum available value of
J . Additionally, minimizing the total time normalized to

a fixed J [16] then corresponds to operating at smaller
exchange coupling which can reduce charge noise [13].

Moreover, when arranging the physical qubits in a two-
dimensional square lattice, different connections between
neighboring logical qubits are present, see Fig. 1. Each
of these different arrangements yields a distinct optimiza-
tion problem. In quantum computing, a CNOT gate is
universal when combined with single-qubit gates, which
makes finding (efficient) exchange-only sequences to re-
alize the CNOT gate an important problem. In [11], the
first exchange-only universal gate set consisting of single-
qubit rotations and a CNOT was presented. In [17], an
exact specification of a universal logical gate-set using
four spins to encode a single qubit was presented. The
authors use extensive numerical optimization in order to
obtain an optimized CNOT gate sequence with 27 par-
allel nearest-neighbor exchange interactions or 50 serial
gates.

Different approaches have been utilized to find opti-
mized sequences numerically [11, 15, 17]. The sequence
for a CNOT found by Fong and Wandzura, via the use of
genetic algorithms [15], see Fig. 2, is currently the most
efficient exact CNOT sequence known when the physi-
cal qubits are connected via nearest-neighbor interactions
and they are in a linear chain architecture, see the area in
Fig. 1 highlighted in blue. Importantly, despite the fact
that this solution has been discovered numerically, it has
a precise analytical description. In [18], gate sequences
were found for logical two-qubit gate locally equivalent to
CNOT for various connectivities by applying exhaustive
search under the condition that all exchange gates are√
SWAP or products thereof. Aside from a large num-

ber of purely numerical approaches, it has been possible
to come up with an analytic derivation of the optimal
Fong-Wandzura (FW) CNOT sequence [19]. Further-
more, analytical considerations with regards to leakage
were utilized in combination with numerics [20] to sim-
plify the search problem and construct another set of
gate sequences realizing the CNOT gate. Under certain
assumptions, the solution presented in Ref. [20] is more
efficient than the FW sequence if one considers total time
as the efficiency criterion. Other efficient universal two-
qubit gates have also been investigated, such as a gate
locally equivalent to the CPHASE gate [21] that is poten-
tially valuable in the currently available NISQ quantum
devices. Leakage errors in exchange-only spin qubits can
be approached by a reset-if-leaked procedure and, via
numerical optimization, by a leakage correcting gate se-
quence [22].

Numerous advances in implementing quantum dot
systems for three-spin qubits have been made [23–31].
Recently, Weinstein et al. [13] presented a two-qubit
exchange-only system implemented using an array of six
28Si/SiGe quantum dots to achieve universal gates of
very high operational fidelity. The fidelity of univer-
sal control of two encoded qubits was evaluated to be
96.3% ± 0.7% for encoded CNOT operations, and even
higher (99.3% ± 0.5%) for encoded SWAP, demonstrat-
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(a) inverse Fong-Wandzura CNOT sequence
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FIG. 2. (a) Inverse FW sequence compared to (b) the
FW sequence from Ref. [15]. Both sequences require twenty-
two pulse and 13 time steps, while their parallel times are
Tp = 13.89π/J and Tp = 15.89π/J , respectively, and their
sequential times are Ts = 20 and Ts = 24, respectively. Log-
ical qubits A and B are arranged as shown. Numbers after
A and B label the physical qubits. The SWAP powers α are
displayed explicitly in the gates. α = 1 corresponds to a full
SWAP operation, up to a global phase. Here, we have intro-
duced p1 = arccos(−1/

√
3)/π and p2 = arcsin(1/3)/π. The

representation of the SWAPα gates in this figure is inspired
by the representation in [13].

ing substantial progress towards achieving fault tolerance
and computational acceleration with this approach.

The problem of optimizing gate sequences for two-
qubit logical gates is high-dimensional. In our work, we
use an intelligent optimization [32] approach enhanced by
an RL algorithm, suitable for continuous search spaces.
This allows us to explore a vastly larger search space
by enforcing much fewer assumptions on the optimiza-
tion problem in comparison to [18]. We aim to optimize
the total time of the exchange-only gate sequences rep-
resenting exact CNOT and exact CZ gates with vary-
ing connection topologies and find gate sequences for all
three arrangements shown in Fig. 1. For the linear “11”
arrangement highlighted in blue in Fig. 1, we find gate
sequences representing CNOT gates. Notably one of the
sequences we find, presented in Fig. 2 (a), has a shorter
total time than the original FW sequence and the RL
approach found it from scratch. We discuss the relation
to other known gate sequences in Sec. IV.

Importantly, we demonstrate the usefulness of a
reinforcement-learning-based approach for optimizing
exchange-only sequences, which can be seamlessly ex-
tended to optimize different universal gates, and gate se-
quences with different architectures and different types
of exchange interactions by simply redefining the cost
function. The main aspects of the reinforcement learn-
ing approach we use for gate sequence optimization are
visualized in Figure 3, and full details of the approach
are given in Sec. II, as well as in Appendix A.

Additionally, we apply the RL algorithm to find opti-
mized CZ gate sequences, see Sec. B, CNOT sequences
for a linear arrangement with the singlet-triplet qubit
part on the edges (“33” arrangement, highlighted in gray
in Fig. 1) and obtain a sequence beating the one actually
implemented in [13] with respect to sequential total gate
time, see Sec. II E and Appendix C for details. Further-
more, we search for optimized gate sequences for CNOT
gates in the 2D arrangement of spins, highlighted in green
in Fig. 1, where seven pairs of spins can be coupled by
exchange interactions, see Sec. II F and Appendix D.

II. METHODS

A. Reinforcement learning for optimization
problems

Reinforcement learning is a class of machine learning
algorithms, where an agent interacts with an environ-
ment and gets back a reward based on its actions. The
goal of the agent is to learn a behavior that optimizes the
total reward obtained. RL that uses neural networks as
agents to learn the optimal policy is referred to as deep
RL. Recently, RL, and especially deep RL have been used
with great success for numerous problems in various areas
of physics, in general, [33], as well as quantum computing
[34], in particular. More recently, RL has been used to
learn appropriate optimizers that solve difficult optimiza-
tion problems, or to learn to optimize, examples include
[35–40].
The RL approaches to optimization show advantages

over automating and accelerating the optimization of
complicated problems. Instead of manually crafting clas-
sical optimizers, one can parameterize and learn opti-
mization rules in a data-driven fashion.
Yet another application of RL for optimization is to use

the RL agent as a hybrid aspect of the optimizer to auto-
matically guide the behavior of the optimizer in an intel-
ligent way, suitable in particular for the problem at hand.
This does not involve “learning” to optimize on a similar
task prior to the optimization task, but using the machin-
ery of RL, and the stored experiences during the opti-
mization procedure (the experience replay [41]), to select
the appropriate next steps in the optimization search.
Based on the agent’s prior experience and obtained re-
ward, the next optimization behaviors are selected, in-
stead of encoded, such as selecting exploration vs. ex-
ploitation behaviors, or parameter values. Examples in-
clude [42, 43], where different global optimization heuris-
tics were combined with a simple Q-learning approach to
intelligently choose between exploitation or exploration
behavior of the heuristic, as well as intelligently set other
parameters of the optimization heuristics. These intelli-
gent optimization approaches were tested on known hard
mathematical functions as benchmarks and were found to
outperform other state-of-the-art methods that were not
enhanced by RL. In [44], a review of hybrid approaches
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FIG. 3. The reinforcement learning (RL) algorithm used for CNOT gate sequence optimization. A deep deterministic policy
gradient (DDPG) actor-critic algorithm was used as an agent. The state space is defined as 35 normalized time parameters
αi ∈ [0, 2] of SWAPαi gates, operating on six spins Ak and Bk (k = 1, 2, 3) representing two logical qubits A and B, and
arranged in the five-brick structure. Each state corresponds to a sequence of exchange pulses with a length of up to 14 time
steps using parallelism. The number of pulses can be smaller than 35 when some of the αi are zero. The action space is
defined as two possible actions – a ∆ step, that potentially changes all parameters αi, and a PP-move, i.e., a partial Powell
local optimization step, where a local optimization with a fixed number of iterations is performed. The number of iterations is
small ranging from 0 (no local optimization is performed) to 12. The reward is based on the distance to the CNOT gate used
by Fong and Wandzura [15] and the total time, which can be either the time T = Tp for applying the SWAPαi gates in parallel
where possible, or the time T = Ts for applying the SWAPαi gates sequentially.

for optimization, that use RL as well as metaheuristics
for combinatorial optimization is presented. In [45], a
memetic particle swarm optimizer that uses RL to con-
trol optimization operations, related to choosing local
search behavior and particle selection, was introduced.
The method turned out to be successful on several bench-
mark optimization problems. In this work, we use a deep
RL approach to intelligently guide an optimizer to better
optimize a gate sequence. The RL agent, based on pre-
vious experience, recorded in an experience buffer, and
on previous rewards from the environment, predicts the
optimality of an action. In this case, the action is a be-
havior of the optimizer.

B. The five-brick structure

In the search for the reset-if-leaked sequence [22], a
brick-like structure of repeated patterns of physical ex-
change gates (SWAP-α) was used. The brick structure
is taking advantage of the commutation relation between
the exchange interactions between the qubits in different
subsystems. Two exchange interaction operators com-
mute if the exchange interaction is applied to pairs of
logical qubits that do not share any common spins. Then
the gate sequence is invariant under the interchange of
the order of these operators. Here, since we are not trying
to reproduce the FW gate sequence, but aim to improve
it, we loosen the four-brick pattern structure to a general
five-brick structure (Fig. 4) that allows all six physical
qubits to be affected by the sequence, which in principle
enables a generalized search for other, potentially better
sequences.
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C. Reward function for the CNOT-gate

In order to assess how well a gate sequence approxi-
mates a logical CNOT, the distance from CNOT is mea-
sured using the FW distance function introduced in [15],

dFW(U(α)) =

[
2− 1

4

∣∣∣U (0)
11 + U

(0)
22 + U

(0)
34 + U

(0)
43

∣∣∣
−1

4

∣∣∣U (1)
11 + U

(1)
22 + U

(1)
34 + U

(1)
43

∣∣∣]1/2 , (1)

where U (0/1) is the α-dependent unitary matrix de-
scribing the overall gate sequence on the subspace for
total spin zero or total spin one, respectively. Here,
α = (α1, α2, . . .) represents the list of exchange time pa-
rameters. The function dFW is a distance measure be-
tween a unitary matrix and the desired CNOT gate, tak-
ing advantage of the fact that CNOT as the target gate
comprises only ones and zeros as matrix elements in the
computational basis. Furthermore, note that while the
unitarity of U (0/1) is used, dFW allows for different phase
factors in the spin-0 and in the spin-1 subspaces. The
reward is given by

R(α) = N − dFW(U)− γT, (2)

where T denotes the total gate time. The last term re-
wards minimizing the total time needed for the gate se-
quence. N is a large number added for technical reasons,
as negative rewards do not perform well.

D. Reinforcement learning for gate sequence
optimization

Reinforcement learning (RL) can use the memory hash
that is built from the learning experience in order to
achieve intelligent optimization. The reward feedback,
provided from the environment in the RL setting can im-
prove the optimizer’s behavior, and instead of choosing
parameters of the optimization heuristics manually, the

RL machinery can be used to guide the optimizer param-
eters in high-reward areas, with the actor-critic used to
learn to predict the behavior of the optimizer that will
optimize the reward.
A visual representation of our RL approach is shown in

Figure 3, where the observation space consists of the pos-
sible values for the normalized times αi for gate sequences
of fixed length 35, the action space consists of two types
of actions, a small change of the normalized times of the
sequence, and a partial local optimization (the derivative-
free Powell’s method) of a fixed small number of itera-
tions. The RL agent learns the best way to optimize the
total time of the sequence in an actor-critic approach,
where both the actor and the critic are neural networks.
The reward obtained by the agent at each step is based on
the sequence distance to the exact CNOT or CZ gate and
the total time of the gate sequence. To optimize the gate
sequence, given the difficulty of the problem, we utilize
RL to learn strategies to optimize the sequence, instead
of manually selecting and parametrizing an optimizer.
We use the deep deterministic policy gradient (DDPG)
[46] algorithm, which is an actor-critic algorithm [47] for
RL with continuous state space, where the gate sequence
is assumed to be constructed by a sequence of repeating
the five-brick structure of a fixed length of 35 pulses, and
the state space consists of the values of the normalized
times αi of the different SWAPαi gates, i = 0, . . . , 34.
We use hybrid control, namely the action space has both
continuous as well as discrete components. The contin-
uous components are values that change the normalized
times αi at a given step, while the discrete component de-
termines the number of iterations of a partial derivative-
free optimization (partial use of Powell’s method, [48]).
The number of possible iterations can be 0, which allows
for the case where no derivative-free partial optimization
takes place, and only the values of the normalized times
are varied. By partial optimization here we mean that
we fix the number of optimization iterations without the
necessity of a local optimum to be achieved. The goal is
to learn a sequence of parameter values (starting points
of the partial Powell algorithm) that result in the best
gate sequence. As a reward we use a function based on
the FW measure for the distance from CNOT combined
with the total time, see Eq. (2).

E. Optimizing Ts for CNOT with linear “33”
arrangement

We investigate the performance of our approach for
optimizing the CNOT gate sequence, imposing the same
constraints on qubit arrangement as in [13] in order to be
able to compare the resulting gate sequences to the one
used inWeinstein et al. [13]. We enforce connectivity con-
straints of the physical qubits so that the singlet-triplet
part of the logical qubit is on the outside of the gate se-
quence chain. This yields the order of the linear-chain
arrangement highlighted in gray in Fig. 1 which is A1,
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A2, A3, B3, B2, B1 (the “33” arrangement). This allows
us to compare solutions discovered by our approach to the
solution expressed in [13], where such additional require-
ment was imposed. We present the results in Sec. III.

F. 2D Connecting topology

In addition to the linear arrangement, we also con-
sider the case where the three physical qubits of one
logical qubit are coupled to their counterparts of the
other logical qubit, see the qubits highlighted in green
in Fig. 1. This requires an adjustment of the grouping
of the exchange gates and complicates the optimization
procedure, see Sec. III for the results.

III. RESULTS

Multiple exact CNOT gate sequences of 14 time steps
were discovered using the RL algorithm for gate sequence
optimization. Most of the discovered sequences comprise
14 time steps, but several, including the FW gate se-
quence and the improved FW gate sequences, required
only 13 time steps. The total times Ts and Tp for per-
forming the exchange pulses sequentially and in par-
allelized form, respectively, of some of the discovered
CNOT gate sequences are plotted as a function of the
used training steps in Fig. 5. We find that with an in-
creasing number of training steps, the solution discovered
by the algorithm improves. The best solution, discovered
by the algorithm has shorter total sequential and parallel
times than the original sequence published by Fong and
Wandzura in [15].

In addition to the results for the CNOT gate, the RL
algorithm also produced several exact CZ sequences of
length 14 time steps discovered by the RL algorithm, see
Fig. 7. The dotted lines correspond to the total times re-
quired for the parallel and sequential operation of the CZ
gate sequence described in [13]. The shortest sequence
has total times Tp = 11.5π/J and Ts = 16.0π/J , re-
spectively, for parallel and sequential execution. This
sequence (shown in Fig. 6) is equivalent to the CZ gate
described in [13]. As the number of RL training steps
increases, the corresponding best solutions discovered by
the algorithm improve in efficiency. For details on the
results for the CZ gate sequences, see Appendix B.

We also use the RL algorithm to optimize the CNOT
gate with a different connecting topology. We again dis-
cover many exact solutions of a length of seven five-brick
blocks, however, the best solution we discover is with a
total sequential time Ts = 20.4π/J , and total parallel
time Tp = 15π/J . Again the efficiency of the discovered
gates depends on the number of training steps of the RL
algorithm. For details on the results for the 2D topology,
see Appendix D.

Finally, we also optimize a sequential CNOT gate se-
quence for the linear arrangement with singlet-triplet

pairs at the edges (the “33” arrangement shown in gray
in Fig. 1). Under these constraints, we again discover
multiple exact CNOT gates of various efficiencies. In
this situation, we only evaluate the sequential total time
Ts. The results are shown in Fig. 8 in the Appendix.
Importantly, with our RL approach, we rediscover the
gate sequence used in [13]. However, in addition, we
discover a few solutions that are more efficient than the
sequence in [13] with respect to total sequential time Ts.
The best solution is shown in Fig. 9. This solution is
identical to the Weinstein CNOT sequence with respect
to the locally-equivalent part but with optimized local
gates at the beginning and at the end of the sequence.
The efficiency of the discovered CNOT gates again heav-
ily depends on the training steps of the algorithm. For
more details see Appendix C.

IV. DISCUSSION OF THE RESULTS

For the linear arrangement with singlet-triplet pairs
at the inside of the chain (“11” arrangement), our RL
approach finds the realization of an exact CNOT gate
which improves previously published results regarding
the the total gate times Ts and Tp. For the arrange-
ment with singlet-triplet pairs on the outside of a chain
(“33” arrangement) as in [13] we found a sequence with
reduced total sequential time Ts compared to the one im-
plemented in [13]. These results demonstrate the power
of RL applied to the optimization of quantum gates and
quantum gate sequences.
We observed that some of the solutions for the CNOT

gate sequence found by our RL approach are related to
each other by symmetry operations. Those symmetries
are presented in Appendix E in the form of mathemati-
cal lemmas. Importantly, explicitly implementing these
symmetries in the future can boost the performance of
the optimization strategy. These operations themselves
are not difficult to understand and are implicitly used al-
ready in the literature at least partially, given that what
we refer to as an ‘inverse’ FW sequence (or the non-local
part of it) is also referred to as ‘FW sequence’ [18]. In
general, the term ‘FW sequence’ refers to different se-
quences in the literature [13, 18, 21], see Fig. 2, which
can be either an explicit CNOT sequence as in the orig-
inal work by Fong and Wandzura [15] or locally equiva-
lent [18] and which can be either using the same SWAPα

gates presented in [15] as in [21] or the inverse opera-
tions [13, 18]. Remarkably, our RL approach found both
versions from scratch for the exact CNOT for the same
linear arrangement of physical spin qubits as in [15], i.e.,
the chain highlighted in blue in Fig. 1, see Sec. II for the
details of our optimization procedure. We note that the
CNOT sequence presented here in Fig. 2 (a) requires a
shorter gate time than the original FW sequence [15] and
in contrast to the one presented in [18], it provides the full
CNOT sequence rather than a sequence which is locally
equivalent to CNOT. We further note that we did not im-
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described in Eq. (2). We find that after about 45000 training steps, the sequences obtained from the algorithm trained using
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pose any restrictions on the values of α for the SWAPα

gates in contrast to [18]. While a restriction to
√
SWAP

gates and products as made in [18] cannot yield an ex-
act CNOT gate, it can, however, provide a gate sequence
that is locally equivalent to the CNOT or CZ gate. The
independence from such restrictions on the gate sequence
demonstrates the flexibility of our approach. Regarding
the more complex optimization problem for the 2D con-
nectivity, we note that while the RL algorithm can tackle
also this problem, it is challenging to obtain a solution
comparable in total time to the most efficient sequence
for linear connectivity.

V. CONCLUSION

We have shown that machine learning and intelligent
optimization through RL are working approaches for
finding optimal exchange-only gate sequences. Specifi-
cally, we have discovered optimized solutions for a va-
riety of gates and connectivities. In this work, RL has
demonstrated its flexibility and usefulness in optimizing
the total times of exchange-only CZ and CNOT gate se-
quences. The results demonstrate that RL helps find-
ing such sequences and improves the total gate times of
state-of-the-art solutions with fewer prior assumptions
compared to other approaches. In the optimization prob-
lems considered in this work, we have used a brick (base)
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structure that encodes the commutation relations of the
exchange coupling. By enforcing a fixed connectivity we
have turned the problem into a continuous optimization
problem, for which efficient methods exist. We then use
the RL as a tool for intelligent optimization that learns
the appropriate starting points of a local optimizer. We
find optimized solutions that are better or equivalent in
terms of total times to known state-of-the-art solutions.

A limitation of our approach is the use of a fixed brick
structure, which captures the commutation relations of
operators but is not unique. Ideally, different brick struc-
tures could be used in optimization. For a more flexible
approach, the symmetries that follow from the commu-
tator relations can be encoded in an equivariant neural
network, instead of using a fixed brick structure. This is
meaningful also for other symmetries in the search space.
Moreover, symmetries arising from the commutation re-
lationships, as well as the other discovered symmetries,
could be exploited by directly incorporating them in var-
ious ways in the optimization problem. As the approach
is flexible, it allows for the investigation of different con-
nection topologies in future work. Instead of optimiz-
ing the total gate time, the objectives could also be to
minimize the number of exchange gates or the number
of time steps. This might be particularly promising for
gates other than CNOT and CZ. Additionally, one could
extend the problem of optimal exchange-only gate se-
quences to a more realistic scenario where the gate fi-
delity is optimized in the e presence of state leakage and
noise.

The RL-based approach presented here is by no means
limited to spin exchange-only qubits. In contrast, it
can be broadly applied for finding sequences for various
quantum computing hardware platforms or for optimiz-
ing compiling sequences of quantum gates.
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Appendix A: Reinforcement learning used for
optimization

For all optimization problems investigated here, the
RL algorithm used is the Deep Deterministic Policy Gra-
dient algorithm (DDPG) [46] which uses the interaction
between an actor network and a critic network to learn
[47] a policy. Moreover, it is a model-free algorithm that
does not impose a model or prior knowledge of the world.

The RL algorithm uses a deterministic policy gradient
and can operate over continuous action spaces. We use
the DDPG as implemented in the “stable baselines-3”
package [49]. For the definition of the environment, we
use the API provided by the package gym in OpenAI [50].

We use a gate sequence of a fixed number of 35 parame-
ters, organized into seven blocks of five SWAPα gates, i.e.
bricks, of parameters (physical gate times), similar to the
structure FW sequence but without restrictions on the
individual exchange pulses. However, an optimal shorter
gate sequence length can potentially be reached via this
setting. Note that effectively the sequence is shorter if
gate times were found to be zero. Observation, action
space, and steps of the algorithm were implemented in
OpenAI. The actor and critic networks used are stan-
dard fully connected multilayer perceptron (MLP) net-
works with three hidden layers, size 64. The following
hyperparameter values [51] are used: an initial learning
rate αa = 0.0001 of the actor, and initial learning rate
αc = 0.00001 of the critic networks with a linear learn-
ing rate schedule of decrease, and a batch size of 256.
A large buffer size of 5000000 allows for a large number
of experiences to be stored. The observation space, de-
scribing the parameter values of the optimization search,
is the 35-dimensional space [0, 2]

35
. The action space

used is hybrid, which has a continuous component, as
well as a discrete component, [−0.4, 0.4]

35 ⊗ {0, . . . , 12}.
Namely, at each step, the agent performs an action that
is a change of the normalized times αi, i = 0, . . . , 34, as
well as a partial Powell optimization is performed with
a possible number of iterations from 0 to 12, where 0
iterations means that no Powell derivative-free optimiza-
tion is performed. The goal is for the algorithm to learn,
starting from a random point, an appropriate sequence
of parameter changes for the respective {α0, . . . α34} as
well as appropriate Powell iteration values to navigate
the search space.

Appendix B: Results for the CZ-gate

In order to adapt the algorithm for the discovery of the
CZ gate, all we need is to redefine the reward function.
The five-brick structure and the parametrization can be
reused directly as defined in the search for optimal CNOT
gate sequence. This demonstrates the flexibility of the
approach. The quality measure, which evaluates a gate
sequence’s distance from the CZ gate is given by:

dCZ =

[
2− 1

4

∣∣∣U (0)
11 + U

(0)
22 + U

(0)
33 − U

(0)
44

∣∣∣
−1

4

∣∣∣U (1)
11 + U

(1)
22 + U

(1)
33 − U

(1)
44

∣∣∣]1/2 . (B1)

Accordingly, the reward is given by

R(α) = N − dCZ(α)− γT. (B2)

In the following, we present the results found by our RL
approach for an exact CZ gate, using the objective func-
tion from Eq. (B2). The results obtained are similar to
the sequences found for CNOT, see Fig. 2. Again there
are solutions which are related to each other by symme-
try transformations, see Appendix E. The sequence in
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(a) CZ sequence as used in Weinstein et al. (up to ordering SWAP gates)
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(b) alternative CZ sequence

FIG. 6. (a) The optimal CZ sequence rediscovered by the RL
algorithm equivalent to the CZ gate sequence in Weinstein
et al. [13] (up to spin-order related SWAP gates) and up to
local gates to the sequence in [18]. (b) Alternative CZ gate
sequence also found by our RL approach and related to the
original FW sequence [15] by altering the local operations
on logical qubits A and B at the beginning and end of the
sequence. The sequences shown in (a) and (b) are related to
each other by ’inverting’ the sequence, see Appendix E. They
are equivalent in number of exchange pulses and number of
time steps when using parallelism. Sequence (a) is superior
in both, Tp and Ts.

Fig. 6 (b) is related to the original FW sequence [15] by
changes only in the local gates for the A and for the B
qubit at the beginning and at the end of the sequence.
On the other hand, the sequence in Fig. 6 (a) is up to
reordering of the spins-related SWAP gates identical to
the CZ sequence from [13] where it is referred to as ‘FW
CZ’ sequence.

The performance of the RL algorithm as a function of
training steps is presented in Fig. 7. While the CNOT
or CZ sequences can be generated from each other by
padding with local single-qubit gates acting on the qubits
A and B at the beginning and at the end of the sequence,
the fact that our RL approach performs well for finding
both, CNOT and CZ sequences from scratch is an im-
portant indication for the flexibility of the ansatz.

Appendix C: Optimizing gate sequences with fixed
order gates to compare to the solution presented in

[13]

The arrangement in Ref. [13] is such that the singlet-
triplet pairs are on the ends of the chain of six spin qubits,
as in the chain highlighted in gray in Fig. 1. This explains
that the sequence implemented by Weinstein et al. has
eight additional SWAP gates which are in some sense
switching between two distinct linear orders (highlighted
in blue and gray in Fig. 1). The total sequential time
of the Weinstein CNOT sequence, see Fig. 9, is 26π/J

assuming a constant exchange coupling J for each of the
exchange gates in contrast to the actual implementation
in [13], while the total time of the improved FW sequence
together with eight ordering SWAP gates is 28π/J . How-
ever, this is an unfair comparison, as some gates at the
beginning and the end are shifted relative to the order-
ing SWAP gates to transform them in a more efficient
way. In order to use the Weinstein CNOT sequence as a
benchmark, we need to use our RL approach applied to
their architecture and then minimize the sequential time.

To be able to fairly compare to the sequence discussed
in [13], we set specific constraints for the gate sequence
– sequential execution of the physical gates and we use
the same pairs spins coupled by exchange gates as in
[13]. RL was used to optimize a CNOT sequence that is
sequential and with order gates using the form from [13].
We achieved sequences with better total sequential time
than the one in [13], see Fig. 9.

Appendix D: 2D architecture optimization

In addition, we apply RL to optimize a two-
dimensional (2D) topology where each spin is exchange-
coupled to a spin of the other qubit. The constraints
of the 2D arrangement, highlighted in green in Fig. 1,
lead to a modification of the 5-brick structure used in
the FW optimization, yielding a seven-component struc-
ture as shown in Fig 10. In each block, we first apply
the exchange gates between the logical qubits A1 and A2
as well as B1 and B2 in parallel. Second, we apply the
gates between A2 and A3 as well as between B2 and B3
in parallel. Finally, we apply the interactions JAjBj with
j = 1, 2, 3 in parallel. We find a gate sequence for CNOT
with total time Ts = 20π/J (Tp = 15.89π/J).

Appendix E: Theoretical derivation of observed
symmetries

Among the solutions obtained by RL, we observe that
some are related to each other by a symmetry operation
that leaves the resulting logical quantum gate unaffected.
We elaborate on such symmetry operations in the follow-
ing, using some specific properties of the CNOT and CZ
gates, namely that these unitaries are also Hermitian and
that – in matrix form – they have real entries.

We start by reminding ourselves that switching the
sign of the time a constant Hamiltonian is ”switched on”
translates from a unitary operation to its inverse:

Lemma E.1 A quantum gate given by U(t) =
exp

(−it
ℏ H

)
with a time-independent Hamiltonian H, ful-

fills U−1(t) = U(−t).

In the context described in this paper, unitary operations
are given by a sequence of consecutive gates of the form
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FIG. 7. Improvement of Ts (in blue) and Tp (in orange) of the CZ gate sequences units of π/J discovered by the RL algorithm
depending on the number of training steps used. Further details, see Fig. 5.

given in the lemma above. This means constant Hamilto-
nians Hj are switched on for times tj . We directly obtain
the following statement about those sequences.

Lemma E.2 For a gate sequence U(t1, . . . , tn) =

Un(tn) · · ·U1(t1) with Uj(tj) = exp
(

−itj
ℏ Hj

)
, the

inverse unitary operation is given by the sequence
[U(t1, . . . , tn)]

−1 = U1(−t1) · · ·Un(−tn).

Consequently, we can express a unitary operation which
is Hermitian, like CNOT:

Lemma E.3 For a gate sequence U(t1, . . . , tn), defined
in the same way as in the lemma above with U† = U , the
reverse sequence with inverted time arguments represents
the same unitary,

Un(tn) · · ·U1(t1) = U1(−t1) · · ·Un(−tn).

For sequences of palindromic structure, this yields:

Corollary E.3.1 If a gate sequence is given by
U(t1, . . . , tk) = U1(t1) · · ·Uk(tk) · · ·U1(t1), i.e., it is of
palindromic structure, and obeys U† = U , then the same
unitary operation is represented by the sequence with neg-
ative time arguments,

U(t1, . . . , tk) = U(−t1, . . . ,−tk).

Note that the non-local part of the FW sequence for
CNOT and also an exact CZ sequence are palindromic.

Now, we will use the properties of the distance mea-
sures dFW and dCZ and properties of the individual ex-
change gates. These individual gates for the exchange-
only qubits are SWAPα gates applied to two of the phys-
ical qubits. A SWAPα gate is symmetric in the standard
basis {|00⟩, |01⟩, |10⟩, |11⟩} as well as in the representa-
tion used for computing the exchange-only sequences for
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FIG. 8. Total times of the resulting CNOT gate sequences with fixed ordered gates discovered by the RL algorithm and the
sufficient number of training steps, needed to obtain them.
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FIG. 9. CNOT gate sequences for the linear arrangement
with the singlet-triplet pairs on the outside (highlighted in
gray in Fig. 1): The RL-optimized sequence of sequential time
Ts = 24π/J and the sequence from [13] of Ts = 26π/J .

the logical subsystem (5 × 5 for zero spin, 9 × 9 ma-
trices for spin one), see Ref. [15]. From this it follows
that a sequence of SWAPα gates, U(α0, . . . , αn−1) =
SWAPαn

injn
· · · SWAPα1

i1j1
fulfills

U(2− α1, . . . , 2− αn) = [U(α1, . . . , αn)]
∗,

where ∗ denotes the complex conjugate (not the Hermi-
tian conjugate).

A3

A2

A1

B1

B2

B3

1

2

3

4

5 6 7

8

9

10

11

12 13 14 ...

FIG. 10. The seven-parameter block of quantum gates used
for the physical qubits being arranged in a two-by-three rect-
angle with nearest-neighbor coupling. Note that the exchange
gates between two spins where one belongs to logical qubit A
and the other to logical qubit B (corresponding normalized
gate times are α5, α6, α7 or α12, α13, α14) can be performed
in parallel.

Note that CNOT has only real entries in the logical
subsystem in the standard basis. Consequently, two gates
which are complex conjugate to each other, have the same
distance to CNOT. This holds for the Euclidean distance
as well as for the FW loss function, dFW.

Lemma E.4 For sequences of SWAPα
ij gates,

U(α1, . . . , αn) = SWAPαn
injn

· · · SWAPα1
i1j1

,

the following holds

dFW(U(α1, . . . , αn)) = dFW(U(2− α1, . . . , 2− αn)).
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Note that the lemma above also holds for dCZ. Fur-
ther note that Lemma E.3 and Lemma E.4 applied to a
CNOT (CZ) sequence yield two sequences also represent-

ing CNOT (CZ). Only if the sequence is of palindromic
structure these two sequences are identical to each other,
compare Corollary E.3.1.
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