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We develop the theory of the edge coloring of infinite lattice graphs, proving a necessary and
sufficient condition for a proper edge coloring of a patch of a lattice graph to induce a proper edge
coloring of the entire lattice graph by translation. This condition forms the cornerstone of a method
that finds nearly minimal or minimal edge colorings of infinite lattice graphs. In case a nearly
minimal edge coloring is requested, the running time is O(µ2D4), where µ is the number of edges in
one cell (or ‘basis graph’) of the lattice graph and D is the maximum distance between two cells so
that there is an edge from within one cell to the other. In case a minimal edge coloring is requested,
we lack an upper bound on the running time, which we find need not pose a limitation in practice;
we use the method to minimal edge color the meshes of all k-uniform tilings of the plane for k ≤ 6,
while utilizing modest computational resources. We find that all these lattice graphs are Vizing
class I. Relating edge colorings to quantum circuits, our work finds direct application by offering
minimal-depth quantum circuits in the areas of quantum simulation, quantum optimization, and
quantum state verification.

I. INTRODUCTION

An edge coloring of a graph G is an assignment of
colors to all its edges. An edge coloring is considered
proper if no two edges of the same color are incident on
the same vertex. It is called minimal if it additionally
uses the least possible different colors. The number of
colors used in a minimal edge coloring of G is called the
edge chromatic number or chromatic index χ′(G). The
problem of finding a minimal edge coloring of a graph is
called the edge coloring problem. Vizing [1, 2] proved that
any finite simple graph G with maximum degree ∆(G)
belongs to one of two classes;

χ′(G) = ∆(G) (class I),
χ′(G) = ∆(G) + 1 (class II).

(1)

Vizing’s theorem was discovered independently by
Gupta [3, 4], whose proof also applies to infinite graphs
with a finite maximum degree. The problem of determin-
ing the class of a graph is NP-complete [5]. Nevertheless,
using the edge coloring algorithm by Misra and Gries [6],
a proper edge coloring of a simple graph G using at most
∆(G) + 1 colors is found in polynomial time.

We call a proper edge coloring of G using at most ∆(G)
colors a type-I coloring of G. If it exists, a type-I coloring
is always minimal. We call a proper edge coloring of G
using at most ∆(G)+1 colors a type-II coloring. A type-
II coloring of a graph G always exists. It is minimal in
case G is a class II graph and nearly minimal in case G
is a class I graph, in which case the edge coloring uses
just one excess color.

In this paper, we present a method that finds type-I or
type-II edge colorings of lattice graphs. These graphs are
illustrated in Fig. 1 and introduced formally in Sec. II.
However efficient, no standard methods for the type-I or
type-II edge coloring of lattice graphs can be used be-
cause lattice graphs are infinite. To find a type-II edge
coloring of a lattice graph, our method (Sec. III) searches
a patch of the lattice graph that is self-loop-free and al-
lows a type-II coloring after imposing periodic boundary

conditions on the patch. We prove that such a patch is
always found. Subsequently, the patch is type-II edge col-
ored and the periodic boundary conditions are lifted. We
prove that the resulting colored patch can be repeated in-
definitely to form a type-II (and hence also proper) edge
coloring of the entire lattice graph. The self-loop-free
property of the wrapped patch plays a crucial role in this
proof.

Similarly, to obtain a type-I edge coloring, a patch is
searched that is self-loop-free and permits a type-I col-
oring after imposing periodic boundary conditions. We
prove that, if such a patch is found, it can be repeated in-
definitely to produce a type-I (and therefore always min-

Figure 1. Lattice graphs. A basis graph B (bold vertices
and edges), containing µ edges, induces a lattice graph G by
the union of infinitely many translated copies of B. A patch
Pn,m of G is formed by the union of n × m copies of B. (In
the figure, n = m = 3, and Pn,m is formed by all vertices
and edges shown). Lattice graphs need not be planar, as
symbolized by the slash through the edge between vertices
s and s′. The seeds S are the vertices inside the unit cell
[parallelogram labeled (0, 0)]. An edge-colored patch C(Pn,m)
induces an edge coloring C of G by the union of infinitely many
translated copies of C(Pn,m) (not illustrated here).
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imal) edge coloring of the lattice graph. However, it is
no longer guaranteed that such a patch is found. First,
the lattice graph may be class II. Secondly, even if we
assume that the lattice graph is class I, it remains an
open question whether there exists a patch that is self-
loop-free and permits a type-I coloring after imposing
periodic boundary conditions on that patch.

We implement and apply our edge coloring method to
a plethora of lattice graphs (Sec. IV), each time request-
ing a type-I edge coloring of the lattice graph. For all
1317 lattice graphs, a type-I coloring was found without
prior knowledge of the class of these graphs. This demon-
strates that, despite the lack of theoretical guarantees,
in practice the method is effective in finding type-I and
hence minimal edge colorings of lattice graphs. Among
the lattice graphs used are the meshes of all k-uniform
tilings of the plane for k ≤ 6, which are hence all class I.
We therefore hypothesize that the k-uniform tilings of
the plane are class I for all k ≥ 1. At the same time, we
construct a (planar) lattice graph that provably class II
and also use our method to edge color it minimally.

For practical applications, one is typically not inter-
ested in a type-I or type-II edge coloring of an infinite lat-
tice graph, but rather in a type-I or type-II edge coloring
of a finite but possibly large patch of that lattice graph.
In addition to providing type-I or type-II edge colorings
of infinite lattice graphs, our method provides significant
computational advantages for the type-I or type-II edge
coloring of these finite but large patches. This is because
our method typically needs to find a type-I or type-II
edge coloring of a small subgraph of the large patch.
Once this is achieved, the solution can be extended effi-
ciently to patches of arbitrary size. In contrast, methods
that do not leverage the translational symmetry of lattice
graphs have to find the type-I or type-II edge coloring of
the entire large patch.

One important application of minimal edge coloring
lattice graphs is in quantum computing, where proper
edge colorings can be used to represent quantum circuits
for tasks in quantum simulation, quantum optimization,
and quantum state verification (Sec. VI). In this context,
patches of minimally edge-colored lattice graphs corre-
spond to minimal-depth quantum circuits.

II. LATTICE GRAPHS

For an initial understanding of the edge coloring
method (Sec. III), the definitions in Fig. 1 may suffice.
Readers mainly interested in the practical applicability
of the method may proceed directly to Fig. 2 for an ini-
tial understanding of the method and then to Sec. IV for
its application. However, the formal results in Sec. V ne-
cessitate formal definitions, which we provide here. The
terminology is derived from terminology standard in solid
state-physics [7].

A two-dimensional Bravais lattice Ṽ [including points
labeled s (not s′) in Fig. 1] is an infinite set of points in

the Euclidean plane obtained by acting on a single point
with a symmetry group generated by translations along
the vectors v1,v2 ∈ R2; Ṽ = {xv1 + y v2 | (x, y) ∈ Z2}.
In this paper, we assume 2-dimensional lattices for ease of
notation throughout. However, all methods and results
can be straightforwardly generalized to any dimension by
de- or increasing the dimension of the vectors.
A geometric lattice with seeds V is a Bravais lattice in

which a set S (points inside the parallelogram (0, 0) in
Fig. 1), containing vectors r ∈ R2, known as seeds, is
translated instead of a single point [8];

V = {r+ xv1 + yv2 | r ∈ S , (x, y) ∈ Z2}. (2)

Without loss of generality, we assume that all seeds are in
the unit cell, which is the region delimited by the paral-
lelogram defined by the vectors v1,v2. A Bravais lattice
is a geometric lattice with a single seed.
In this paper, a graph (without qualification) is a tuple

G = (V (G), E(G)), with vertices V (G) and edges E(G)
countable sets that may contain self-loops and multi-
edges. A self-loop is an edge that connects a vertex with
itself and a multi-edge is a set of edges between a single
pair of vertices. (For distinguishability of the edges in
a multi-edge, each edge in a multi-edge is labeled with
a label unique to that multi-edge.) Hence, a self-loop-
free graph may contain multi-edges but not self-loops. A
simple graph does not contain self-loops nor multi-edges.
Whenever we want to emphasize that a graph may con-
tain self-loops or multi-edges, we refer to it as a multi-
graph.
We define a geometric lattice graph G as a graph ob-

tained by the union of translated copies of a geometric
basis graph B, similar to how a geometric lattice with
seeds is generated by repeating the set of seeds S . The
vertices V (B) of the geometric basis graph are vectors
r ∈ R2 and the edges E(B) are hence sets of the form
{r, s}, which contain two vertices r, s. In Fig. 1, the ba-
sis graph of the honeycomb lattice graph is shown as the
Y-shaped figure with bold vertices and lines. Formally,
we define the geometric lattice graphs as infinite graphs
of the form G = (V (G), E(G)), where V (G) = V as in
Eq. (2) and with edges

E(G) = {{r+ xv1 + yv2, s+ xv1 + yv2}
| {r, s} ∈ E(B), (x, y) ∈ Z2}.

(3)

The specific Cartesian coordinates of the vertices of ge-
ometric lattice graphs are irrelevant for the minimal edge
coloring problem. Moreover, using Cartesian coordinates
may lead to floating-point issues when identifying equiv-
alent vertices from two translated copies of the geomet-
ric basis graph. Furthermore, we may want to edge color
graphs with no inherent geometrical meaning. Therefore,
we primarily use (nongeometric) basis graphs, which are
induced by (nongeometric) lattice graphs. They are es-
sentially geometric lattice graphs where the vertices are
not general vectors in the Euclidean plane but tuples of
the form (dx, dy, s), with (dx, dy) denoting the cell in
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which a vertex is located (also see the gray cell labels in
Fig. 1), and s being some unique identifier to distinguish
seeds in a cell. For simplicity, we assume the seeds are
identified by consecutive integers s ∈ S = {0, . . . , nS−1}.
Definition 1 (Basis graph). A basis graph B =
(V (B), E(B)) with seed numbers S = {0, . . . , nS − 1}
is a finite, simple graph, with all vertices of the form

(dx, dy, s) ∈ V (B). (4)

Here, (dx, dy) ∈ Z2 labels the cell the vertex is in, and
s ∈ S. Any vertex of B of the form (0, 0, s), is called a
seed of B and all other vertices of B are called nonseeds.
An edge of B is redundant if it can be removed without
altering the lattice graph induced by B. We demand that
B does not contain edges from nonseeds to nonseeds and
that B does not contain redundant edges.

Definition 2 (Lattice graph). A lattice graph G =
(V (G), E(G)) induced by a basis graph B is a graph ob-
tained by the union of infinitely many translated copies
of B;

V (G) = {v + (x, y, 0) | v ∈ V (B), (x, y) ∈ Z2},
E(G) = {{v + (x, y, 0), v′ + (x, y, 0)}

| {v, v′} ∈ E(B), (x, y) ∈ Z2}.
(5)

By this definition, lattice graphs are simple, but they
need not be planar.

The demand that (i) B does not contain redundant
edges is without loss of generality, since it does not
change the possible lattice graphs that can be con-
structed. Also, the demand that (ii) B does not contain
edges from nonseeds to nonseeds is without loss of gen-
erality. Consider a graph B′ that is a basis graph, with
the only exception that it contains edges from nonseeds
to nonseeds. Each of these edges can be translated [by
adding (x, y, 0) for some (x, y ∈ Z2) to both vertices] so
that one of the vertices becomes a seed. The resulting
basis graph B will induce the same lattice graph as B′.

As an example, consider the honeycomb lattice graph
(Fig. 1). It is induced by the basis graph B with
vertices V (B) = {a, b, c, d}, where a = (0, 0, 0), b =
(0, 0, 1), c = (1, 0, 0), and d = (0, 1, 0), and edges
E(B) = {{a, b}, {b, c}, {b, d}}. The addition of the edge
{a, (0,−1, 1)} to E(B) would render either {a, (0,−1, 1)}
or {a, c} redundant (i). The basis graph B′, where, for
example, the edge {a, b} is translated so that it entirely
lies inside the cell (1, 0), generates the same honeycomb
lattice graph as B (ii).

Definition 3 (Patch). An n bym patch Pn,m = Pn,m(B)
of a lattice graph G induced by a basis graph B is a graph
constructed by the union of n by m translated copies of
B,

V (Pn,m) = {v + (x, y, 0) | v ∈ V (B), (x, y) ∈ Zn × Zm)},
E(Pn,m) = {{v + (x, y, 0), v′ + (x, y, 0)}

| {v, v′} ∈ E(B), (x, y) ∈ Zn × Zm},
(6)

where Zi = {0, 1, . . . , i− 1}.

It follows from the definition of basis graphs that a
patch of a lattice graph is simple and does not contain
redundant edges. Any basis graph can be seen as a patch
for which n = m = 1. In contrast to the basis graphs,
patches with n ̸= 1 orm ̸= 1 contain edges from nonseeds
to nonseeds.
A graph C(G) is an edge coloring of a graph G if it is

equal to G except for an additional assignment of ‘colors’
c ∈ N0 to all edges. With G = Pn,m, C[Pn,m] is an edge
colored patch of n by m basis graphs,

V [C(Pn,m)] = V (Pn,m)

E[C(Pn,m)] = {({v, v′}, cv,v′) | {v, v′} ∈ E(Pn,m)}.
(7)

This graph induces an edge colored lattice graph C =
(V (C), E(C)) by

V (C) = {v + (nx,my, 0) | v ∈ V [C(Pn,m)], (x, y) ∈ Z2},
E(C) = {({v + (nx,my, 0), v′ + (nx,my, 0)}, c)

| ({v, v′}, cv,v′) ∈ E[C(Pn,m)], (x, y) ∈ Z2}.
(8)

The absence of redundant edges in B assures C is an edge
coloring of G. If C(Pn,m) (at given n,m) induces an edge
coloring C of a lattice graph G, we call C(Pn,m) a coloring
basis graph of G.

III. METHOD

A preprocessing stage is to define the (possibly geo-
metric) lattice graph G by a basis graph B as defined
in Definition 1 and Fig. 1. The method receives B, a
trit t ∈ {1, 2, 3}, and an initial patch size (n,m) as in-
put, where t indicates whether the objective is to find a
type-I (t = 1), type-II (t = 2) or proper (t = 3) edge
coloring. Below, we interleave the method (italic text)
with further definitions and explanations (regular text).
The main stages of the method are depicted in Fig. 2.
Throughout this paper, we initially choose n = m = 1,
so that initially Pn,m = B, unless specified otherwise.

Method 1 (Edge color lattice graphs).
1. Wrap.—Construct the patch Pn,m and wrap it to

obtain the multigraph P̃n,m.
Periodic boundary conditions are imposed on a vertex

(x, y, s) ∈ V (Pn,m) by

w[(x, y, s)] := (xmodn, ymodm, s). (9)

Here, we use the ‘floored divisor’ definition of the mod
operator; xmodn = x − n⌊x/n⌋. The function w natu-
rally induces a map from simple graphs G (such as Pn,m)
to multigraphs by applying w to all vertices and to all
vertices in all edges of G, not discarding any self-loops
and not merging any equal edges that may arise. We
denote this induced map by w as well.
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Figure 2. Main stages of Method 1. The preprocessing
stage is to define the lattice graph by its basis graph (Fig. 1).
Then, stages 1–3 are repeated with increasing patch size until
a patch is found at stage 3 that is self-loop-free and permits
a type-t (t = 1, 2, 3) edge coloring. At stage 4, this patch is
unwrapped, retaining its edge coloring. As a postprocessing
stage (stage 5), the infinite lattice graph is generated purely
abstractly, or a finite patch is generated explicitly.

The map w is not an invertible map from simple graphs
to multigraphs because the modulo operation is not in-
vertible. We therefore construct an invertible map W we
call wrapping. It is initially defined on edges {v1, v2} (not
vertices), by

W ({v, v′}) := ({w(v), w(v′)}, {v, v′}). (10)

The map W naturally induces a map W from edge sets
of simple graphs [such as E(Pn,m)] to edge sets of multi-
graphs by element-wise action; W [E(Pn,m)] = {W (e) |
e ∈ E(Pn,m)}. Since Pn,m is simple, the edge label car-
rying the old edge data, {v, v′}, serves as a unique label
distinguishing the edges in a multi-edge. The mapW can
once more be extended to a mapW from simple graphs to
multigraphs by acting nontrivially on the edge set of the
graph only; W (Pn,m) = (V (Pn,m),W [E(Pn,m)]). This

defines the wrapped patch P̃n,m,

P̃n,m := W (Pn,m). (11)

In Fig. 2, the arrowheads and gray vertices make it vi-
sually clear how the wrapping should be undone, and
therefore represent the old edge data.

2. No self-loops.—Assert that P̃n,m is self-loop-free. If
not, choose a new patch size (n,m) and return to stage
1.

In Sec. V and Appendix A (Theorem 1), we prove that

the absence of self-loops in P̃n,m is necessary and suffi-
cient for the output of the current method to induce a

proper edge coloring of the lattice graph G. After the
exposition of the method, we also illustrate the necessity
of the self-loop-free property by example.
If P̃n,m has self-loops, a new candidate patch needs

to be proposed. We choose a new (n,m) such
that the size n × m of the patch is nondecreasing.
That is, we choose (n,m) from the sequence a =
((1, 1), (1, 2), (2, 1), (1, 3), (3, 1), (2, 2), . . .). Such a se-
quence gives a bijection between pairs ai and the nonzero
integers i, so that, if the sequence is freely traversed, each
patch size is eventually encountered.
3. Color.— Type-t color the wrapped patch P̃n,m to

obtain the edge colored and wrapped patch C̃. If a type-t
coloring of P̃n,m is not found, choose a new patch size
(n,m) and return to stage 1.

To type-t color P̃n,m means to properly edge color P̃n,m

using either any number of colors (t = 3), ∆(P̃n,m) + 1

colors (t = 2), or ∆(P̃n,m) colors (t = 1). In Sec. V and

Appendix A (Lemma 1), we prove that ∆(P̃n,m) = ∆(G)
if P̃n,m is self-loop-free, which is guaranteed by stage 2
of the current method.
Assuming that a type-t coloring C̃ = C̃(P̃n,m) is found,

we may write its vertices and edges as [cf. Eq. (7)]

V [C̃(P̃n,m)] = V (P̃n,m),

E[C̃(P̃n,m)] = {({w(v), w(v′)}, {v, v′}, cv,v′)

| ({w(v), w(v′)}, {v, v′}) ∈ E(P̃n,m)}.
(12)

The crucial point for the subsequent stages of the method
is that, in the above, we may write cv,v′ because an edge

({w(v), w(v′)}, {v, v′}) ∈ Ẽ(Pn,m) is uniquely identified
by {v, v′}.
Any method may be used to seek C̃. In our implemen-

tation, we use the satisfiability modulo theories (SMT)
solver Z3 [9, 10]. The solver is guaranteed to find a type-
t coloring if such a coloring exists and reports that no
such coloring exists otherwise. In case a proper edge col-
oring is sought (t = 3), for every pair of edges incident
on the same vertex the constraint is added to the SMT
formula that states that the colors of those edges cannot
be equal. If a type-II coloring is sought (t = 2), an addi-
tional constraint is that the total number of colors used
is ∆(P̃n,m) + 1. If a type-I coloring is sought for (t = 1),
instead the additional constraint is that the total number
of colors used is ∆(P̃n,m).

A proper edge coloring exists for any P̃n,m. By Viz-
ing’s theorem, a type-II coloring is guaranteed to exist if
P̃n,m is simple. In Sec. V and Appendix A (Lemma 5), we

prove that a simple P̃n,m is always encountered as the se-

quence of patch sizes a is traversed. Nonetheless, if P̃n,m

contains a multi-edge, a type-II coloring may still exist,
in which case it will be found by the SMT solver. It is
an open question whether a wrapped patch that permits
a type-I coloring will be encountered as the sequence of
patch sizes a is traversed, even if it is assumed that G is
class-I.
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4. Unwrap.—Unwrap C̃ to obtain the edge-colored
patch C.
Unwrapping an edge reinstates the old edge, carrying

with it the color that was added in stage 2,

U({w(v), w(v′)}, {v, v′}, cv,v′) = ({v, v′}, cv,v′) (13)

It naturally induces a map on graphs of the form of C̃ by
acting on all edges of C̃. If applied to C̃, U produces an
edge coloring C of Pn,m. Thus, we have

U(C̃) = C. (14)

To summarize the output thus far, C =
U(C̃{W [Pn,m(B)]}) at given (n,m). Note that C
is an edge coloring of Pn,m. Return C, n and m.

In Sec. V and Appendix A (Theorem 2), we show that
C induces a type-t coloring of the lattice graph G. Akin
to Eq. (6), as a postprocessing stage, edge colored ‘super’
patches of N by M edge coloring basis graphs C can be
obtained with Eq. (8) after substituting Z2 → ZN ×ZM .
Such a construction is used to construct edge colored
super patches in Sec. IV.

We now motivate stage 2 (‘no self-loops’) of the method
by example, postponing the general and careful analysis
to Sec. V and Appendix A. Suppose the input of the
method is formed by B, t, with t = 3 and B a basis
graph of the square lattice graph that contains a single
seed. This basis graph has vertices V (B) = {a,b, c},
with a = (0, 0, 0), b = (1, 0, 0), and c = (0, 1, 0), and
edges E(B) = {{a,b}, {a, c}}. Then, stage 1 (‘wrap’)

produces the wrapped basis graph B̃. This graph has
two edges, both of which are self-loops of the seed a.
Now suppose stage 2 (‘no self-loops’) is skipped, so that

B̃ is passed to stage 3 (‘color’) despite containing a self-

loop. B̃ can only be properly edge colored using two
colors. Stage 4 (‘unwrap’) now produces a graph C with
E(C) = {({a,b}, ca,b), ({a, c}, ca,c)} for some ca,b ̸= ca,c.
Because the square lattice graph G has maximum degree
four, C cannot induce a proper edge coloring of G. When,
instead, stage 2 (‘no self-loops’) is included, the input to

that stage, P̃n,m, is rejected until we reach a patch with
(n,m) = (2, 2). It is then properly edge colored and
unwrapped. The resulting edge colored patch induces a
proper edge coloring of the lattice G (Fig. 3).

IV. EXPLICIT MINIMAL EDGE COLORINGS

In this section, we introduce various collections of lat-
tice graphs and apply Method 1 to find a type-I and
hence minimal edge coloring for each. Images of all
1318 edge colored lattice graphs are available at [11].
Method 1, including pre- and postprocessing, is imple-
mented in Python and is also available at [11]. The
computationally most demanding task of searching type-
I colorings of candidate wrapped patches is offloaded to

Z3. Results and wall-clock times are obtained by run-
ning the code on a 2019 MacBook Pro (16 inch, 2,6 GHz
6-Core Intel Core i7, 16 GB RAM) using a single thread.

A. Archimedean and Laves tilings

A tiling of the plane is a covering of the plane by closed
sets (tiles) without gaps or overlaps of nonzero area [12].
The vertices and edges of the tiles, or the ‘mesh’ of a
tiling, naturally define an infinite planar graph. A tiling
is termed periodic if it exhibits translational symmetry in
at least two nonparallel directions [12]. Thus, a periodic
tiling naturally defines a lattice graph.
The Archimedean tilings are tilings of the plane by

convex regular polygons with the property that all ver-
tex figures have the same form. That is, all vertices,
including the surrounding geometrical edges, are congru-
ent [12] figures. There are exactly 11 Archimedean lat-
tices, as was first discovered by Kepler in his Harmonice
Mundi from 1619 [13, 14]. The Archimedean tilings are
periodic and hence Method 1 can be used to color their
edges. Minimal edge colorings of all Archimedean tilings
were found in 0.3 s and are shown in Fig. 3.
The Laves tilings use a single shape of tile (monohe-

dral), where, for each vertex separately, all angles be-
tween two circularly adjacent edges are equal (vertex
regular) [12]. These tilings are also the face-dual tilings
of the Archimedean tilings. Consequently, there are 11
Laves tilings. The square lattice is self-dual, and the
honeycomb and triangular tilings are mutually self-dual,
leaving 8 Laves tilings that are not Archimedean. Min-
imal edge colorings of these 8 tilings were found in 0.4 s
and are shown in Fig. 4.

B. k-uniform lattices

A tiling by regular polygons is called uniform if ev-
ery vertex of the tiling can be mapped to any other
vertex of the tiling by a lattice symmetry [12]. Notice
that this mapping involves lattice symmetries rather than
isometries. Nevertheless, the set of uniform tilings of
the plane by regular polygons is identical to that of the
Archimedean lattices [15].
The notion of uniformity generalizes to k-uniformity.

A tiling by regular polygons is called k-uniform if the
vertices fall into k classes, where any two vertices within
a class can be mapped to one another by a symme-
try of the tiling [12, 18]. In this terminology, the 11
Archimedean (or uniform) tilings are 1-uniform. There
are 20 2-uniform tilings of the plane [18] and 61 3-uniform
tilings [19].
For k ≤ 6, Galebach [16] performed an exhaustive

search for all k-uniform tilings using a computer program.
For k = 1, . . . , 6, he found the number of k-uniform tilings
to be 11, 20, 61, 151, 332, 673, reproducing previous re-
sults for k ≤ 3. Although no scientific description of
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(63)
honeycomb
hexagonal
hextille

(44)
square
grid

quadrille

(36)
triangular
deltille

(4, 82)
square-octagon
truncated-square
bathroom-tile

truncated-quadrille

(33, 42)
trellis

elongated-triangular
isosnub-quadrille

(32, 4, 3, 4)
snub-square

Shastry-Sutherland
snub-quadrille

(3, 6, 3, 6)
kagome

trihexagonal
hexadeltille

(34, 6)
bridge

maple-leaf
snub-trihexagonal

snub hextille

(3, 4, 6, 4)
ruby

bounce
rhombitrihexagonal
rhombihexadeltille

(3, 122)
star

extended-kagome
truncated-hexagonal
truncated-hextille

(4, 6, 12)
cross
SHD

truncated-trihexagonal
truncated-hexadeltille

Figure 3. Minimal edge colorings of the 11 Archimedean lattice graphs. The coloring basis graph, that is, the coloring pattern
that needs to be repeated to color the entire lattice graph, is depicted with bold lines, both solid and dashed. It always contains
the basis graph of the uncolored lattice graph (bold, solid lines only). Below the lattice graph follow various names of that
graph. The first name is in the notation of Grünbaum and Shephard [12]. Starting at any vertex, it lists the number of vertices
of each of the adjacent polygons in cyclic order. Any repetitions are abbreviated by a superscript, e.g., (63) = (6, 6, 6). This
name is followed by various other (possibly nonsystematic) names, whereas the last name is the one given by Conway et al. [15].
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[4, 82]
union jack

[33, 42]
prismatic-pentagonal

iso(4-)pentille

[32, 4, 3, 4]
cairo pentagonal
4-fold-pentille

[3, 6, 3, 6]
dice

rhombille

[3, 4, 6, 4]
Deltoidal-trihexagonal

tetrille

[3, 122]
asanoha
hemp-leaf

Triakis-triangular
kisdeltille

[34, 6]
floret pentagonal
6-fold pentille

[4, 6, 12]
kisrhombille

Figure 4. Minimal edge colorings of all Laves tilings that are not already in Fig. 3. The data are presented as in Fig. 3, except
for the first name, which is now the name of the Laves lattice by Grünbaum and Shephard [12]. Taking any tile, it lists (in
square brackets) the degree of the tile’s vertices in the lattice. The dual of (x) is [x].

Figure 5. Minimal edge coloring of a 6-uniform geometrical lattice graph from Refs. [16, 17].
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NN-square
dense grid
J1J2-square
diagonal

NNN-square
J1J2J3-square

shuriken
square-kagome

squagome

heavy-hex
heavy-hexagon

wheel-decorated honeycomb

Figure 6. Miscellaneous minimal edge colorings. In the case of the NNN-square lattice graph, to enhance legibility and unlike
other lattice graph depictions, a single the coloring basis graph is presented, with all edges solid. The uncolored lattice is
induced by the bottom-left node and its neighbors. A gray background was added to the wheel-decorated honeycomb lattice
graph to accentuate its unique status as the only class II lattice graph within this paper.

Galebach’s method exists, his list is considered exhaus-
tive by some authors [20, 21]. Čtrnáct [22] performed
an exhaustive search for k ≤ 12, reproducing Galebach’s
results for k ≤ 6. Unfortunately, also for Čtrnáct’s cata-
log, a scientific description of the used methods is lacking.
A scientific description of a method for enumerating all
k-uniform edge-to-edge tilings by regular polygons is in-
troduced in Ref. [23], but this method has not yet been
used to generate tilings for k ≥ 3.

In Refs. [24–26], Galebach’s catalog of k-uniform tilings
was converted to a notation where each tiling is repre-
sented by its seeds, where every seed is a point in the
complex plane. The catalog in the latter form was ob-
tained at [17] and is repeated in the Supplemental Mate-
rial [11] for persistency. We automatically converted all
entries in the catalog to the basis graph notation.

We found a type-I and hence minimal edge-coloring
for all 1248 k-uniform (k ≤ 6) tilings in the catalog in 10
minutes. Images of these edge colorings are available as
Supplemental Material [11]. An example minimal edge-
coloring of a 6-uniform tiling is shown in Fig. 5.

C. Miscellaneous lattice graphs

For the applications in Sec. VI, miscellaneous lat-
tice graphs are of interest that are not among the
Archimedean, Laves or k-uniform lattices. We con-
sider the square lattice with added edges to the geo-
metrically next-nearest neighbors (NN-square) and the
NN-square lattice graph with added edges to geometri-
cally next-next-nearest neighbors (NNN-square). As the
kagome lattice graph, the shuriken lattice graph consists
of corner-sharing triangles. The heavy-hex lattice graph
is obtained from the hexagonal lattice graph by making
the edges ‘heavy’, that is, by adding a vertex on top of
every edge of the hexagonal lattice graph. Type-I col-
orings of these four graphs are displayed in Fig. 6. The
wheel-decorated honeycomb lattice is provably class II
(Sec. V). Figure 6 also shows a type-II (and hence mini-
mal) edge coloring of this graph. The five edge colorings
in Fig. 6 were found in 25.6 s, of which the NNN-square
lattice graph is the most challenging, taking 25.5 s.

In addition to the lattice graphs in the Galebach collec-
tion, Refs. [24–26] give lattice graphs in the Sa & Sa col-
lection [27], which we obtained at Ref. [28]. These graphs
were created for artistic purposes and do not intend to
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exhaust any class of graphs. However, the application
of Method 1 to this extra collection further establishes
the practical applicability of the edge coloring method.
A type-I and hence minimal edge coloring was found for
all 57 lattice graphs in the Sa & Sa collection that were
not already in the Galebach collection, taking 24 s. The
results are not depicted in this paper, but are available
in the Supplemental Material [11].

V. ANALYSIS

We show that the self-loop-free property of a wrapped
patch of a lattice graph G is necessary and sufficient for
this patch to induce a proper edge coloring of G after it is
properly edge colored and unwrapped (Theorem 1). This
is used to show that Method 1 halts and that it is cor-
rect if we restrict the input to t = 3 (i.e., ‘find a proper
edge coloring’) or t = 2 (i.e., ‘find a type-II coloring’).
Correctness is also shown if t = 1 (i.e., ‘find a type-I col-
oring’), provided that the method halts (Theorem 2). We
analyze the method’s running time in the cases where it
is guaranteed to halt as formalized in Algorithm 1. We
prove by construction that not all lattice graphs, and
not even all planar lattice graphs, are class I (Propo-
sition 1). This shows that there are problem instances
where Method 1 does not halt in case a type-I coloring is
requested. Finally, we discuss the relation of the method
to the vertex coloring of lattice graphs. Accompanying
lemmas and proofs are deferred to Appendix A.

A. Correctness

In the following theorem and lemma, let the basis
graph B generate the lattice graph G. Let Pn,m be a

patch of G of n by m basis graphs, P̃n,m = W (Pn,m)

the wrapped patch, and C̃ a proper edge coloring of the
wrapped patch. Let C = U(C̃) be the unwrapped C̃.
Let C be the edge colored lattice graph induced by C.
It forms an edge coloring of G. The following theorem
shows how Method 1 hinges on stage 2 (‘no self-loops’).

Theorem 1. The edge colored lattice graph C is properly
edge colored if and only if the wrapped patch P̃n,m is self-
loop-free.

Any graph can be properly edge colored and this col-
oring may use any number of colors. Thus, to show that
Method 1 halts and produces the correct output in case
a proper edge coloring is requested, by Theorem 1, it
suffices to show that in Method 1, a self-loop-free patch
is eventually encountered. We do this in Lemma 4 of
Appendix A.

For a type-II coloring of a lattice graph G, at most
∆(G) colors may be used. The degree of the lattice graph
may be obtained by computing the degree of a wrapped
patch, provided that that patch is self-loop free.

Lemma 1. If the wrapped patch P̃n,m is self-loop-free,

then ∆(P̃n,m) = ∆(G).

By Vizing’s theorem, every finite simple graph can be
type-II colored. Also note that for a colored and wrapped
patch, unwrapping does not change the number of colors.
Thus, if a wrapped patch is encountered by Method 1
that is simple, it can be type-II colored and unwrapped,
after which Theorem 1 and Lemma 1 guarantee that
this patch induces a type-II coloring of the lattice graph.
Therefore, to show that Method 1 halts and that it is
correct in case a type-II coloring is requested, it only
remains to be shown that a simple patch is eventually
encountered by Method 1, which we do in Lemma 5 of
Appendix A.
Finally, in case a type-I coloring is requested, Theo-

rem 1 and Lemma 1 also provide that if a self-loop-free
wrapped patch is encountered that allows a type-I col-
oring, then this patch induces a type-I coloring of the
lattice graph after type-I coloring and unwrapping. It
is, however, no longer guaranteed that such a patch is
encountered.
Let B, t be the input of Method 1. The above re-

sults are summarized in the following theorem (see Ap-
pendix A).

Theorem 2. If t = 2 or t = 3, Method 1 terminates
and the output C, (n,m) induces a type-t coloring of G.
If t = 1 and Method 1 terminates, the output induces a
type-I coloring of G.

B. Running time

We introduced Method 1 as a method to allow flex-
ibility in its usage. For a rigorous worst-case running
time analysis, we remove this flexibility and consider the
following use case of the method. The method then be-
comes an algorithm in the sense that it is concrete, that
it halts, and that it is correct.
The algorithm receives a basis graph B (that induces a

lattice graph G) as input. For simplicity of the analysis,
we assume that B does not have isolated vertices (which
play no role in the edge coloring). The algorithm outputs
a coloring basis graph C [together with its size (n,m)]
that induces a type-II edge coloring of G. Notice that
any type-II coloring is also proper edge coloring, so that
the algorithm can also be used when a mere proper edge
coloring is desired. For a basis graph B, define

dxmax = max{|dx| | (dx, dy, s) ∈ E(B)},
dymax = max{|dy| | (dx, dy, s) ∈ E(B)}.

(15)

Algorithm 1. Compute dxmax, dymax. Run Method 1
with t = 2 and the initial patch size (n,m) set to
(2dxmax + 1, 2dymax + 1). Use the Misra and Gries
edge coloring algorithm to edge color the finite patch in
stage 3.
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Figure 7. Minimal edge coloring of the broken wheel graph
W ′

5. This graph is class II.

In Appendix A, we prove that the algorithm is finite
and correct. We also prove running time of Algorithm 1
is dominated by the running time of the Misra and
Gries edge coloring algorithm, which is O(|E(Pn,m)|2) =
O[(dxmaxdymax|E(B)|)2]. Define the maximum distance
D = max{dxmax, dymax} and µ = |E(B)|. Note that
with this definition, for example, the distance between
unit cell (0, 0) and (1, 1) (see Fig. 1) is D = 1. With
these definitions, the worst-case running time of Algo-
rithm 1 is O(D4µ2).

C. Class II lattice graphs

We now show the existence of lattice graphs that are
class II. We define the broken wheel graph W ′

5 as the
wheel graph W5 with one missing spoke (Fig. 7). Begin-
ning by coloring the edges incident on a vertex of degree
three, it is straightforward to see that W ′

5 is class II, that
is, that at least four colors are required to properly edge
color W ′

5.
We define the wheel-decorated honeycomb lattice graph

by its basis graph as follows. Take the basis graph of
the honeycomb lattice graph (Fig. 1), add a vertex v on
top of one of the edges, add the wheel graph W5, and
redirect one of the spokes of W5 so that it ends on v
instead of the hub (the central vertex) of W5. The wheel-
decorated honeycomb lattice graph is a simple, 3-regular
planar graph and is depicted in Fig. 6.

Proposition 1. The wheel-decorated honeycomb lattice
graph is class II.

Proof. For the wheel-decorated honeycomb lattice graph
G, ∆(G) = 3. At least four colors are required to properly
edge color the broken wheel graph W ′

5. The graph W ′
5

is a subgraph of G. Therefore, at least four colors are
required to properly edge color G.

D. Vertex coloring of lattice graphs

The vertex coloring of a graph G is an assignment of
colors to the vertices of G. It is called proper if no two
vertices of the same color share an edge. The minimum
number required to properly color all vertices of a graph
G is known as the chromatic number χ(G). Edge coloring
is intimately related to vertex coloring by the line graph
L(G) of G. The vertices of L(G) are formed by the edges
e of G. There is an edge {e, e′} in L(G) if and only if e

and e′ share a vertex in G. An edge coloring of a graph
G is equivalent to the vertex coloring of the line graph
L(G) of G.

In this sense, Method 1 gives a method for the minimal
vertex coloring for any graph H that is the line graph of
some other graph G. If it exists, the inverse line graph
G = L−1(H) can be found efficiently [29], so that, given
an arbitrary graph H = L(G), no prior knowledge of G is
required. Vice versa, any method for the vertex coloring
of L(G) gives a method for the edge coloring of G. The
latter works for every G.

It is perhaps possible to alter Method 1 and its analysis
to obtain a method for the minimal or nearly minimal
vertex coloring of general lattice graphs. By the above
considerations, such an algorithm would be applicable for
both the vertex coloring and the edge coloring of lattice
graphs. Here, we briefly discuss such an alteration.

We remind that Method 1 crucially relies on a sim-
ple and tight lower bound on the number of colors
[Eq. (1)]. In the case of the vertex coloring of general
lattice graphs (not only those that are the line graph
of another lattice graph), this role could be played by
χ(G) ≥ max{ω(G), ⌈|V (G)|/α(G)⌉} [30], here ω(G) is
the number of vertices in a maximal clique of G, and
α(G) is the number of vertices in a maximal independent
set of G. In general, this bound is loose so that it fails to
guarantee in general that a vertex coloring is minimal or
nearly minimal even if the bound is saturated. However,
in some cases there are close upper bounds. For exam-
ple, according to the four color theorem [31], χ(G) ≤ 4 for
planar graphs G and by Brook’s theorem [32], χ ≤ ∆(G)
unless G is a complete graph or an odd cycle.

When the upper bounds coincide with the lower
bounds, they completely determine χ(G) for a lattice
graph G. In those cases, finding a vertex coloring using
χ(G) colors is guaranteed to be a minimal vertex col-
oring. As examples, consider the asanoha lattice graph
from Fig. 4. It contains K4, the complete graph on four
vertices, as a subgraph, so that ω(G) ≥ 4. Since it is
also planar, it follows that χ(G) = 4. The star lattice
graph from Fig. 3 contains K3, the triangle graph, as a
subgraph, so that χ(G) ≥ 3. Since ∆(G) = 3, χ(G) = 3
by Brook’s theorem.

In any case, for the alteration of Method 1 to a ver-
tex coloring method, more work is required to show how
bounds on the chromatic number of finite (wrapped)
patches imply bounds on the chromatic number of in-
finite lattice graphs. Additionally, more work would be
required to translate the theorems and lemmas of the
current section into the vertex coloring language, even
when restricting the input graph to the vertex coloring
method is the line graph of some other graph.
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VI. RELATED WORK

A. Previous work

The Bravais lattices were first considered by Franken-
heim in 1835 [33] and later by Bravais in 1850 [34], both
within the context of crystallography. (A careful account
of the origins of crystallography and Bravais lattices can
be found in Ref. [35].) The concept of (geometric) lattice
graphs is firmly established in solid-state physics; see, for
example, the classic textbook by Ashcroft and Mermin
from 1976 [7], or Hilbert and Cohn-Vossen’s book from
1932 [36] for an early account. Furthermore, there are
software implementations for the explicit representation
of (geometric) lattice graphs and the generation of finite
patches [37–39]. Nevertheless, we are unaware of a previ-
ous concise formal definition of (geometric) lattice graphs
[as given in Eq. (5)] in modern graph theoretic terms [40].

The edge coloring problem of finite graphs was first
considered by Tait in 1880 in connection to the map col-
oring problem [41]. Since then, the edge coloring prob-
lem has found numerous applications, including the de-
sign of electrical networks and in scheduling problems [2].
In 1916, König [42] showed that bipartite graphs are
class I (in modern terminology) and the proof gives a
natural method for finding the minimal edge coloring
of such graphs in polynomial time. Vizing’s theorem
[Eq. (1)], was proven in 1964. Vizing also proved that
if the maximum degree of a planar graph is between 2
and 5, the graph can be either class and conjectured
that planar graphs with maximum degree at least 6 are
class I [43, 44]. Subsequently, it was established that
planar graphs of degree at least 7 are class I. (Viz-
ing proved that planar graphs of max degree at least 8
are class I [43]. Thirty-five years later, Zhang [45] and
Sanders and Zhao [46] proved that planar graphs of de-
gree 7 are class I.) The k-uniform lattice graphs are gen-
erally not bipartite. Additionally, although they are pla-
nar, they have a maximum degree of at most 6. So, the
the k-uniform lattice graphs are not restricted to class I
a priori.

Relatively little attention has been paid to the edge
coloring problem in the context of infinite graphs. A no-
table exception is the theorem of de Bruijn and Erdős
from 1951 [47], which states that if every finite subgraph
of an (infinite) graph G is k-vertex-colorable, then G
is k-vertex-colorable. While this theorem concerns the
vertex coloring problem, it extends to k-edge-colorings
[48, 49]. It is mentioned in a remark in Ref. [50] that all
Archimedean and Laves lattices are Vizing class I, but
no proof nor references are provided.

B. Applications

One important application of solving the edge color-
ing problem for lattice graphs lies in the quantum com-
putation of crystals. Paradigmatic models for quantum

magnetism include the Ising model and the Heisenberg
(Anti)ferromagnetic model [7]. In these models, spin 1/2
particles, such as electrons, are uniquely associated with
the vertices v of a given graph G and a magnetic inter-
action is introduced between two particles if their asso-
ciated vertices are adjacent in G. For periodic crystals,
G is a lattice graph.

As opposed to classical computers, for quantum com-
puters there are known methods to simulate these sys-
tems accurately and efficiently in general [51, 52]. In
quantum computation, a qubit q is the quantum analogue
of a classical bit. Physically, a single qubit is commonly
embedded in a fixed physical entity, such as an (artificial)
atom [53, 54]. A quantum computation is carried out by
applying quantum gates to these qubits directly. Typi-
cally, each quantum gate acts on one or two qubits simul-
taneously. At any given time, a qubit can participate in
at most one quantum gate. The sequence of gates needed
to perform a quantum computation is called a quantum
circuit.

For the quantum simulation of aforementioned crys-
tals using a technique called Trotterization [51, 52], each
vertex v of the graph G describing the crystal structure
is also uniquely associated with a qubit qv. A circuit is
then constructed that consists of a repetition of a smaller
quantum circuit, known as the cycle. The cycle con-
tains a single type of two-qubit gate U that implements
the magnetic interaction between the particles associated
with the qubits it acts on. To assure that every magnetic
interaction is taken into account, the cycle is to be de-
signed such that for each edge {v, v′} in G, there is at
least one gate between qubits qv and qv′ . Letting every
edge in G represent a gate of type U and encoding the
time step in which this gate is performed as the color of
that edge, a minimal edge coloring of G corresponds to
a cycle for the quantum simulation of spin-1/2 particles
on G (interacting according to the Ising or Heisenberg
Hamiltonian) using the fewest number of time steps in
the cycle.

Optimal-depth quantum circuits are crucial for push-
ing the boundaries of current noisy intermediate-scale
quantum technology, where noise effects in the output
become stronger with the depth of the quantum circuit.
For this reason, minimal and proper edge colorings of
the kagome lattice graph were considered in Refs. [55–
57], of the one-dimensional, square, and hexagonal lattice
graphs in Ref. [58], and of the heavy-hex lattice graph
in Ref. [59]. Minimal edge colorings of the square, tri-
angular, kagome and square-octagon lattice graphs were
considered in [60, 61] for the related problem of the ver-
ification of the minimal energy quantum state of spin-1
Heisenberg model defined on those lattice graphs.

Closely tied to quantum simulation is quantum opti-
mization through the quantum approximate optimiza-
tion algorithm (QAOA) [62]. In QAOA, the optimiza-
tion of the cost function defining the problem involves
the quantum simulation of a (problem instance specific)
Ising model. Thus, similar to the situation in quantum
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simulation, minimal edge colorings correspond to depth
optimal circuits for quantum optimization [63, 64]. For
this reason, a minimal edge coloring of the square lat-
tice was used in Ref. [65]. Additionally, a minimal edge
coloring of the heavy-hex lattice (equivalent to the one
in Fig. 6) was used in Ref. [66] in the compilation of
quantum circuits for QAOA.

VII. CONCLUSION

A. Summary

We formally defined lattice graphs, patches of lattice
graphs and the wrapping of those patches. In Theorem 1,
we proved that an edge coloring of a patch of a lattice
graph induces a proper edge coloring of the entire lattice
graph if and only if the wrapped patch is properly edge
colored and self-loop-free. Furthermore, by Lemma 1,
the degree of this wrapped patch is equal to the degree
of the lattice graph.

These results form the cornerstone of Method 1 that,
depending on what is requested, finds type-II or type-I
colorings of lattice graphs. If a type-II coloring is re-
quested, the method seeks a patch of the lattice graph
that is self-loop free and permits a type-II coloring. Such
a patch is always found (Lemma 5, Appendix A). Subse-
quently, the wrapped patch is type-II colored, unwrapped
(retaining the edge coloring) and returned. In Theo-
rem 2, we showed that this colored patch induces a type-
II coloring of the lattice graph.

If a type-I coloring is requested, the same steps are fol-
lowed, with the exception that the wrapped patch must
permit a type-I coloring instead of a type-II coloring (and
that the wrapped patch is subsequently type-I colored
instead of type-II colored). Unlike in the case of a type-
II coloring, we now lack upper bounds on the required
patch size. This is because the lattice graph itself may be
class II, thereby not permitting any type-I coloring. Ad-
ditionally, even if the lattice graph is known or assumed
to be class I, upper bounds on the necessary patch size
so that the wrapped patch is class I are lacking. Never-
theless, when a self-loop-free and class I wrapped patch
is found, a type-I coloring of this patch induces a type-I
coloring of the lattice graph (Theorem 2).

For the sake of allowing rigorous bounds, some flex-
ibility of Method 1 was removed, resulting in Algo-
rithm 1. This algorithm finds type-II (and hence also
proper) colorings of lattice graphs. Its worst-case run-
ning time is O(D4µ2). Here, µ is the number of edges
in the basis graph that induces the lattice graph, and
D = max{dxmax, dymax} is the maximum cell coordinate
entry of any vertex in the lattice graph’s basis graph.

We implemented Method 1 and obtained a type-I col-
oring of all Archimedean, Laves and k-uniform (k ≤ 6)
lattice graphs, thus showing that these are class I. This
demonstrates the practical applicability of the edge color-
ing method for obtaining type-I and hence minimal edge

colorings, despite the lack of bounds on the running time
of the method in this case. Nevertheless, in Proposition 1,
we constructed a planar lattice graph that is provably
class II, showing there are instances where Method 1 does
not halt. Still, if it is known a priori that a certain lattice
graph is class II, requesting a type-II coloring from our
method produces a minimal edge coloring of that graph.
One important practical application of our work lies in

quantum simulation, quantum optimization, and quan-
tum state verification. When constructing (the cycles
of) the quantum circuits for these applications, a two-
qubit quantum gate must be added for each edge of a
graph G with qubits on its vertices. The graph G is of-
ten a lattice graph. Since each qubit can participate in
at most one quantum gate at a time, associating colors
with layers of quantum gates, the depth-optimal cycle
is described by a minimal edge coloring of G. As a re-
sult, our work provides an automated solution for finding
depth-optimal quantum circuits for quantum simulation,
state verification and quantum optimization.

B. Outlook

The practical applicability of our method was demon-
strated by the minimal edge coloring of a plethora of
lattice graphs. Thus, the most immediate practical ex-
tension of our work is the application of the edge coloring
method to other lattice graphs, including those available
in crystallographic databases [67, 68].
Our work also raises interesting theoretical questions.

Firstly, considering that all k-uniform lattice graphs are
class I for k ≤ 6, it is natural to hypothesize that all
k-uniform lattice graphs are class I. These lattice graphs
appear to offer sufficient structure to prove such a hy-
pothesis; in a k-uniform geometric lattice graph, there
are essentially only k vertex different figures (the vertex
plus adjacent edges). All other vertex figures in a geo-
metric lattice graph are related to these by symmetries
of the geometric lattice graph. However, a minimal edge
coloring generally breaks the symmetries of a geometric
lattice graph so that it is not clear how this structure
could be exploited.
Secondly, it seems evident that, for a class I lattice

graph, as the patch size is increased, the wrapped patch
must eventually permit a type-I coloring. Hence, it seems
evident that our edge coloring method always terminates
when a type-I coloring is requested of a class I lattice
graph. While it is true that a patch of any size of any
class I lattice graph is itself class I (and hence permits
a type-I coloring), when that patch is wrapped, it is no
longer a subgraph of the lattice graph. Another possi-
ble obstruction in establishing an upper bound on the
required patch size is that, for a planar graph, wrapping
alters the genus of the surface in which the graph can be
embedded.
Thirdly, our method extends to the edge coloring of

tilings using symmetries beyond translational symmetry
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and in geometries beyond the Euclidean plane. In the
terminology of Conway et al. [15], the orbifold of a tiling
is obtained by merging or folding all points related to
one another by symmetries of the tiling. (One point and
the points that can be generated from it by symmetries
of the tiling form the orbit of that point under the sym-
metry group of the tiling.) In this sense, the wrapping
of a patch of a geometric lattice graph can essentially
be seen as creating the orbifold of that lattice graph,
only considering the translational symmetry of the lat-
tice graph (modulo the patch size). This suggests that
the wrapping stage of the edge coloring method can be al-
tered to include wrapping by other symmetry subgroups.
Furthermore, the wrapped patches need not be orbifolds
(modulo some symmetry subgroups) of Euclidean tilings,
opening the way to, e.g., the edge coloring of the meshes
of tilings of the hyperbolic plane.

It may be possible to alter Method 1 and its analy-
sis to obtain analogous results for the minimal or nearly
minimal vertex coloring of lattice graphs. Method 1 cru-
cially relies on a lower bound on the number of colors

that is both tight [Eq. (1)] and can be obtained efficiently
(Lemma 1). Although numerous lower and upper bounds
exist for the chromatic number χ(G) of finite graphs G,
in general these bounds are not as applicable as Vizing’s
theorem in the case of edge coloring. Additionally, more
work is required to show how bounds on the chromatic
number of patches of a lattice graph relate to the chro-
matic number of infinite lattice graphs induced by those
patches.

Data availability. The code and data are available as
Supplemental Material [11]. It also includes images de-
picting minimal edge colorings of all 1318 lattice graphs
discussed in this paper.
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[18] O. Krötenheerdt, Die homogenen Mosaike n-ter Ordnung
in der euklidischen Ebene (Martin-Luther-Universität
Halle-Wittenberg, 1968).

[19] D. Chavey, Tilings by regular polygons—II, Computers
& Mathematics with Applications 17, 147–165 (1989).

[20] Number of n-uniform tilings, Sequence A06859 from
The On-Line Encyclopedia of Integer Sequences, https:
//oeis.org/A068599 (accessed Oct. 2023).

[21] E. W. Weisstein, “Uniform Tessellation.” From
MathWorld–A Wolfram Web Resource, https:

//mathworld.wolfram.com/UniformTessellation.html

(accessed Oct. 2023).
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Cohärenz der flüssigen und festen Körper und die Krys-
tallkunde (August Schulz und Comp., 1835).
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Appendix A: Proofs

Here, we show the proofs for the theorems and lemmas
in Sec. VA and Sec. VB, together with additional lem-
mas. The color class c(C) of an edge colored graph C is
a set consisting of all edges with color c [2]. (Not to be
confused with Vizing’s graph classes.) A matching of a
multigraph is a set of edges containing no self-loops and
where every vertex appears in at most one edge. If C
contains no self-loops and is properly edge colored, then
the edge color class c(C) forms a matching of C.
In the two lemmas below, let B be a basis graph, with

seed numbers S, that induces a lattice graph G. By def-
inition, B is finite, simple, contains no redundant edges,
and does not contain edges from nonseeds to nonseeds.
Let B̃ = W (B) be the wrapped basis graph,assume B̃ is

self-loop-free, let C̃ be a proper edge coloring of B̃, and
let C = U(C̃) be the unwrapped C̃. Let C be the edge
colored lattice graph induced by C. Because C is an edge
coloring of B, C is an edge coloring of G. We have the
following lemmas.

Lemma 2. For every color c of C, every seed number
s ∈ S appears in at most once in the color class c(C).

Proof. For all edges in c(C), every seed number s ∈ S can
appear in at most one vertex of that edge because if, on
the contrary, there is an edge {(dx, dy, s), (dx′, dy′, s)} ∈
c(C), we have {(dx, dy, s), (dx′, dy′, s)} ∈ E(B) which

violates the assumption that B̃ is self-loop-free. To
show that s ∈ S can appear in at most one edge of
c(C), assume, on the contrary, that there exists edges
e1, e2 ∈ c(C) with (dx, dy, s) ∈ e1, (dx

′, dy′, s) ∈ e2 and
e1 ̸= e2. Then, the vertex (0, 0, s) must have appeared in

two edges of c(C̃), in contradiction with the assumption

that C̃ is a proper edge coloring.

Lemma 3. For every color c of C, the color class c(C)
forms a matching of C.

Proof. The lattice graph G is self-loop-free and hence c(C)
is self-loop-free for all c. To show that, for all c, every

vertex appears in at most one edge of c(C), assume, on
the contrary, that there exist a color c and a vertex that
appears in two edges e′1, e

′
2 of c(C). By definition of C,

these edges can be translated back to edges e1, e2 in C.
Translation of edges conserves the color of those edges
so that e1 and e2 are in c(C). For e′1 and e′2 to share a
vertex, it is necessary that the same seed number s ∈ S
appears in a vertex in e′1 and e′2. Since translation of
an edge also conserves the seed number in each vertex of
that edge, s appears both in a vertex of e1 ∈ c(C) and
e2 ∈ c(C), in contradiction with Lemma 2. Therefore,
there is no vertex that appears in two edges of c(C) for
all c.

In the proof of Theorem 1 we use a technique we call
reseeding. The patch Pn,m(B), with B a basis graph
that induces G, may be mapped by an isomorphism I
to a basis graph B′ that induces a lattice graph G′ iso-
morphic to G. Explicitly, this isomorphism I may be
constructed with the following steps. Assign a unique
seed number s′ to every vertex (x, y, s) ∈ V (Pn,m) for
which 0 ≤ x < n and 0 ≤ y < m and map (x, y, s) to
(0, 0, s′). The vertices of the latter form are the seeds
of B′. To obtain the nonseeds of B′, map the vertices
(x, y, s) ∈ V (Pn,m) for which not 0 ≤ x < n or not
0 ≤ y < m to (⌊x/n⌋, ⌊y/m⌋, s′), with s′ the new seed
number of the seed (xmodn, ymodm, s). Map all edges
of Pn,m(B) accordingly to obtain B′. The same isomor-
phism I naturally extends to an isomorphism between an
edge coloring C of Pn,m(B) and a reseeded edge color-
ing C ′ of B′. Furthermore, the edge coloring C ′ induces
an edge coloring C′ of G′ that is isomorphic to the edge
coloring C of G induced by C.

In the following theorem and lemma, let the basis
graph B induce the lattice graph G. Let Pn,m be a

patch of G of n by m basis graphs, P̃n,m = W (Pn,m)

the wrapped patch, and C̃ a proper edge coloring of the
wrapped patch. Let C = U(C̃) be the unwrapped C̃.
Let C be the edge colored lattice graph induced by C. It
forms an edge coloring of G.
Theorem 1. The edge colored lattice graph C is properly
edge colored if and only if the wrapped patch P̃n,m is self-
loop-free.

Proof. We first prove the theorem assuming that n =
m = 1 and then extend this proof to arbitrary (n,m) by
reseeding.

Assume that P̃1,1 is self-loop-free. Then by Lemma 3,
for all colors c of the resulting edge colored patch C, c(C)
forms a matching of C. Since every edge of C is colored,
the union of c(C) for all c equals E(G). Therefore, C is
properly edge colored.

Now assume that that P̃1,1 contains self-loops. Be-

cause P1,1 is self-loop-free, the self-loops in P̃1,1 must
be caused by wrapping. A self-loop in P1,1 occurs by
wrapping if and only if P1,1 contains an edge {v, v′} with
v = (dx, dy, s), v′ = (dx′, dy′, s). Note s appears in v
and v′. The coloring basis graph C will contain the edge

https://doi.org/10.1038/s41567-020-01105-y
https://doi.org/10.22331/q-2022-12-07-870
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e = ({v, v′}, c) for some c. Therefore, C contains the
edge e and the translated edge e′ = ({v + (x, y, 0), v′ +
(x, y, 0)}, c) with x = dx′ − dx ∈ Z, y = dy′ − dy ∈ Z.
Note v + (x, y, 0) = v′ so that e′ = ({v′, v′′}, c) for some
v′′. It follows C is not a proper edge coloring.

If n ̸= 1 or m ̸= 1, let B′ be the basis graph obtained
by reseeding Pn,m using the isomorphism I. Let B̃′ be
the wrapped B′ and let C ′ be the properly edge colored
and unwrapped B̃′. Let C′ be the edge colored lattice
graph induced by C ′. By the arguments above, the edge
colored lattice graph C′ is properly edge colored if and
only if B̃′ is self-loop-free. The edge colored lattice graph
C′ is properly edge colored if and only if C is properly edge
colored. Furthermore, B̃′ is self-loop-free if and only if
P̃n,m(B) is self-loop-free.

The following lemma shows that at stage 3 (‘color’) of
Method 1, we may determine the maximum degree of a
lattice graph G by computing the maximum degree of the
wrapped patch P̃n,m. Definitions are as in Theorem 1.

Lemma 1. If the wrapped patch P̃n,m is self-loop-free,
then the maximum degree of the wrapped patch equals the
maximum degree of the lattice graph; ∆(P̃n,m) = ∆(G).

Proof. By reseeding, we may assume Pn,m is a basis

graph B. We will show that, if a wrapped basis graph B̃
is self-loop-free, then for every vertex v ∈ V (B̃) there is
a v̄ ∈ V (G) of equal degree, and vice versa, from which
the lemma follows.

Take any v ∈ V (B̃). Then, there is an s ∈ N0 such that
v = (0, 0, s). We may assume without loss of generality
that i) v ∈ V (B) and that ii) all edges involving the seed
number s in E(B) are of the form {(0, 0, s), (dx′, dy′, s′)},
with dx′, dy′, s′ ∈ Z depending on the edge, and with
s ̸= s′ (for otherwise B̃ would have a self-loop).
Assumption i) is without loss of generality because

if v /∈ V (B), then there must be a (dx, dy) ̸= (0, 0)

such that (dx, dy, s) ∈ V (B). If v ∈ V (B̃) is an iso-
lated vertex, it is also isolated in B and G. The basis
graph B can then be altered by replacing (dx, dy, s) ∈
V (B) by (0, 0, s). This alters B but not B̃. Most
importantly, the redefined B is fully equivalent to the
old B because these basis graphs induce identical lat-
tice graphs G. If v = (0, 0, s) is not isolated in

B̃, there is some edge in B̃ containing the vertex
v = (0, 0, s). Consequently, {(0, 0, s), (dx′, dy′, s′)} ∈
E(B) or {(dx, dy, s), (0, 0, s′)} ∈ E(B) for some
dx, dy, dx′, dy′, s ̸= s′ . Then, v ∈ V (B) follows from
assumption ii). Assumption ii) is without loss of gen-
erality because any edge of the only possible alternative
form {(dx, dy, s), (0, 0, s′)} can be translated so that it

becomes of the assumed form. This alters B but not B̃
(except for the old edge labels, which is of no importance
here) nor G.

Pick any v = (0, 0, s) ∈ V (B̃). Then also v ∈ V (B) by
i). Unwrapping does not attach any edges to seeds such
as v. Because of ii), unwrapping also does not detach
edges from v. So, degB̃(v) = degB(v). Since v ∈ V (B),

v ∈ V (G). By construction of lattice graphs, v cannot be
incident to less edges in G than in B. The vertex v can
also not be incident to more edges in G than in B. To
show the latter, note that any excess edge incident on v in
G must arise from a translated copy of B. However, by ii)
the edges in the translated copies of B do not contain v.
Thus, degB(v) = degG(v) and hence degB̃(v) = degG(v).
Now, pick any v′ ∈ V (G). By construction, the lattice

graph G can be translated by an isomorphism T so that
T (v) = (0, 0, s). Note (0, 0, s) =: v̄ must be a vertex in B̃.
Thus, we can reuse the previous result that degB̃(v̄) =
degG(v̄).

For the basis graphs B, which are finite, define

dxmax = max{|dx| | (dx, dy, s) ∈ E(B)},
dymax = max{|dy| | (dx, dy, s) ∈ E(B)}.

(A1)

The following is used to show Method 1 halts in case a
proper edge coloring is requested (t = 3).

Lemma 4. For any lattice graph G induced by a basis
graph B, the wrapped patch P̃n,m(B), with n ≥ dxmax+1,
m ≥ dymax + 1, is self-loop-free.

Proof. Consider the unwrapped patch Pn,m with n =
dxmax+1, m = dymax+1 and the edge {v, v′} ∈ Pn,m. By
construction of patches, we may assume that v is a trans-
lated seed and that v′ is a translated seed or a translated
nonseed. That is, we may assume there exist an x ∈ Zn

and a y ∈ Zm such that v = (0, 0, s) + (x, y, 0) and v′ =
(dx, dy, s′) + (x, y, 0), with (0, 0, s), (dx, dy, s′) ∈ V (B)
and dx, dy ∈ Z. Imposing periodic boundary conditions,
w, acts trivially on v; w(v) ≡ (xmodn, ymodm, s) =
(x, y, s).
If v′ is also a translated seed, that is, if dx, dy = 0, w

acts trivially on v′ as well and {w(v), w(v′)} cannot be a
self-loop. Therefore, assume dx ̸= 0 or dy ̸= 0. If dx ̸= 0,
then (dx+x)modn ̸= x. However, (dx+x)modn = x is
a necessary condition for {w(v), w(v′)}) to be a self-loop.
Similarly, if dy ̸= 0,(dy + y)modm ̸= y although (dy +
y)modm = y is a necessary condition for {w(v), w(v′)}
to be a self-loop. Therefore, P̃n,m is self-loop-free.

It is a stronger requirement that a wrapped patch be-
comes simple. The following lemma is used to show
Method 1 halts in case a type-II coloring is requested
(t = 2).

Lemma 5. For any lattice graph G induced by a basis
graph B, the wrapped patch P̃n,m(B), with n ≥ 2dxmax+1
and m ≥ 2dymax + 1, is simple.

Proof. Because 2dxmax ≥ dxmax and similarly for dymax,
P̃n,m(B), with n ≥ 2dxmax+1 andm ≥ 2dymax+1, is self-
loop-free by Lemma 4. To show it does not contain multi-
edges, assume, on the contrary, that a multi-edge occurs
in P̃n,m(B) with n ≥ 2dxmax + 1 and m ≥ 2dymax + 1.
We will show that for a general multi-edge containing
at least two (necessarily distinctly labeled) edges, either
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those two edges are equal (i.e., also having the same label,
a contradiction) or one edge is a redundant edge, which
is ruled out by construction of G.
In general, for each edge in an unwrapped patch, im-

posing periodic boundary conditions w acts nontrivially
on at most one vertex. Thus, in case a nontrivial multi-
edge occurs in P̃n,m(B), there exist two unequal edges

ei = ({vi, w(v′i)}, {vi, v′i}) ∈ Ẽ[Pn,m(B)] (i = 1, 2), with

vi = (xi, yi, si)

v′i = (xi + dxi, yi + dyi, s
′
i)

w(v′i) = ((xi + dxi)modn, (yi + dyi)modm, s′i)

(A2)

For {e1, e2} to be a multi-edge, we have {v1, w(v′1)} =
{v2, w(v′2)}. This equality may occur in two distinct
ways,

v1 = v2 ∧ w(v′1) = w(v′2), (A3)

or

v1 = w(v′2) ∧ w(v′1) = v2. (A4)

Consider the case of Eq. (A3). Comparison of the first
entries of the triples in Eq. (A3) gives x1 = x2 and
(x1 + dx1)modn = (x2 + dx2)modn. It follows that
dx1 modn = dx2 modn. Since n ≥ 2dxmax + 1, we have
dx1 = dx2. Using essentially the same arguments, it also
follows that y1 = y2 and dy1 = dy2. Comparing the last
entries in Eq. (A3), we have s1 = s2 and s′1 = s′2. There-
fore, v1 = v2 and v′1 = v′2, from which it follows that
e1 = e2, a contradiction.
Now, consider the case of Eq. (A4). Comparing the

first entries of the triples in Eq. (A4), we have x1 =
(x2 + dx2)modn and x2 = (x1 + dx1)modn, or, after
using 0 ≤ xi < n so that xi = xi modn, 0 = (−x1 +
x2 + dx2)modn and 0 = (−x2 + x1 + dx1)modn. Thus,
there exist αx, α

′
x ∈ Z such that −x1 + x2 + dx2 = αxn

and −x2 + x1 + dx1 = α′
xn. From comparing the second

entries of the triplets in Eq. (A4), it similarly follows
that there exist αy, α

′
y ∈ Z such that −y1 + y2 + dy2 =

αym and −y2 + y1 + dy1 = α′
ym. Comparing the last

entries in Eq. (A4), s1 = s′2 and s2 = s′1. Therefore,
in the case of Eq. (A4), there exist αx, α

′
x, αy, α

′
y such

that {v1 + (αxn, αym, 0), v′1 + (α′
xn, α

′
ym, 0)} = {v2, v′2},

which means either {v1, v′1} or {v2, v′2} was redundant
in the (not wrapped) patch Pn,m(B). The latter occurs
only if there is a redundant edge in B, which is ruled out
by construction (Sec. II).

Let B induce the lattice graph G and let B, t be the
input of Method 1.

Theorem 2. If t = 2 or t = 3, Method 1 terminates and
the output C[Pn,m(B)], (n,m) induces a type-t coloring of
G. If t = 1 and Method 1 terminates, the output induces
a type-I coloring of G.

Proof. In stages 1–3, Method 1 iterates through the se-
quence a (defined in Method 1, stage 2), until a patch

size ai is encountered such that P̃ai
is self-loop-free and

type-t colorable.
Assume t = 2 or t = 3. For every i, either there

is some i′ < i so that P̃a′
i
is self-loop-free and type-t

colorable, or P̃ai
is encountered at stage 2. Take i such

that ai = (2dxmax + 1, 2dymax + 1). Then we move to

stage 4 for some i′ < i or we reach P̃(2dxmax+1,2dymax+1),
with dxmax and dymax as in Eq. (A1). In case we reach

P̃(2dxmax+1,2dymax+1), by Lemma 5 and Vizing’s theorem,

P̃(2dxmax+1,2dymax+1) is self-loop-free and type-t colorable,
so that we also move to stage 4 in this case.
If instead t = 1, there is no guarantee that an (n,m)

is encountered such that P̃n,m is self-loop-free and type-t
colorable. We may be stuck in stages 1–3 indefinitely.
Nevertheless, for any t ∈ {1, 2, 3}, if P̃n,m is self-loop-

free and type-t colorable for some (n,m), it is type-t col-

ored in stage 3, resulting in a graph C̃, which is passed
to stage 4. It is guaranteed by Theorem 1 that the un-
wrapped and edge colored patch C induces a proper edge
coloring C of G. Additionally, by Lemma 1, this proper
edge coloring uses at most ∆(G) (t = 1), ∆(G)+1 (t = 2)
or any number of colors (t = 3). Therefore, C is a type-t
coloring of G.

a. Running time

Here, we derive the upper bound on the running time
of Algorithm 1, which is a specific use case of Method 1.
The algorithm receives a basis graph B (that induces a

lattice graph G) as input. For simplicity of the analysis,
we assume that B does not have isolated vertices (which
play no role in the edge coloring). The algorithm outputs
a coloring basis graph C [together with its size (n,m)]
that induces a type-II edge coloring of G. Notice that
any type-II coloring is also proper edge coloring, so that
the algorithm can also be used when a mere proper edge
coloring is desired.

Algorithm 1. Compute dxmax, dymax from B
[Eq. (A1)]. Run Method 1 with t = 2 and the initial
patch size (n,m) set to (2dxmax+1, 2dymax+1). Use the
Misra and Gries edge coloring algorithm to edge color the
finite patch in in stage 3.
It is already shown in the proof of Theorem 2 that this

algorithm is correct and finite.
We now upper bound the worst-case running time of

Algorithm 1 in the word RAM model of computation
[69], where arithmetic operations on words (such as ver-
tices) are counted as a single step. Using the adjacency-
list representation of B, computing dxmax, dymax takes
O(|E(B)|) steps. By Lemma 5 and the fact that the
Misra and Gries edge coloring algorithm finds a type-
II coloring of any finite simple graph, setting the initial
patch size (n,m) to (2dxmax+1, 2dymax+1) assures that
stages 1–3 are all run once, in sequence.
We now consider the running time of stages 1–3 of

Method 1. Using that B does not contain redun-
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dant edges, constructing the adjacency-list representa-
tion of Pn,m takes O(|E(Pn,m)|) steps. Wrapping a sin-
gle edge takes O(1) steps, so that stage 1 of Method 1
takes O(|E(Pn,m)|) steps in total. Stage 2, checking for

self-loops, also requires O(|E(P̃n,m)|) = O(|E(Pn,m)|)
steps. (If fact, with the current initial (n,m), this
stage is redundant, but we keep it for consistency).
The Misra and Gries edge coloring algorithm takes

O(|E(P̃n,m)||V (P̃n,m)|) = O(|E(Pn,m)|2) steps [6, 30].
Unwrapping a single edge takes O(1) steps so that stage 4
of Method 1 takes O(|E(Pn,m)|) steps.

So, the running time of Algorithm 1 is domi-
nated by the running time of the Misra and Gries
edge coloring algorithm, which is O(|E(Pn,m)|2) =
O[(dxmaxdymax|E(B)|)2] steps.
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