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Transition metal (TM) defects in silicon carbide (SiC) are a promising platform for applications in quantum
technology as some of these defects, e.g., vanadium (V), allow for optical emission in one of the telecom bands.
For other defects, it was shown that straining the crystal can lead to beneficial effects regarding the emission
properties. Motivated by this, we theoretically study the main effects of strain on the electronic-level structure
and optical electric-dipole transitions of the V defect in SiC. In particular, we show how strain can be used to
engineer the g tensor, electronic selection rules, and the hyperfine interaction. Based on these insights, we discuss
optical Lambda systems and a path forward to initializing the quantum state of strained TM defects in SiC.
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I. INTRODUCTION

A fundamental ingredient for many quantum technologies
and experiments is a coherent interface between flying qubits
and stationary quantum memories [1–3]. An established set
of physical systems with great potential in this domain are
so-called color centers, which are defects in solids with optical
transitions. Color centers can often additionally be coupled to
nearby nuclear spins that lend themselves to quantum memo-
ries or long-lived quantum registers.

The most studied color center is the negatively charged
nitrogen-vacancy (NV) defect in diamond [4–16] ([17–19]
for reviews). Optical initialization and readout of its electron
spin state is made feasible by the spin-photon interface via its
excited state [20]. Together with a coherent microwave manip-
ulation, optically detected magnetic resonance is feasible in
this defect [21]. Efficient coupling to nearby nuclear spins was
demonstrated and utilized in long-living quantum memory
applications [11,15,16]. Despite its favorable spin and optical
properties, contenders for host materials other than diamond
are emerging. The most notable is silicon carbide (SiC) with
advanced crystal growth [22], defect creation [23,24], and
microfabrication techniques readily available [25–28]. These
technological advancements improve the scalability [29,30]
and magneto-optical properties of several hosted quantum
defects, e.g., the negatively charged silicon vacancy [31–33]
and the neutral divacancy [34,35].

In this paper, we focus on the transition metal (TM) defects
in silicon-carbide (SiC) which have one active electron in a
d-like orbital configuration and C3v symmetry. In particular,
we investigate vanadium (V) defects, where a V atom replaces
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a Si atom of the lattice in the neutral (V 4+) charge state. This
charge state can be stabilized by tailoring the dopant concen-
tration [36]. In contrast to the defects discussed in the previous
paragraph, these V defects in SiC feature a zero-phonon line
(ZPL) within the telecom bands, favorable for minimal loss
transmission using optical fibers. The focus of previous exper-
iments [36–41] and theory [42–46] for TM defects in SiC was
on unstrained defects, however, the knowledge on the exter-
nal perturbations effecting the magneto-optical properties of
the quantum defects is a key ingredient in their applications
[47–50]. Note that in the experiment by Cilibrizzi et al. [36],
small frequency shifts of the crystal field splitting between
different regions of the sample were attributed to strain. Strain
can be used passively, e.g., to reduce the dispersive readout
time in silicon vacancy centers in diamond [51] and to engi-
neer the electronic structure [52] and g tensor [53], or actively
to drive spin transitions in NV centers [47] as well as to create
a hybrid quantum systems by coupling a mechanical oscillator
to defects [54–56].

Motivated by these prospects, in this paper we aim to
generalize the effective Hamiltonian to describe TM defects
in silicon carbide under strain. To this end, we build on top
of previous group-theory based results [43,44] which were
in good agreement with previous ab initio calculations [42]
and experimental findings [36,39–41]. Additionally, we use
density functional theory (DFT) calculations to estimate the
strain coupling strength for the commonly used vanadium
defect in the k site of 4H-SiC [57]. We show how strain in
these samples can be used to engineer the optical transition
frequency, the g tensor, and transition rules as well as the
form of the hyperfine interaction. Based on this, we discuss
state preparation and readout as well as microwave control in
strained samples.

This paper is organized as follows. We begin by introduc-
ing the physical model for the V defect in SiC in Sec. II,
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FIG. 1. Sketch of the level structure and atomic configuration
at the defect site. (a) Hierarchy leading to the strained electronic
structure, where the largest splitting of the D-shell levels occupied by
a single electron is due to the crystal field (red arrow), leading to two
orbital doublets E and one orbital singlet A1, with additional twofold
spin degeneracy. The doublets are further split due to the combination
of strain and spin-orbit interaction, resulting in the leading-order
splitting [see Eq. (14)] between the Kramers doublets (KDs). The KD
originating from the orbital singlet A1 is not further split. Zooming
into one of the KDs, (b) reveals the hyperfine structure and Zeeeman
splitting. (c) Artistic illustration of the D shell electronic orbital of
the defect (green and purple), electron spin (yellow), nuclear spin
(dark red), and nearest-neighboring sites (gray balls). The gray arrow
indicates the crystal axis �ez.

including its effective Hamiltonian. Using this model, we
combine and compare the effective Hamiltonian and ab initio
calculations in Sec. III A. Based on these results, we then
show the possibility to engineer the g tensor (Sec. III B),
selection rules (Sec. III C), and how these can be combined
to create a Lambda system for pseudo-spin state preparation
(Sec. III D). In Sec. III E, we discuss the influence of strain on
the hyperfine interaction and how this influences the possibil-
ity to initialize the nuclear spin. We summarize our findings
and present our conclusions in Sec. IV.

II. MODEL

A. Defect structure

The defect energy levels, sketched in Fig. 1, can be de-
scribed by a single electron in an orbital resembling the
original atomic d orbital. The 2D levels are split by the crystal
potential into two orbital doublets 2E and one orbital singlet
2A1. Due to the spin-orbit interaction and the interaction with
an external strain field, the orbital doublets are further split.
This results in a level structure made up by five Kramers
doublets (KDs) which are pairs of states related to each other
by time inversion. We use a group theoretic model in the fol-
lowing to describe the above interactions within an effective
Hamiltonian where we additionally calculate selection rules
between the KDs, the hyperfine structure of the KDs, and
the Zeeman term within each KD. Therein, we calculate the
orbital-strain interaction parameters not yet reported in the
literature using ab initio calculations and also use these to
confirm predictions made by the effective Hamiltonian. While
we concentrate the ab initio calculation to the substitutional
vanadium defect at a Si k site in 4H-SiC, the insights of the
effective Hamiltonian can be transferred to defects with the

appropriate electronic configuration (one electron in a d-like
orbital) and symmetry (C3v ) by changing the parameters ac-
cording to the different configuration.

B. Effective Hamiltonian

We generalize the effective Hamiltonian from
Refs. [43,44,46] to additionally include the strain such
that the full Hamiltonian is of the form

H = HTM + Vcr + Hso + Hz + Hnuc + Hel + Hst, (1)

where the form of the atomic Hamiltonian (HTM), crystal po-
tential Vcr, spin-orbit interaction Hso, and coupling to magnetic
Hz and electric fields Hel are discussed in Ref. [43]. The
interaction with the central nuclear spin Hnuc (of the TM) was
derived and analyzed in Ref. [44]. We summarize the form
of these terms below and additionally discuss the influence
of strain Hst within this symmetry-based framework. We note
that this approach can only work in the domain where the
strain can be viewed as a small perturbation compared to
HTM + Vcr. As we show in the following, this restriction does
not affect our conclusions, since significant strain effects are
demonstrated within this domain. We remark that this domain
also covers the strain magnitudes observed in state-of-the-art
experiments [36,52,55,58].

In the basis of (orbital) eigenstates |0〉 , |±n〉 with n = 1, 2
of HTM + Vcr (introduced in Ref. [43]) and using the corre-
sponding projections onto orbital doublets Pn = |+n〉 〈+n| +
|−n〉 〈−n| and the projection onto the orbital singlet P3 =
|0〉 〈0|, we can write the combined atomic and crystal Hamil-
tonian as

HTM + Vcr =
∑

l=1,2,3

εlPl , (2)

where εl are the crystal energies. Here, l = 1, 2, 3 labels the
three orbital multiplets shown in Fig. 1(a), and we choose ε1

to denote the energy of the lower energy doublet, henceforth
referred to as ground state (GS) doublet, such that ε2 − ε1 =
�cr denotes the crystal field splitting between the GS and
excited state (ES) orbital doublets and ε3 − ε1 the splitting
between the GS orbital doublet and the orbital singlet. We note
that within the effective Hamiltonian, ε1 = 0 can be chosen
for simplicity. In the following, we describe each part of the
Hamiltonian H by its contribution to each of the nine blocks
Pl HPm defined by the three orbital sectors (l, m = 1, 2, 3).

Using the projection operators, we can formulate the dif-
ferent blocks of the spin-orbit interaction as

PnHsoPm = λz
nmSzσz + i(n − m)λx

nm(Sxσy + Syσx ), (3)

〈0|Hso|±n〉 = λx
n3(Sx ± iSy), 〈0|Hso|0〉 = 0, (4)

where n, m = 1, 2, σk denote the Pauli matrices (here acting
between the orbital states states |±n〉), and Sk (k = x, y, z) the
spin-1/2 operators of the electron in units of h̄. The spin-
orbit coupling constants λk

nm are in units of energy with this
convention.

Another relevant term is the electronic Zeeman interac-
tion due to the spin and angular momentum coupling to
an external magnetic field. In the relevant subspaces, it is
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given by

PnHzPm = rz
nmBzσz + μBgs �B · �Sδnm + i(n − m)rx

nm(Bxσy + Byσx ), (5)

〈0| Hz |±n〉 = rx
n3(Bx ± iBy), 〈0| Hz |0〉 = μBgs �B · �S, (6)

where we use the electron gyromagnetic ratio gs = 2, the Bohr magneton μB, and the coupling constants of the orbital Zeeman
term rk

nm.
The nuclear Hamiltonian Hnuc = Hhf + Hzn (for TM defects with nonzero nuclear spin) is made up by the hyperfine interaction

Hhf and the nuclear Zeeman interaction Hzn = μN gN �B · �I with the nuclear spin operator �I in units of h̄, the nuclear magneton μN ,
and nuclear g factor gN . As the nuclear Zeeman term is proportional to the identity operator 1 in the electronic subspace, it can
be straightforwardly incorporated. Following Ref. [44] and accommodating to the notation employed in this paper, the hyperfine
interaction projected onto the relevant subspaces is

PnHhf Pm = az
nmSzIz + az

nm
′

2
(S+I− + S−I+) − ax

nm

2
[σ−S+I+ + σ+S−I−]

+ 1

2
ax

nm
′[Sz(σ+I+ + σ−I−) + (S+σ+ + σ−S−)Iz] + az

nm
′′Izσz + ax

nm
′′

2
(n − m)(σ+I+ − σ−I−), (7)

〈0| Hhf |±n〉 = ax
n3

′′I± ± ax
n3S∓I∓ ∓ ax

n3
′[SzI± + S±Iz], 〈0| Hhf |0〉 = az

33SzIz + 1

2
az

33
′(S+I− + S−I+), (8)

where we use the ladder operators O± = Ox ± iOy with O =
σ, S, I as well as the set of hyperfine coupling parameters ak

nm,
ak

nm
′
, and ak

nm
′′
.

The effect of an applied electric field �E can be described
by

PnHelPm = E z
nmEz1 + E z

nm(σxEx − σyEy), (9)

〈0| Hel |±n〉 = ∓ Ex
n3(Ex ± iEy), 〈0| Hel |0〉 = E z

33Ez, (10)

with the coupling strengths Ek
nm.

Lastly, we turn to the strain Hamiltonian. In our model, we
start with a product space of orbital and spin components, such
that we can incorporate the strain interaction within the orbital
subspace. Its competition with the spin-orbit interaction gives
rise to a complex interplay within the KDs. To describe it,
we use the assignment of the different strain elements to
irreducible representations of C3v [47] which then couple to
the corresponding orbital operator, i.e., the strain components
transforming like the basis {x, y} of the irreducible represen-
tation E couple to operators of the form of x and y, while the
strain components transforming like the basis z of A1 couple
to operators of the form of z. With these considerations, the
strain Hamiltonian

PnHstPm = εz
nm1 + (σxε

x
nm − σyε

y
nm), (11)

〈0| Hst |±n〉 = ∓ (εx
n3 ± iεy

n3), 〈0| Hst |0〉 = εz
33, (12)

has a similar structure as the coupling to electric fields but
potentially leads to a much larger contribution. Here, we use
the reduced components of the strain tensor, organized by
symmetry, εx

nm = sx
nmεxz + sx

nm
′ εyy−εxx

2 , ε
y
nm = sx

nmεyz + sx
nm

′εxy,
and εz

nm = sz
nmεzz + sz

nm
′ εxx+εyy

2 . In contrast to the coupling to
electric (and magnetic) fields, the tensorial form of the strain
manifests itself in the presence of multiple strain elements
pertaining to the same irreducible representation. These el-
ements can also have different coupling constants sk

nm and

sk
nm

′
leading to more degrees of freedom than a coupling to

vectors.
For concreteness, we focus on the vanadium defect in

the k site of 4H-SiC in the following. We use the already
known combinations of parameters and additionally estimate
the magnitude of the strain coupling constants using DFT
calculations. Many relevant parameters without strain can be
found in our previous works [43,44,46] which are symmetry
adapted from Refs. [40,41], including their values for other
defects. Because the telecom transition is attributed to lie be-
tween two orbital doublets [40,44] and strain can mix different
KDs pertaining to the same orbital doublet but not the orbital
singlet in the leading order, we focus our discussion on the
projection onto the orbital doublets in the following. Note that
we also consider the orbital singlet while calculating higher
order corrections in Appendix C.

III. RESULTS

In a first step, we investigate the electronic structure fol-
lowing from an externally applied, uniaxial, and static strain.
The remaining terms in the Hamiltonian will be discussed
afterwards, omitting the discussion of static electric fields
as they couple weakly to the defect compared to strain and
magnetic fields and the symmetry-based electric-field cou-
pling Hamiltonian [Eqs. (9) and (10)] is similar to the strain
Hamiltonian [Eqs. (11) and (12)].

Referring to the absence of an external electromagnetic
field as zero field, we define the electronic zero-field Hamilto-
nian as Hezf = HTM + Vcr + Hso + Hst. Projected onto one of
the doublets (n = 1, 2), the electronic zero-field Hamiltonian
is

PnHezf Pn =(εn + εz
nn)1 + λz

nnSzσz + (σxε
x
nn − σyε

y
nn), (13)

where we take the crystal-field splitting to be the dominant
contribution, i.e., |εl − εm| � λk

i j, ε
k
i j with l �= m, l, m, i, j =

1, 2, 3, and k = x, y, z. Furthermore, we investigate the
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domain where the magnetic field is weak compared to the
spin-orbit coupling, as is relevant for most experimental and
technological applications. Therefore, we begin by diagonal-
izing the Hamiltonian Eq. (13), leading to the eigenvalues

En,± = εn + εz
nn ± 1

2 sign(λz
nn)�n, (14)

with the combined spin-orbit and strain splitting
�n = √

(λz
nn)2 + 4(εx

nn)2 + 4(εy
nn)2. As it splits the orbital

doublet into two KDs (made up by two pseudospins), we
refer to �n as the orbital splitting. These energies are
doubly degenerate in agreement with Kramers’ theorem, as
time-reversal symmetry is still preserved for this static
Hamiltonian, despite the (potential) spatial symmetry
breaking due to strain. The corresponding eigenstates are

|n,±, σ 〉 = cos(θn/2) |±σ n〉 |σ 〉
± sin(θn/2) exp(∓iσϕn/2) |∓σ n〉 |σ 〉 , (15)

where σ =↑,↓ denotes the spin and is also used as σ =
± to achieve a concise notation. The x- and y-like com-
ponents of the strain coupling compete with each other
and with the spin-orbit coupling, leading to the mix-

ing angles tan(θn) = 2εx
nn

√
1 + (εy

nn/εx
nn)2/λz

nn and tan(ϕn) =
ε

y
nn/ε

x
nn. Without strain, the C3v symmetry of the defect is

intact, yielding the KDs 	4 and 	5/6 for the |n,−, σ 〉 and
|n,+, σ 〉 KDs, respectively.

A. Ab initio calculations

We perform ab initio calculations on the defect system to
determine its strain-orbital coupling strengths. For the calcu-
lation details, see Appendix A. The defect structure shows
C3v point symmetry owing to the axial crystal field of the
4H polytype. It introduces a double-degenerate e(1) orbital
inside the band gap, occupied by a single electron and two
empty orbital levels (e(2) and a1) which are localized inside
the conduction band in the 2E ground-state electronic config-
uration. The lowest energy excitation promotes the electron
between the different e levels, sinking the e(2) orbital inside
the band gap, we sketch the level structure in Fig. 2. The
calculated ZPL energy of 0.91 eV is in reasonable agreement
with experiments [40]. We note that Jahn-Teller instabilities
are suppressed in the calculations by a smeared occupation
in the e orbital subspace, describing a dynamically averaged
system in the unperturbed solution and strain perturbation is
applied to this high-symmetry system.

First, we determine the sk
nm orbital-strain coupling con-

stants, without spin-orbit coupling taken into account, in both
the ground and first excited state of the defect. To this end,
we apply strain with a magnitude of up to 0.02 and fit a
linear response for the orbital-level splitting energy and the
ZPL energy in the case of E and A1 strain components, re-
spectively. The coupling coefficients are extracted as the fitted
slope. Within the margin of error (see Appendix A), the slope
for strains transforming together agree and are predicted to
have the same sk

nm by the effective Hamiltonian, such that we
will use their average in the following. The calculated values
are collected in Table I, where we additionally assigned the
signs based on the discussion in Appendix B. To confirm the
agreement between the effective Hamiltonian and the ab initio

FIG. 2. Kohn-Sham level structure of the substitutional vana-
dium defect in 4H-SiC calculated with the HSE06 DFT functional.
The two sets of levels correspond to the two spin channels in the spin-
polarized calculation. Occupation and spin polarization is indicated
by red arrows. (a) The ground-state doublet originates from a doubly
degenerate orbital inside the gap. (b) Promoting this electron to
the higher lying double degenerate level creates localized excitation
inside the band gap.

calculations as well as the extrapolation of using the purely
orbital calculations to extract the strain coupling constants
sk

nm, we use these combined with the spin-orbit splitting in the
absence of strain predicted by the ab initio calculation given
by about λz

11/h = 1112 GHz to calculate the ground-state en-
ergy splitting and compare them to simulations combining
strain and the spin-orbit interaction, see Fig. 3. The spin-orbit
splitting calculated using DFT turns out to be about twice the
experimentally measured value of 529 GHz [40] in agreement
with a Ham reduction factor of about 0.6 [42].

For this reason, we will use the numerically determined
strain coupling constants but use experimentally determined
parameters from the literature where available. In particular,
we compare the mixing angle as well as the combined spin-
orbit and strain splitting as functions of strain components
transforming according to the x basis element of the irre-
ducible representation E (of C3v) in the GS and ES doublets
in Fig. 4 using the experimentally determined spin-orbit split-
tings λz

11/h = 529 GHz and λz
22/h = −181 GHz [40], where

we assigned the signs based on the level ordering [44].
Figure 4 shows that the splittings of the ES and GS diverge

TABLE I. Calculated strain-orbital coupling coefficients ex-
tracted from the linear perturbation model of the orbital-level
splitting and ZPL energies from DFT. We average the coupling of
elements pertaining to the same irreducible representation, as they
are predicted to be the same by the Wigner-Eckart theorem and agree
within numerical accuracy between the original DFT results; see
Table II. The signs are assigned according to Appendix B. For the
effective Hamiltonian, we choose to use sz

11 = sz
11

′ = 0 and assign
the slope of the energy difference from the DFT calculations to sz

22

and sz
22

′.

n k sk
nn (h THz/strain) sk

nn
′
(h THz/strain)

1 x 251 ± 1 230 ± 3
2 x −138 ± 6 −204 ± 3
2 z 459 ± 24 305 ± 19
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FIG. 3. Ground-state orbital splitting �1 as a function of strain
εyy − εxx comparing the effective Hamiltonian and DFT calculations.
The blue line (dots) shows the linear dependence of the orbital split-
ting in the absence of spin-orbit splitting obtained from the effective
Hamiltonian (from DFT). The pink dashed line (squares) show the
combined spin-orbit and strain splitting from the effective Hamilto-
nian (from DFT), following the prediction, Eq. (14). The effective
Hamiltonian uses the zero-strain spin-orbit splitting (extracted from
the DFT) and fitted sx

11
′ (see Table I).

more for εyy − εxx strain than for εxz. The mixing angle be-
tween the strain types is also different where it increases faster
for εxz strain and in all cases approach the asymptotic value of
π/2 which corresponds to maximal mixing of the unstrained
KDs, see Eq. (15).

The linear dependence of Eq. (14) on z-type strain, i.e.,
εzz and εxx + εyy, combined with the nonzero difference of
the coupling constants between the GS and ES from the ab
initio calculation (see Table I) implies that z-type strain can be
used to tune the optical transition frequency, i.e., the crystal
field splitting. This is possible while keeping the selection
rules intact as z-type strain conserves the defect’s C3v sym-
metry. Within the effective Hamiltonian, we choose to use

FIG. 4. Behavior of Kramers doublets pertaining to the same
orbital doublet under strain ε at zero field. (a) Strain mixing angle θn

[see Eq. (15)] and (b) orbital energy splitting [see Eq. (14)] as a func-
tion of ε. The plots show an increase in both mixing and splitting with
increasing strain. The symmetric KDs 	4 and 	5/6 are fully mixed
for highly strained samples. Furthermore, we note that the mixing
angle is antisymmetric, while the energy splitting is symmetric when
inverting the sign of the strain. We use the coupling constants in
Table I as well as λz

11/h = 529 GHz and λz
22/h = −181 GHz.

sz
11 = sz

11
′ = 0 because the overall energy shift can be set

arbitrarily and only the energy differences contained in the
effective Hamiltonian carry physical meaning. We assign the
full difference of the coupling of the ES and GS orbital dou-
blets extracted from the ab initio calculation to the parameters
sz

22 and sz
22

′.

B. Engineering the g tensor

Projecting onto the n(= 1, 2),± KD (spanned by the states
|n,±, σ 〉 with σ =↑,↓), we calculate the leading-order Zee-
man term

Hz
n,± = μBgz

n,±S̃zBz

+μBgx
n,±

(
S̃x

S̃y

)(
cos(ϕn) ± sin(ϕn)

∓ sin(ϕn) cos(ϕn)

)(
Bx

By

)
, (16)

with the effective g factors gz
n,± = gs ± 2rz

nn cos(θn) and
gx

n,± = ±gs sin(θn), where S̃k is the k = x, y, z pseudospin
(1/2) operator for the KD. From this expression, it is evident
that using x, y strain enables coupling to perpendicular mag-
netic fields such that quantum gates relying on Sx,y operators
become possible using microwave drives; the coupling gx

n,±
to Sx,y vanishes in the leading order in the absence of strain
(θn = 0). Furthermore, y-type strain leads to an effective rota-
tion of the spin in the x, y plane regarding an external magnetic
field.

As we previously showed in the absence of strain [43],
in the presence of strain the g factors are also influenced by
(combined) higher orders of the strain and spin-orbit inter-
actions between different orbital subspaces. We calculate the
(second-order) correction using a Schrieffer-Wolf transforma-
tion treating Hso + Hst as the perturbation. In Appendix C,
we show how to derive the correction for gz

n,± for purely
x-type strain. These are in agreement with previous unstrained
results. Using the insights of the higher order, we use rz

nn =∑
s=± |gs − gz,0

n,s|/4 with the experimentally determined gz,0
n,s at

zero strain of the same doublet n and attribute the remain-
ing individual deviation between gz,0

n,s and gz
n,s to a common

deviation from gs due to the second-order term. With this
consideration and using the g factors [40,41,44], we find rz

11 =
0.103 for vanadium defects in the k site in 4H-SiC (and the
second-order correction is 0.046). Using these parameters, we
show the evolution of the parallel and perpendicular g factors
as a function of the strain mixing angle θ1 for the ground-state
KD in Fig. 5 where we do not include the small second-
order correction. This figure makes it readily visible that as
rz

11 � gs, the parallel g factor changes little compared to the
perpendicular g factor. The perpendicular g factor gx

1,− varies
between 0 in the absence of strain up to ±gs = ±2 while the
parallel g factor gz

1,− only shows a marginal deviation from
gs = 2.

C. Engineering optical transitions

After discussing the interaction with magnetic fields,
which is essential to split the pseudospin levels and for
microwave control, we investigate the leading-order electric
dipole transition matrix elements in this subsection. These
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FIG. 5. Parallel and perpendicular g-tensor elements as a func-
tion of the strain mixing angle θ1 for the GS KD. In the absence of
strain, the perpendicular g factor vanishes and increases (decreases)
for positive (negative) strain mixing angles θ1. The parallel g factor
only slightly varies around the value of 2. Parameters used for this
plot are gs = 2 and rz

11 = 0.103.

matrix elements are important to characterize the interaction
with optical fields. In the absence of strain, all leading-order
transitions conserve the spin 〈n,±, σ |Hel|m,±,−σ 〉 = 0 and
〈n,±, σ |Hel|3,−σ 〉 = 0 [43]. We refer to Refs. [43,46] for a
summary of the selection rules for intact C3v symmetry. For
simplicity, we focus on the transitions between the 1,− KD
and the two 2,± KDs under the (leading-order) influence of
strain. To this end, we calculate

FIG. 6. Electric dipole transition matrix elements as a function
of x-type strain for linear polarized drives. The color (see legend)
encodes the target ES |2, ±, σ 〉 that couples pseudospin conserving
to the GS KD |1, −, σ 〉. Rows (a), (b); (c), (d); and (e), (f) show
the selection rules for Ex, Ey, Ez, respectively. Columns (a), (c),
(e) and (b), (d), (f) correspond to the two different x-type strains
(εyy − εxx )/2 and εxz. The pseudospin σ is encoded in the line style
solid (dashed) for ↑ (↓) but is not visible as the lines are aligned. We
use the same parameters as in Fig. 4.

〈2,+, σ |Hel|1,−, σ 〉 σe−σ i(ϕ1+ϕ2 )/2 = EzE z
12

[
ei(ϕ2−ϕ1 )/2 cos

(
θ1

2

)
sin

(
θ2

2

)
− e−i(ϕ2−ϕ1 )/2 cos

(
θ2

2

)
sin

(
θ1

2

)]

+ Ex
12

[
(σEx + iEy)e−σ i(ϕ2+ϕ1 )/2 cos

(
θ1

2

)
cos

(
θ2

2

)
+ (−σEx + iEy)eσ i(ϕ2+ϕ1 )/2 sin

(
θ1

2

)
sin

(
θ2

2

)]
, (17)

〈2,−, σ |Hel|1,−, σ 〉 eσ i(ϕ2−ϕ1 )/2 = EzE z
12

[
eσ i(ϕ2−ϕ1 )/2 cos

(
θ1

2

)
cos

(
θ2

2

)
+ e−σ i(ϕ2−ϕ1 )/2 sin

(
θ2

2

)
sin

(
θ1

2

)]

+ Ex
12

[
(−Ex − σ iEy)e−σ i(ϕ2+ϕ1 )/2 cos

(
θ1

2

)
sin

(
θ2

2

)
+ (−Ex + σ iEy)eσ i(ϕ2+ϕ1 )/2 sin

(
θ1

2

)
cos

(
θ2

2

)]
. (18)

Similar expressions can be analogously calculated for other transitions. We show in Fig. 6 how the electric dipole transition
matrix elements evolve as a function of the x-type strain elements εxz and (εyy − εxx )/2. This figure underlines that there are
domains where these types of strain enable multiple simultaneous transitions and that strain can significantly impact the selection
rules of the defect. The strongest change of the selection rules visible in Fig. 6 is the complete inversion of dipole coupling
strength to the GS via Ex polarized fields between the ES KDs under x strain. Combined with the influence on Ey, we conclude
that the circular polarization selection rules in the absence of strain [46] become linear polarization rules in suitably strained
samples. For example, in Fig. 6 it can be seen that the transition |1,−, σ 〉 ↔ |2,+, σ 〉 becomes primarily susceptible to Ey in
the presence of strong strain. We can generalize this by considering that for strong (positive) strain θ1, θ2 ≈ π/2, such that we
find

〈2,+, σ |Hel|1,−, σ 〉 σe−σ i(ϕ1+ϕ2 )/2 = iEzE z
12 sin

(
ϕ2 − ϕ1

2

)
− iEx

12

[
Ex sin

(
ϕ2 + ϕ1

2

)
− Ey cos

(
ϕ2 + ϕ1

2

)]
. (19)

Figure 6 and the above expressions directly show that we can generate an orbital three-level system in the V configuration where
one GS KD couples to two ES KDs in the presence of strain. Considering the equivalent structure of the two doublets, we infer
that an orbital Lambda (�) system can be created analogously.

Because even in the presence of strain the leading-order transitions conserve the pseudospin, the spin-conserving transitions
to the ES are cyclic if the pseudospins inside the KDs are not mixed. These cycling transitions are used in many platforms for
spin readout [59–63]. Since the coupling to a magnetic field aligned with the crystal axis (�ez) is diagonal [see Eq. (16)], the
pseudospins are pure for such a magnetic field. Therefore, the application of a static magnetic field perfectly aligned with the
crystal axis, splitting the spin levels without mixing them, enables spin readout even in the presence of strain.
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D. Pseudospin polarization in a highly strained system

While one possible way to initialize a state is a projective measurement, another approach established in a wide range of
platforms is coherent population trapping [7,12–14,64–67]. This approach relies on a � system, but in the case of the V defect in
SiC, all the leading order transitions conserve the pseudospin of the KDs. For this reason, different hyperfine interactions of KDs
[46], additional fields, or higher-order transition rules are needed to polarize the electron spin. Higher orders can be investigated
using a Schrieffer-Wolff transformation but are not discussed here for simplicity (see Appendix C for the case with strain or
Ref. [43] for the case without strain).

Instead, we briefly outline how the combination of strain and a static magnetic field can be used to set up an optical � system.
In particular, we propose combining x-type strain, leading to θ1 �= 0 and a magnetic field in the xz plane (with nonvanishing x, z
components). In this case, the KD’s Zeeman terms [see Eq. (16)] are Hn,±,z = μBgz

n,±S̃zBz + μBgx
n,±S̃xBx, which is diagonalized

by the states

|n,±, σ̃ 〉 = cos(φn,±/2) |n,±, σ 〉 + σ sin(φn,±/2) |n,±,−σ 〉 , (20)

with the corresponding eigenvalues

Ez
n,±,σ̃ = σμBgz

n,±Bz

√
1 + (gx

n,±Bx )2/(gz
n,±Bz )2, (21)

and the angles φn,± = arctan[gx
n,±Bx/gz

n,±Bz]. With this, an optical � system made up by the two GSs |1,−, σ̃ 〉 (σ =↑,↓) and
one of the ESs becomes feasible. As an example, we calculate the electric dipole matrix element between the GS and the ES
|2,+, ↓̃〉,

〈1,−, σ̃ |Hel|2,+, ↓̃〉 = [cos(φ1,−/2)δσ,↓ + sin(φ1,−/2)δσ,↑] cos(φ2,+/2) 〈1,−,↓ |Hel|2,+,↓〉
+ [sin(φ1,−/2)δσ,↓ − cos(φ1,−/2)δσ,↑] sin(φ2,+/2) 〈1,−,↑ |Hel|2,+,↑〉 , (22)

with the spin-conserving matrix elements according to
Eq. (17). These selection rules also imply that the correspond-
ing decay processes become allowed. Combined, this enables
the preparation of a pseudospin state of the GS KD in the
presence of strain.

The readout of the qubit discussed in the previous sec-
tion relied on cyclic transitions. To make the transitions highly
cyclic on demand after using the � system, we can target
φn,± = 0 [see Eqs. (20) and (22)]. This can be achieved either
by switching the perpendicular component of the magnetic
field on and off (e.g., by changing the relative alignment of the
magnetic field) or by modulating the perpendicular g-tensor
component via the strain [52,54,56] (see Fig. 5). Note that the
adiabatic modulation can be sped up by shortcut to adiabadic-
ity approaches like counteradiabatic driving [68–70].

E. Hyperfine interaction in strained KDs

After the detailed discussion of the interplay of the elec-
tronic structure of TM defects in SiC with strain, we now
proceed to the hyperfine structure of the KDs in the pres-
ence of strain. The Hamiltonian of the hyperfine interaction
[Eqs. (7) and (8)] projected onto the strained KDs [Eq. (15)]
is

Hhf
n,± =S̃z

[
azz

n,±Iz ± azx
n,±
2

(eiϕn I− + e−iϕn I+)

]

+ 1

2

[
e−i(1±1)ϕn S̃−

(
axy

n,±I− + axx
n,±eiϕn I+ + axz

n,±e2iϕn Iz
)

+ H.c.
]
, (23)

with the hyperfine coupling constants azz
n,± =

az
nn ± 2az

nn
′′ cos(θn) and azx

n,± = ax
nn

′ sin(θn), axy
n,± = −ax

nn[1 ∓
cos(θn)], axz

n,± = ax
nn

′[1 ± cos(θn)], and axx
n,± = ±az

11
′ sin(θn).

We extract the parameters from the literature values
(determined at zero strain) [40,41,44,46] using the following
relations by comparing the predicted forms for θn = 0. The
average (quarter of the difference) of azz

n,± between the KDs
± pertaining to the same doublet n yields az

nn = ∑
σ=± azz

n,σ /2
(az

nn
′′ = ∑

σ=± σazz
n,σ /4). The components ax

nn and ax
nn

′ are
fully given by −axy

n,−/2 and axz
n,+/2, respectively. We plot the

coupling constants of the GS KD |1,−, σ 〉 as a function of
the GS strain mixing angle θ1 in Fig. 7, where we assume
az

nn
′ = az

nn. Figure 7 shows that due to the symmetry breaking,
additional hyperfine elements become nonzero compared
with the case of intact symmetry (θn = 0).

FIG. 7. Hyperfine tensor elements of the GS KD as functions
of the strain mixing angle θ1. The different colors correspond
to the different hyperfine tensor elements (see legend). The solid
lines correspond to the case where the orbital hyperfine interac-
tion dominates over the Fermi contact and anisotropic hyperfine
interaction and the dashed lines to the reverse. For most elements,
both cases align but they significantly differ for axx

1,− and azz
1,−.

We use the parameters ax
1,−/h = −82.55 MHz, ax

1,−
′/h = 105 MHz,

az
1,−/h = az

1,−
′/h = 201 MHz (−31 MHz) az

1,−
′′/h = −15.5 MHz

(100.5 MHz) for the solid (dashed) lines.
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While the magnitudes of the different components of the
two GS KDs and the lower ES KD are agreed upon within
several works [40,41,44,46,71] and thereby enabled the in-
dependent determination of the relative sign of the lowest
ES and GS [36], the relative sign between the KDs of the
same doublet does not have this support. Therefore, we show
in Fig. 7 two possible configurations, one for opposite signs
(here, azz

1,− < 0 < azz
1,+ for θ1 = 0), where the orbital hyper-

fine dominates the diagonal interaction and one for the same
signs (here, 0 < azz

1,−, azz
1,+) where the anisotropic hyperfine

and Fermi contact interaction are dominant. The vastly differ-
ent strain dependencies of the zz strain coupling elements for
the different signs shows that by measuring this dependence
(for example, by using a strong, constant magnetic field), it is
possible to determine the relative signs of the hyperfine tensor
of the GS KDs without using direct transitions between those.
This would then give us insight into whether the |az

nn| or |az
nn

′′|
is dominant, where the former stems from the anisotropic and
Fermi contact terms and the latter from the orbital angular
momentum interacting with the nuclear spin. Therefore, such
a measurement would determine which of these interactions
is prevalent.

In the previously proposed nuclear spin-polarization proto-
col [46], unstrained samples were considered. Fundamentally,
the different forms of the hyperfine coupling between the
KDs were devised to a driven dissipative protocol to polarize
the nuclear spin. In this protocol, spin-flipping transitions are
driven in combination with spin-conserving decays, leading
to the polarization of nuclear and electronic spin. We expect
this protocol to be possible if the (x, y) strain is sufficiently
small such that the GS are dominated by the hyperfine terms
∝ azz

1,−, axy
1,− and the ES by the terms ∝ azz

2,+, axz
2,+. This can be

estimated using the strain mixing angles θn for n = 1, 2 [see
Eq. (15)] and Figs. 7 and 4.

On the other hand, for highly (x, y) strained samples, one
has a non-negligible θn. In this case, one can apply a strong
magnetic field along the crystal axis to suppress the hyper-
fine interaction terms ∝ S̃−, S̃+. In this case, the quantization

axis of the nuclear spin is tilted, depending on the KD. This
is immediately visible by investigating a single pseudospin
manifold,

〈n,±, σ |H |n,±, σ 〉 ≈ En,±,σ +
(

μN gN Bz + σ

2
azz

n,±

)
Iz

± σ

2
azx

n,±[cos(ϕn)Ix − sin(ϕn)Iy], (24)

with the electronic energy En,±,σ and where the magnetic
field along z direction suppresses the off-diagonal terms.
By first applying a rotation around the z axis by the angle
−ϕn and then a rotation around the y axis with the angle
±arctan[(σμN gN Bz + azz

n,±)/azx
n,±], we diagonalize this mani-

fold, yielding the diagonal hyperfine term in the rotated basis:

1

2

√
(azx

n,±)2 + (2μN gN Bz + σazz
n,±)2Iz. (25)

The rotations reflect that the nuclear spin experiences a strain,
pseudospin, and KD-dependent principal axis tilt. Indepen-
dent of the pseudospin, it is possible to drive a (pseudospin)
conserving transition to an ancillary state (AS) n,±, σ

with a different principal axis tilt incrementally increasing
the nuclear-spin polarization. This enables nuclear polariza-
tion. For simplicity, we will discuss an approach based on
purely x-type strain, i.e., θi �= 0 and ϕi = 0. Transforming
any KD pseudospin σ manifold into the diagonal basis of
the GS KD down state (1,−,↓), we find that we need to
replace Iz → cos(�ϕ)Iz + sin(�ϕ)Ix in Eq. (25) with the rel-
ative axis tilt angle �ϕ = arctan[(−μN gN Bz + azz

1,−)/azx
1,−] ±

arctan[(σμN gN Bz + azz
n,±)/azx

n,±]. The relative tilt angle �ϕ

formalizes that driving to the AS conserving the nuclear-spin
state will lead to a nuclear spin precession in the AS until the
state decays back to the GS.

This interaction of the nuclear-spin eigenstates of the GS
in the AS can be used to polarize the nuclear spin. A suitable
domain for this may be �ϕ �= 0. but �ϕ � 1 where we can
approximate the eigenstates of the AS using first-order pertur-
bation theory. The eigenstates of the ancillary KD pseudospin
σ (in the principal axis system of the GS KD down state) are

|n,±, σ, m〉 ≈ |n,±, σ 〉
[
|I, m〉 − �ϕ

2

√
I (I + 1) − m(m + 1) |I, m + 1〉 + �ϕ

2

√
I (I + 1) − m(m − 1) |I, m − 1〉

]
. (26)

The form of these states shows the possibility to resonantly
drive the transitions from the GS σ, m state to the corre-
sponding σ, m ± 1 from where the decay mainly occurs to
the σ, m ± 1 GS state (if �ϕ � 1). Here, the small angle
�ϕ ensures that the main decay does not decrease the nu-
clear magnetic moment again, while still enabling a resonant
drive of the polarizing transition. This process polarizes the
nuclear spin stepwise. The outlined approach works with the
transition to an ES or the second GS, given that the nuclear
transition lines can be resolved. This is in contrast to the
proposed zero-strain protocol, where a pseudospin flipping
transition in combination with the correct polarization renders
this requirement unnecessary.

While we focused for concreteness on one additional ex-
ample including strain in this paper, we note that combining

our model with the general approach outlined in Ref. [46],
protocols optimized for different scenarios can be developed
that are best matched to the technical setup.

IV. CONCLUSION

We studied the influence of strain on TM defects in SiC,
focusing on a particularly promising center for quantum tech-
nology applications, the substitutional vanadium defect at the
k site of 4H-SiC. We found that using strain enables the
engineering of the electronic g tensor and optical selection
rules, thereby opening the possibility for strain-controlled
manipulation (microwave gates) within the KDs, as well as
� and V optical three-level setups where both branches can
be driven using the same polarization. By combining strain
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and magnetic fields, we showed a path towards engineering
� systems for the pseudospin states of the KD, thus enabling
further prospects such as state preparation within the GS KD.
We also discussed the prospect of state readout of strained
defects using cycling transitions.

Furthermore, we showed the influence of strain on the
hyperfine interaction within the KDs. Here, we found that the
previously proposed polarization protocol is likely not appli-
cable anymore for strongly strained samples. Therefore, we
discussed one example of an application of our theory where it
is straightforward to find different polarization schemes even
in the presence of strain. A natural next step would be to
exploit our theoretical insights in future experiments.
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APPENDIX A: DFT CALCULATION METHODS

We model the vanadium defect embedded in a 128-atom
4H-SiC supercell. Its electronic structure is calculated using
the plane-wave based VIENNA AB-INITIO SIMULATION PACK-
AGE [72–75], with the 	-point approximation for the k-point
sampling. The plane-wave cutoff is set to 420 eV and PAW
method [76] is used for the core electrons. We apply DFT
using the hybrid exchange functional of Heyd, Scuseria, and
Ernzerhof (HSE06) [77] with on-site correction (DFT + U)
according to the Dudarev-approach [78], where the d or-
bitals of the vanadium atom is effected by U = −2.5 eV [79].
The atomic configurations are relaxed to forces smaller than
0.01 eV/Å. A size convergence test in a 576-atom supercell
was performed in the ground state, validating the applied
method. Excited state electronic configurations are calculated
with the constrained occupation �-SCF method [80]. The
methods for applying strain are discussed in Ref. [47]. We
note that the local defect structure is relaxed within the strain
constraint applied to the lattice.

The results of this simulation are discussed in the main
text and we additionally provided all slopes extracted for the
coupling to strain in Table II. In this table, sy

nm
(′) takes the

same role as sx
nm

(′) [see Eq. (11)] but takes into account that
we cannot assume them to be the same a priori within the
DFT calculation. We encode the slope of the ES- and GS-level

TABLE II. Calculated strain-orbital coupling coefficients ex-
tracted from linear perturbation model of the orbital level splitting
and ZPL energies from DFT. Coupling strengths to strain perturba-
tions which transform according to x and y basis elements of the
irreducible representation E are equal within computational accu-
racy. Standard deviations are extracted from the linear fit and are
given in parenthesis for the last meaningful digit. We note that the
sz

22, sz′
22 values correspond to the slope of the ES-GS splitting, where

we chose sz′
11, sz

11 = 0.

Symmetry Parameter Calculated value (eV/strain)

x of E sx
11 1.04(1)

sx
22 0.56(5)

sx′
11 0.94(2)

sx′
22 0.85(2)

y of E sy
11 1.037(2)

sy
22 0.582(2)

sy′
11 0.958(4)

sy′
22 0.84(1)

A1 sz
22 1.9(1)

sz′
22 1.26(8)

splitting in sz
22, sz′

22 by choosing sz
11, sz′

11 = 0, as we discuss in
the main text.

APPENDIX B: CRYSTAL FIELD EIGENSTATES AND
SIGNS OF THE STRAIN COUPLING CONSTANTS

Inside the d orbital projections, the crystal eigenstates are
given as

|±1〉 = cos(φ) |±1〉 ∓ sin(φ) |∓2〉 ,

|±2〉 = − sin(φ) |±1〉 ∓ cos(φ) |∓2〉 ,
(B1)

where the crystal mixing angle φ describes the admixture of
states that transform equally under C3v .

In the absence of spin-orbit coupling, the doublet states
split due to x, y strain, we use this to determine the
sign of the strain coupling constants. The eigenvectors for
purely εx

nm strain are (within the doublet projection) given
by

|+1〉 ± |−1〉√
2

= cos(φ)(|+1〉 ± |−1〉)

− sin(φ)(|−2〉 ∓ |+2〉), (B2)

|+2〉 ± |−2〉√
2

= − sin(φ)(|+1〉 ± |−1〉)

− cos(φ)(|−2〉 ∓ |+2〉), (B3)

with the eigenvalues εn ± εx
nn. We note the paral-

lel of these pairs of states to the cubic harmonics
|x2 − y2〉 = 1√

2
(|+2〉 + |−2〉), |xy〉 = i√

2
(− |+2〉 + |−2〉),

|xz〉 = 1√
2
(− |+1〉 + |−1〉), |yz〉 = i√

2
(|+1〉 + |−1〉), and

|z2〉 = |0〉. With this, we find that the strain eigenstates
are proportional to the distinct sets of cubic harmonics
|+n〉 + |−n〉 ∝ |yz〉 , |xy〉 and |+n〉 − |−n〉 ∝ |xz〉 , |x2 − y2〉.

With this, we can obtain the sign of the coupling from
the DFT simulation without spin by comparing the projection
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on the cubic harmonics (of the d orbital). We find that for
εxz = 0.01 in the GS (ES), the lower energy state is mainly
|xz〉 (|xy〉), i.e., the |+1〉 − |−1〉 (|+1〉 + |−1〉) state, such
that sx

11 > 0 (sx
22 < 0). Analogously, for εyy − εxx = 0.01 in

the GS (ES), the lower energy state is mainly |xz〉 (|xy〉),
i.e., the |+1〉 − |−1〉 (|+2〉 + |+2〉) state, such that sx

11
′ > 0

(sx
22

′ < 0).
Due to the known transformation properties of the states

from the literature (using the difference in the hyperfine ten-
sor), we assign the lower KD of the GS in the absence of strain
to 	4 and in the ES to 	5/6 [36,40,41,44,46]. To accommodate
this in the model, we use that for the vanadium defect in the k
site in 4H-SiC, λz

11 > 0 and λz
22 < 0.

APPENDIX C: HIGHER-ORDER EFFECTS

To understand higher order effects, we treat a purely x-type
strain using a Schrieffer-Wolff transformation [81]. To this

end, we perturbatively take block off-diagonal elements of the
spin-orbit and strain Hamiltonians (together) into account. We
do the following calculations in the basis where the leading-
order doublet Hamiltonians PnHezf Pn given in Eq. (15) are
diagonalized, such that we can afterwards directly study the
corrections affecting the KDs. Then we use the transformation
U = exp(−S) and, within first-order perturbation theory,

S =
∑
n �=m

Pn(Hso + Hst )Pm/(εn − εm), (C1)

where we directly neglect spin-orbit and strain terms in the
denominator as they are part of the higher (neglected) orders.
The corrections to the zero-field energies are then given by

1
2 [S, Hezf ], which is block diagonal in the KDs and corrects their energies by

En,−′ = (−1)n λz
12

2/4 + λx
12

2 sin2(θn/2) + εx
12

2

ε2 − ε1
− λx

i3
2 cos2(θn/2) + εx

i3
2(1 + sin(θn))

ε3 − ε1
, (C2)

En,+′ = (−1)n λz
12

2/4 + λx
12

2 cos2(θn/2) + εx
12

2

ε2 − ε1
− λx

i3
2 sin2(θn/2) + εx

i3
2(1 − sin(θn))

ε3 − ε1
, (C3)

E3
′ =λx

23
2 + 2εx

23
2

ε3 − ε2
+ λx

13
2 + 2εx

13
2

ε3 − ε1
, (C4)

where n = 1, 2.
In addition to this, the corresponding corrections of the remaining parts h of the full Hamiltonian can be calculated as [S, h].

For instance, this corrects the coupling to a magnetic field along the crystal axis �ez projected onto the KDs as

Hz
n,−

′ =
[

(−1)n 2λz
12

ε2 − ε1
Sz − 4λx

12 sin2(θn/2)

ε2 − ε1
Sx

]
rz

12μBBz, (C5)

Hz
n,+

′ =
[

(−1)n 2λz
12

ε2 − ε1
Sz − 4λx

12 cos2(θn/2)

ε2 − ε1
Sx

]
rz

12μBBz, (C6)

Hz
3
′ =0, (C7)

where one can neglect the off-diagonal matrix elements
considering that they are suppressed by the leading-order
term gsSz, as we expect for gs � rz

12. While in this pa-
per, we focus on providing the straightforward recipe to
calculate higher-order terms for simplicity, previous work

takes higher-order effects in the spin-orbit coupling only
(without strain) into account [43,44,46]. Analogously, ex-
pressions for other magnetic-field directions and parts of
the Hamiltonian can be calculated using S but are omitted
here.
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