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Electromagnetic control of valley splitting in ideal and disordered Si quantum dots

Amin Hosseinkhani * and Guido Burkard †

Department of Physics, University of Konstanz, D-78457 Konstanz, Germany

(Received 30 June 2020; revised 22 September 2020; accepted 7 October 2020; published 3 November 2020)

In silicon spin qubits, the valley splitting must be tuned far away from the qubit Zeeman splitting to prevent
fast qubit relaxation. In this work, we study in detail how the valley splitting depends on the electric and magnetic
fields as well as the quantum dot geometry for both ideal and disordered Si/SiGe interfaces. We theoretically
model a realistic electrostatically defined quantum dot and find the exact ground and excited states for the out-of-
plane electron motion. This enables us to find the electron envelope function and its dependence on the electric
and magnetic fields. For a quantum dot with an ideal interface, the slight cyclotron motion of electrons driven by
an in-plane magnetic field slightly increases the valley splitting. Importantly, our modeling makes it possible to
analyze the effect of arbitrary configurations of interface disorders. In agreement with previous studies, we show
that interface steps can significantly reduce the valley splitting. Interestingly, depending on where the interface
steps are located, the magnetic field can increase or further suppress the valley splitting. Moreover, the valley
splitting can scale linearly or, in the presence of interface steps, nonlinearly with the electric field.
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I. INTRODUCTION

The spin of isolated electrons trapped in silicon-based het-
erostructures is very promising for building high performance
and scalable qubits [1]. The long relaxation time [2–4] and
dephasing time [5–7] that are achieved in these qubits are
due to the weak spin-orbit interaction and nuclear zero-spin
isotopes. Strong coherent coupling between Si spin qubits and
photons using superconducting resonators has been realized
[8,9] while the fidelities demonstrated for single and two-qubit
gates are steadily improving [10–14]. Having mentioned all
these advantages, we note that the nature of the degenerate
conduction band minima, known as valleys, in bulk silicon
poses a significant challenge for the operation and scalability
of silicon spin qubits. It can be shown that a combination of
biaxial strain as well as the sharp interface potential lifts the
valley degeneracy in Si heterostructures, and gives rise to two
low-lying states [1]. In general, a qubit performs well only
when the qubit energy splitting is well-separated from any
other energy scale in the environment. In Si spin qubits, the
spin couples to the valley degree of freedom due to interface-
induced spin-orbit interaction [15–17]. If the valley splitting
becomes equal to the qubit Zeeman splitting, a condition
known as spin-valley hotspot, the valley-spin mixing for the
qubit excited state reaches its maximum and gives rise to
a very fast qubit relaxation via electron-phonon interaction
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[3,18]. It is, therefore, of crucial importance to understand
how the valley splitting behaves as a function of parameters of
the system; namely, electric and magnetic fields, the quantum
dot geometry and the roughness at the Si/barrier interface.

In studying the valley splitting, a suitable starting point
is the effective mass theory that can be used to obtain the
electron envelope function. This envelope function, in turn,
depends on the above-mentioned system parameters, and the
valley splitting can be deduced from it. As we review in
Sec. II A, in the absence of a magnetic field, the Hamil-
tonian describing the full envelope function is separable.
While the in-plane envelope function is trivially given by
the harmonic-oscillator wave function (due to the in-plane
parabolic confinement), to our knowledge, the (ground state of
the) out-of-plane envelope function has only been studied and
approximated via variational methods [19–22] or by setting
the barrier potential to infinity [23]. However, the assumptions
involved in these methods render them less accurate for higher
electric fields. In this paper, we model a realistic potential pro-
file for a SiGe/Si/SiGe quantum dot by taking into account
both Si/SiGe interfaces as well as an interface between SiGe
and the insulating layer hosting the gate electrodes. Within
this model, we then find the exact solution for the ground
state as well as excited state envelope functions for the out-of-
plane electron motion. We also extend our analysis to include
Si/SiO2 heterostructures in Appendix A.

In the presence of an in-plane magnetic field, a cyclotron
motion of electrons takes place which tends to increase the
electron probability amplitude at the Si/SiGe interface [24].
This effect can, in turn, modify and increase the valley split-
ting. The magnetic field couples in-plane to out-of-plane
degrees of freedom and thus prevents us from finding the exact
solution for the electron envelope function. Using the exact
excited states for the out-of-plane envelope function, we find
the full envelope function in the presence of a magnetic field
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by applying perturbation theory. We show that an in-plane
magnetic field indeed slightly increases the valley splitting;
up to a few Tesla, the valley splitting increases quadratically
with the magnetic field. Besides this, for a quantum dot with
an ideal interface, i.e., no miscuts and steps at the interface,
we find that the dominant contribution to the valley splitting
scales linearly with the electric field, Fz.

During the experimental process of fabricating silicon
heterostructures, the formation of steps and miscuts at the
Si/SiGe seems to be inevitable [25,26]. It has been shown
that the presence of interface steps can severely suppress
the valley splitting [22,27,28]. Here we again use the exact
excited states for the out-of-plane envelope function in order
to perturbatively treat the effects of interface steps to the
envelope function. We argue that our modeling is applicable to
any configuration for the interface disorder. We first study how
the interface steps suppress the valley splitting in the absence
of a magnetic field. We show that the valley splitting of a
disordered quantum dot can scale either sublinearly, linearly
or superlinearly with the electric field, depending on the step
configuration. We then consider the effects of an in-plane
magnetic field. While it has been speculated that the magnetic
field can increase the valley splitting in the presence of in-
terface steps [27,28], interestingly, we find that the magnetic
field can both increase or further suppress the valley splitting
depending on the locations of the steps.

This paper is structured as follows. In Sec. II A, we present
our model and find the exact solution for the out-of-plane
electron motion for a SiGe/Si/SiGe quantum dot. In Sec. II B,
we obtain the envelope function in the presence of an in-plane
magnetic field for a quantum dot with an ideal Si/SiGe inter-
face. In Sec. II C, we extend our model to include the interface
disorders and derive the envelope function for a certain con-
figuration of steps. In Sec. III, we build on our findings for the
envelope function to obtain and discuss the valley splitting; in
Secs. III A and III B, we study how the valley splitting of an
ideal quantum dot depends on the electric and magnetic field
field. In Sec. III C, we consider interface disorder and calcu-
late the valley splitting and its phase depending on the location
of the step. We then investigate the role of the electric and
magnetic fields in modifying the valley splitting. In Sec. IV,
we summarize and conclude the paper. Appendices contain
further details of our analysis as well as some extensions of
the theory to include an analysis of the out-of-plane envelope
function and the valley splitting of Si/SiO2 heterostructures.

II. MODEL

We consider a SiGe/Si/SiGe heterostructure grown along
the ẑ direction ([001]) while the silicon layer is between
−dt � z � 0. Figure 1(a) shows a schematic cross-section of
the layer structure of the system. An electric field is applied
along ẑ via the gates, and we consider both interfaces between
Si and SiGe at z = 0 as well as z = −dt . The energy offset
between the minima of the conduction band in Si and SiGe
is given by U0 = 150 meV. Moreover, we also consider the
interface between the top SiGe barrier and the insulating layer
that hosts the electric gates. Inside the insulating layer, we
take U∞ = ∞ which indicates the envelope function does
not leak into that region. Panel (b) of Figure 1 shows the

FIG. 1. (a) Schematic layered structure of a single SiGe/Si/SiGe
quantum dot. The dark gray area (I) is an insulating layer hosting
the electric gates. The ±V gates are used to trap and confine a single
electron in the silicon layer. (b) The electrostatic potential profile
along the growth direction ẑ. Fz is the out-of-plane electric field
generated by the gates, U0 is the potential barrier of the SiGe layers,
U∞ is the infinite potential barrier due to the insulating layer. The
potential energy U (z) is defined in Eq. (2).

full potential along ẑ. Moreover, here we assume a generally
elliptical quantum dot with harmonic in-plane confinement.
We denote the radius of the quantum dot along x̂ by x0 and the
radius along ŷ by y0.

A. Exact envelope function in absence of a magnetic field

Within the effective mass theory and in the absence of
a magnetic field, the Hamiltonian describing the envelope
function reads

Hxyz = p2
x

2mt
+ 1

2
mtω

2
x x2 + p2

y

2mt
+ 1

2
mtω

2
y y2

+ p2
z

2ml
− eFzz + U (z). (1)

Here mt = 0.19 me and ml = 0.98 me are the transverse and
longitudinal effective mass, ωx = 2h̄/mt x2

0 and ωy = 2h̄/mt y2
0

are the confinement frequencies along x̂ and ŷ, and

U (z) = U0θ (−z − dt ) + U0θ (z) + U∞θ (z − db), (2)

where dt is the thickness of the Silicon layer and db is the
thickness of the upper SiGe barrier.

Eq. (1) clearly gives rise to a separable envelope function
ψxyz = ψxψyψz where ψx and ψy are the well-known har-
monic oscillator wave functions. Our main objective in this
section is to find the exact eigenstates ψz,n and eigenenergies
Ez,n for the out-of-plane electron motion.

Given Eq. (1), we write the Schrödinger equation for the
envelope function ψz,n as{

p2
z

2ml
− eFzz + U (z)

}
ψz,n = Ez,nψz,n. (3)

We now use the electrical confinement length,

z0 =
[

h̄2

2mleFz

]1/3

, (4)
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and its associated energy scale,

ε0 = h̄2

2mlz2
0

, (5)

in order to piecewise expressing Eq. (3) as

d2

dz̃2
ψz,n − (Ũ0 − z̃ − ε̃z,n)ψz,n = 0, 0 < z < db,

d2

dz̃2
ψz,n − (−z̃ − ε̃z,n)ψz,n = 0, −dt � z � 0,

d2

dz̃2
ψz,n − (Ũ0 − z̃ − ε̃z,n)ψz,n = 0, z < −dt . (6)

Here z̃ = z/z0, ε̃z,n = Ez,n/ε0, and Ũ0 = U0/ε0 are the normal-
ized length, eigenenergy, and potential.

The above equation, at each interval, has generally two
linearly independent solutions known as Airy functions of the
first and second kind, Ai and Bi [29]. We thus find the exact
solution for ψz,n:

ψz,n = N0z−1/2
0

⎧⎨
⎩

c1Ai(ζ̃n) + c2Bi(ζ̃n) , 0 < z < db

c3Ai(ζ̃n) + c4Bi(ζ̃n) , −dt � z � 0
c5Ai(ζ̃n) , z < −dt

(7)

where we defined

ζ̃n =
⎧⎨
⎩

Ũ0 − z̃ − ε̃z,n , 0 < z < db

−z̃ − ε̃z,n , −dt � z � 0
Ũ0 − z̃ − ε̃z,n . z < −dt

. (8)

Note that the Bi function is omitted from the solution for z <

−dt . This is based on the physical ground that Bi does not give
rise to a decaying behavior inside the extended barrier layer.

In order to find the eigenenergies and determine the coef-
ficients involved in the envelope function Eq. (7), we apply
the appropriate boundary conditions; i.e., ψz,n and its first
derivative ψ ′

z,n must be continuous at the interfaces between
Si and SiGe, at z = 0 and z = −dt . Moreover, since there is
no leakage to the insulating layer, the envelope function must
vanish at z = db. By imposing this set of boundary conditions,
we obtain the equation below from which we can numerically
find all possible eigenenergies,

f1(ε̃z,n, d̃t , Ũ0)g1(ε̃z,n, d̃b, Ũ0)

− f2(ε̃z,n, d̃t , Ũ0)g2(ε̃z,n, d̃b, Ũ0) = 0, (9)

with the definitions

f1(ε̃z,n, d̃t , Ũ0) = Bi′(d̃t − ε̃z,n)Ai(Ũ0 + d̃t − ε̃z,n)

+ Bi(d̃t − ε̃z,n)Ai′(Ũ0 + d̃t − ε̃z,n), (10)

f2(ε̃z,n, d̃t , Ũ0) = Ai(d̃t − ε̃z,n)Ai′(Ũ0 + d̃t − ε̃z,n)

+ Ai′(d̃t − ε̃z,n)Ai(Ũ0 + d̃t − ε̃z,n), (11)

and

g1(ε̃z,n, d̃b, Ũ0)

= Ai(−ε̃z,n)

[
Bi′(Ũ0 − ε̃z,n) − Ai′(Ũ0 − ε̃z,n)

Bi(χn,db )

Ai(χn,db )

]

− Ai′(−ε̃z,n)

[
Bi(Ũ0 − ε̃z,n) − Ai(Ũ0 − ε̃z,n)

Bi(χn,db )

Ai(χn,db )

]
,

(12)

g2(ε̃z,n, d̃b, Ũ0)

= Bi′(−ε̃z,n)

[
Bi(Ũ0 − ε̃z,n) − Ai(Ũ0 − ε̃z,n)

Bi(χn,db )

Ai(χn,db )

]

− Bi(−ε̃z,n)

[
Bi′(Ũ0 − ε̃z,n) − Ai′(Ũ0 − ε̃z,n)

Bi(χn,db )

Ai(χn,db )

]
,

(13)

where χn,db = Ũ0 − d̃b − ε̃z,n and Ai′ and Bi′ are the first
derivatives of the Ai and Bi functions.

Once the (normalized) eigenenergy ε̃z,n is found, we use
it to calculate the coefficients c1 to c5. The coefficient N0 is
found by using the normalization of the envelope function. We
note that by solving Eq. (9), we also find a set of states where
the envelope function is not localized in the Si quantum well
but rather in the upper SiGe barrier underneath the insulating
layer. As we discuss it in Sec. III, the valley splitting is
basically determined by the ground state localized in the Si
quantum well. In the presence of a magnetic field or interface
steps, we also need to take into account the excited states
which have sizable overlap with the localized ground state in
the Si quantum well; see Eqs. (28), (29), and (36). As such,
the states that are localized underneath the insulating layer do
not contribute to the behavior of the valley splitting, and we
neglect them in this paper.

For the ground state of the electron motion along ẑ, we
can simplify the analysis presented above and find analytic
relations. As we show in Appendix A, the (normalized)
ground-state energy in the regime of a deep quantum well,
Ũ0 � 1, can be expressed up to the leading order as

ε̃z,0 = r0 − Ũ −1/2
0 + O(Ũ −3/2

0 ), (14)

where −r0 � −2.338 is the smallest root (in absolute value)
of the Ai function. The normalized envelope function in this
case is approximated by,

ψz,0(z̃) � z−1/2
0

Ai′(−r0)

{
Ai(−ε̃z,0)e

− Ai′ (−ε̃z,0 )

Ai(−ε̃z,0 ) z̃
, z̃ > 0

Ai(−z̃ − ε̃z,0) . z̃ � 0
. (15)

In Fig. 2, we show the obtained energies for the ground
state as well as first few excited states as a function of the
applied electric field. In Fig. 3, we also show the probability
density |ψz,n|2 for the ground state and first two excited states
for two different electric fields. In both figures, a comparison
between the numerics and the analytical relations Eqs. (14)
and (15) for the ground state shows a very good agreement.

We further note here that the interface-induced spin-orbit
interaction is neglected in our model. Consideration of this
effect has been shown to be essential for explaining the
valley-dependent g factor in silicon quantum dots [16,17,23].
However, as noted in Ref. [23], the matrix elements involved
in the spin-orbit interaction are much smaller than the valley
splitting matrix element. This justifies our omission of the
interface-induced spin-orbit interaction. As we will show in
the next sections, the information stored in the excited states
ψz,n�1 enables us to obtain the full envelope function ψxyz,0
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FIG. 2. Eigenenergies of the ground state Ez,0 and first few ex-
cited states up to the 4′th excited state Ez,4 as a function electric field
Fz. The symbols are obtained from numerically solving Eq. (9). The
dashed line is the ground-state energy obtained from Eq. (14). The
used quantum dot parameters are dt = 10 nm and db = 46 nm.

in a finite magnetic field, and also makes it possible to study
realistic cases where there are steps and miscuts at the Si/SiGe
interface.

As we mention in Appendix A, in obtaining the simpli-
fied relations for the ground-state energy ε̃z,0 and envelope
function ψz,0 given by Eqs. (14) and (15), we assume that
due to the electric confinement, the envelope function of the

0
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-12 -10 -8 -6 -4 -2 0  2  
0

0.2

0.4

FIG. 3. Probability density of the ground state and the first and
second excited states along ẑ. The gray areas mark the SiGe bar-
riers. The solid and dash-dotted lines are found by using the exact
envelope functions obtained from Eq. (7), while the eigeneregies are
numerically found from Eq. (9); see Fig. 2. The dashed lines show
the approximate ground-state envelope function given by Eq. (15).
By comparing (a) with (b) we see that the envelope functions are
pushed upwards by increasing the electric field Fz, as expected. The
parameters for the quantum dot are the same as noted in the caption
of Fig. 2.

ground state has a negligible amplitude at the lower SiGe/Si
interface. Therefore the ground state becomes independent
on the silicon layer thickness, dt . In order to quantify the
regime at which this assumption is valid, we note that, as
far as the valley splitting is concerned, dropping the lower
interface is justified provided |ψz,0(z = −dt )|2 � |ψz,0(z =
0)|2. Taking dt = 10 nm, we find Fz � 2 MV/m validates the
assumption of dropping the lower interface for the ground
state. On the other hand, since the excited states have higher
energies, they further spread within the silicon quantum well
and, depending on the electric field, they can have sizable
amplitude at the lower interface; see Fig. 3(a). Therefore,
to properly determine the excited states, we always consider
the lower SiGe/Si interface by numerically solving Eq. (9).
The relevant electric field for the SiGe/Si/SiGe heterostruc-
tures is typically cited in the literature to be Fz = 15 MV/m
[21,30]. At this value for the electric field, the ground-state
envelope function, even in the presence of magnetic field
and interface steps, is found to have negligible amplitude at
the lower interface so long as dt � 5 nm; see Figs. 4 and 6
(the silicon layer thickness is reported to be dt = 12 nm in
the experiment in Ref. [26] whereas dt = 8 nm in the experi-
ment in Ref. [31].) In Appendix A, we also consider a Si/SiO2

heterostructure and find generalizations of Eqs. (14) and (15)
to include analytical expressions not only for the ground state
but also for the excited states as well.

B. Envelope function in the presence of an in-plane magnetic
field with ideal Si/SiGe interface

Let us now consider a quantum dot with an ideally flat
Si/SiGe interface in the presence of an in-plane magnetic
field B = (Bx, By, 0). We use a gauge for which the vec-
tor potential becomes A = (0, 0, yBx − xBy). By substituting
pz → pz − eAz(B) in Eq. (1), we arrive at the following form
for the Hamiltonian describing the envelope function:

H = H ′
0(B) + H||(B). (16)

where we start from the separable Hamiltonian,

H ′
0(B) = p2

x

2mt
+ 1

2
mtω

′2
x (By)x2 + p2

y

2mt
+ 1

2
mtω

′2
y (Bx )y2

+ p2
z

2ml
− eFzz + U (z) , (17)

and treat the couplings induced by the in-plane field as a
perturbation,

H||(B) = − Bx
e

ml
ypz + By

e

ml
xpz − BxBy

e2

ml
xy. (18)

We note that the confinement frequencies and lengths along x̂
and ŷ are modified by the magnetic field. Let us first define the
cyclotron frequency and magnetic length induced by Bx(y) by

�x(y) = eBx(y)√
mt ml

, (19)

lx(y) =
√

h̄

eBx(y)
. (20)
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TABLE I. The coefficients αn and βn (in units of inverse Tesla).
Here we used Fz = 15 MV/m (corresponding to z0 = 1.40 nm), x0 =
12 nm, y0 = 15 nm, and Bx = By = 5 T.

n αn (10−4 T−1) βn (10−4 T−1)

1 −9.18 −8.76
2 2.85 2.78
3 −1.38 −1.35

We can then write

ω′
x = ωx

(
1 + �2

y

ω2
x

)1/2

, (21)

ω′
y = ωy

(
1 + �2

x

ω2
y

)1/2

, (22)

x′
0 = x0

(
1 + 1

4

mt

ml

x4
0

l4
y

)−1/4

, (23)

y′
0 = y0

(
1 + 1

4

mt

ml

y4
0

l4
x

)−1/4

. (24)

In order to obtain the envelope function from Eq. (16), we
treat H ′

0(B) exactly and apply perturbation theory in H||(B).
The ground state up to the first-order perturbation then reads

�xyz,0(B) = ψ
(0)
xyz,0(B) + ψ ||

xyz(B), (25)

where

ψ
(0)
xyz,0(B) =ψx,0(By)ψy,0(Bx )ψz,0 (26)

and

ψ ||
xyz(B) = − iBx

y′
0

z0
ψx,0(By)ψy,1(Bx )

nmax∑
n=1

αnψz,n

+ iBy
x′

0

z0
ψx,1(By)ψy,0(Bx )

nmax∑
n=1

βnψz,n

− BxByx′
0y′

0ηψx,1(By)ψy,1(Bx )ψz,0 , (27)

where the number of relevant bound excited states in the
vertical direction for Fz = 15 MV/m is found to be nmax = 3,
see Fig. 2. Here we defined the coefficients

αn = −1

2
h̄

e

ml

〈ψz,0|∂/∂ z̃|ψz,n〉
Ez,0 − Ez,n − h̄ω′

y

, (28)

βn = −1

2
h̄

e

ml

〈ψz,0|∂/∂ z̃|ψz,n〉
Ez,0 − Ez,n − h̄ω′

x

, (29)

η = −1

4

e2

ml

1

h̄ω′
x + h̄ω′

y

. (30)

We numerically calculate αn and βn using the excited
states ψz,n obtained in Sec. II A. For a circular dot we obtain
αn = βn. For an elliptical dot with realistic parameters, these
coefficients remain close to each other since the confinement
along ẑ in quantum dots is always stronger than the in-plane
confinements. Table I shows an example for the values of αn

and βn. With the set of parameters used in Table I, we find
x′

0y′
0η = −8.64 × 10−4T−2. Therefore the correction includ-

ing BxByx′
0y′

0η in Eq. (27) remains a subleading term so long

FIG. 4. (a) The electron probability density of a quantum
dot with an ideal interface in the x − z plane in leading order,
|ψ (0)

xyz,0(B)(x, y = 0, z)|2 (1 nm−3); see Eq. (26). (b) The correc-
tion to the probability amplitude in the x-z plane, |ψ ||

xyz(B)(x, y =
0, z)|2 (1/nm3) due to an in-plane magnetic field; see Eq. (27). The
parameters used are the same as given in the caption of Table I. The
dashed line in both panels marks the ideally flat Si/SiGe interface.

as |B| � 10 T. In Fig. 4, we show the probability density in
the x-z plane in leading order, |ψ (0)

xyz,0(B)|2, as well as the first-

order correction, |ψ (1)
xyz,0(B)|2. In Appendix B, we complement

this section by studying the correction to the ground-state
energy due to the presence of an in-plane magnetic field.

Note that for Si/SiO2 heterostructures, the correction to
the envelope function would have the same form as given by
Eq. (27). In Appendix D, we show an example for the values
of αn and βn for a Si/SiO2 heterostructure.

C. Envelope function with disordered Si/SiGe interface

So far, we have studied structures where the interface be-
tween Si and SiGe is perfectly flat and is located at z = −dt

and z = 0. However, during the experimental fabrication of Si
qubit nanostructures, the formation of miscuts and steps at the
interfaces is highly probable. Such uncontrolled disorder can
modify the valley splitting and its phase, and is considered to
be the main reason that makes the valley splitting a device-
dependent quantity. In Ref. [22], several configurations for
the steps at the interface are considered, and in each case,
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FIG. 5. Schematic layered structure of a quantum dot with stair-
like disordered Si/SiGe interface.

the envelope function is formed from a variational ansatz that
uses a smooth interpolation between the envelope functions
far from the step position (i.e., envelope functions for perfect
interface).

In this section, we extend our model to include stairlike
interface steps. For simplicity, throughout this work, we con-
sider a particular case where the steps are parallel to the ŷ-axis
and are located at the upper Si/SiGe interface as depicted in
Fig. 5. Our main objective here is to study how these miscuts
influence the quantum dot envelope wave function. Note that
disorder could also be present at the lower SiGe/Si interface.
However, since the amplitude of the envelope function is
small at the lower interface, the effects of possible disorder
is negligible.

In silicon, the thickness of each atomic layer is a0/4 where
a0 = 0.543 nm denotes the lattice constant. This indicates that
the change in the interface position due to a few miscuts is
much smaller than the total thickness of the envelope function
along ẑ and enables us to use perturbation theory in order to
obtain the electron envelope function. We take the z position
of the interface layer that contains the quantum dot center as
the reference for the position of the barrier interface (e.g., the
layer within [x2, x3] in Fig. 6), and take any change to the
interface position due to the miscuts as a perturbation. We
describe the disordered SiGe/Si/SiGe interface with the step
potential

Udis(x, z) = U (z) + Usteps(x, z), (31)

where U (z) is given by Eq. (2) and

Usteps(x, z) = U0

[
θ (−z)θ

(
z + a0

4

)
θ (x − x1)θ (x2 − x)

+θ (−z)θ

(
z + a0

2

)
θ (x1 − x)

−θ (z)θ

(
z − a0

4

)
θ (x − x3)θ (x4 − x)

−θ (z)θ

(
z − a0

2

)
θ (x − x4)

]
. (32)

TABLE II. The coefficients γm,n. Here we assumed xs1 = −7
nm, xs2 = −2 nm, xs3 = 3 nm, and xs4 = 7 nm. The other param-
eters are the same as given in the caption of Table I. We also find
γ ′

1,0 = 0.3784 and γ ′
2,0 = 0.0663; see Eq. (41).

m γm,0 γm,1 γm,2 γm,3

0 N/A 0.0170 −0.0082 0.0047
1 0.4204 −0.0564 0.0319 −0.0215
2 −0.0353 0.0073 −0.0036 0.0019
3 −0.0214 0.0069 −0.0043 0.0031
4 0.0088 −0.0029 0.0015 −0.0008
5 −0.0001 −0.0001 0.0001 −0.0001
6 −0.0025 0.0010 −0.0006 0.0003
7 0.0025 −0.0012 0.0008 −0.0006
8 0.0004 −0.0002 0.0001 0.0000

The Hamiltonian describing the envelope function with
disordered interface at finite in-plane magnetic field can again
be written in the form of Eq. (16) where, in this case, Eq. (32)
is added to the perturbative part of the Hamiltonian, Eq. (18).
The ground-state envelope function then reads up to the
second-order perturbation with respect to the interface disor-
ders,

�dis
xyz,0(B) = N0

[
ψ

(0)
xyz,0(B) + ψ ||

xyz(B) + ψ steps
xyz (B)

]
(33)

where

ψ steps
xyz = D(1)

xyz(B) + D(2)
xyz(B). (34)

Here, N0 is a normalization constant and D(1)
xyz is the first-order

correction due to the interface disorder that amounts to

D(1)
xyz(B) = ψy,0(Bx )

∑
{m,n}�={0,0}

γm,nψx,m(By)ψz,n, (35)

for which the coefficients

γm,n = 〈ψx,m(By)ψz,n|Usteps|ψx,0(By)ψz,0〉
E0,z − En,z − mh̄ω′

x

, (36)

shall be calculated numerically. Table II shows examples for
the values of γm,n. Since the out-of-plane confinement is much
stronger than the in-plane confinement, the largest contribu-
tion comes from m = 1 and n = 0. Moreover, we observe
that by taking up to 4 excited states ψx,m, the values of γm,n

substantially decay. As such, we can set mmax = 4 as a cutoff
in the summation in Eq. (35).

For the second-order correction due to the interface dis-
order, we only keep the leading-order terms to arrive at (see
Appendix C for more detail),

D(2)
xyz � c1ψx,1(By)ψy,0(Bx )ψz,0

+ c2ψx,2(By)ψy,0(Bx )ψz,0, (37)

where the perturbative coefficients c1 and c2 are given by

c1 = γ1,0

[
〈ψx,0(By)ψz,0|Usteps|ψx,0(By)ψz,0〉

h̄ω′
x

− 〈ψx,1(By)ψz,0|Usteps|ψx,1(By)ψz,0〉
h̄ω′

x

]
, (38)
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FIG. 6. The electron probability density in the x-z plane,
|�dis

xyz,0(B)(x, y = 0, z)|2 (1/nm3), for a quantum dot with disordered
interface. The locations of the interface steps are given in the caption
of Table II and the other parameters are the same as given in the
caption of Table I. The solid lines mark the disordered Si/SiGe
interface.

c2 = −γ1,0
〈ψx,2(By)ψz,0|Usteps|ψx,1(By)ψz,0〉

h̄ω′
x

. (39)

Therefore we find

ψ steps
xyz (B) = ψy,0(Bx )

∑
{m,n}�={0,0}

γ ′
m,nψx,m(By)ψz,n, (40)

in which the perturbative coefficients become

γ ′
m,n =

⎧⎨
⎩

γm,n + c1 , {m, n} = {1, 0}
γm,n + c2 , {m, n} = {2, 0}
γm,n , otherwise

. (41)

In Fig. 6, we show the electron probability density in the
x-z plane in the presence of interface steps. The asymme-
try around x = 0 in this case is due to the change of the
quantum-dot thickness due to the interface disorder. Since in
our model the Si quantum well is thicker for x > 0, the peak
of the probability density is also shifted towards x > 0. In
Appendix B, we study the correction to the ground-state en-
ergy due to the presence of the interface steps.

We point out here that other disorder configurations can
also be analyzed using the similar perturbative approach that
we presented in this section. In particular, if the interface steps
are not parallel to the ŷ axis, it is easy to see that Eqs. (35)
and (37) have to be generalized to include the in-plane excited
states along ŷ, ψy,m′ . In the next section, we use the envelope
functions we found in this section to study and discuss how
the valley splitting of a quantum dot depends on the electric
and magnetic fields for an ideally flat as well as disordered
Si/SiGe interfaces.

III. DISCUSSION

Within the effective mass theory, the two low-lying valley
components of the quantum dot can be written as

| + z〉 = �xyz,0(B)eik0zu+z(r), (42a)

| − z〉 = �xyz,0(B)e−ik0zu−z(r). (42b)

Here, k0 � 0.85(2π/a0) describes the Bloch wave vector
of the conduction band minima and u±z(r) are the periodic
parts of the Bloch functions for the ±z valleys in silicon. We
express these functions by a plane wave expansion,

u±z(r) =
∑

G

C±(G)eiG.r, (43)

for which G = (Gx, Gy, Gz ) is the reciprocal lattice vec-
tor. The coefficients in this expansion for the two valleys
are related via the time-reversal symmetry relation C−(G) =
C∗

+(−G). The wave vectors and their corresponding coeffi-
cients C+(G) for Si are studied in Ref. [20].

The valley-orbit coupling is given by

�vo = 〈+z| − eFzz + U (z)| − z〉. (44)

Note that eFzz = ε0z̃, and given εo � U0 for all practical val-
ues of Fz [see Eq. (53)], the valley-orbit coupling is strongly
dominated by the matrix element of the interface potential
U (z). Indeed, the role of the electric field is to control and
shape ψz, and the contributions from the matrix element of
−eFzz in the valley-orbit coupling can be neglected [20,30].
The valley splitting is found from the above equation by
Evs = 2|�vo| and the valley phase can be found by

φν = tan−1 [Im(�vo)/Re(�vo)]. (45)

A. Electrical dependence of the valley splitting
for an ideal quantum dot

In this section, we consider a quantum dot with an ideal
interface in the absence of a magnetic field and use the re-
sults of Sec. II A to find the electrical and interface-potential
dependence of the valley splitting and the valley phase. As
explained in Sec. II, since the electric field pushes the enve-
lope function towards the upper SiGe barrier, the probability
density of the ground state at the lower SiGe/Si interface is
negligible (assuming Fz � 2 MV/m for dt = 10 nm.) There-
fore we can drop the lower interface potential and only take
U (z) = U0θ (z). The valley-orbit coupling at zero magnetic
field for an ideal quantum dot then becomes

�0
vo = U0

∑
G1,G2

[
C∗

+(G1)C−(G2)

×
∫ +∞

−∞
e−i(G1−G2+2k0 )zθ (z)ψ2

z,0dz

]
. (46)

To carry on, we note that the terms with G1 �= G2 would lead
to fast oscillations in the integrand that average to zero. We
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therefore only consider terms with G1 = G2 and define,

C0 =
∑

G

C∗
+(G)C−(G), (47)

which we find to be C0 = −0.2607 using Ref. [20].
We now take the integration by parts and find for an ideal

quantum dot,

�0
vo = �int + �t (48)

Here, �int is the contribution that comes from the amplitude
of ψz,0 at the Si/SiGe interface:

�int = −i
U0C0

2k0z0

∫ +∞

−∞
e−2ik0zδ(z)ψ2

z,0dz , (49)

and �t is the contribution that originates from the tail of ψz,0

inside the barrier,

�t = −i
U0C0

2k0z0

∫ +∞

−∞
e−2ik0zθ (z)2ψz,0ψ

′
z,0dz . (50)

In order to find analytical expressions for these contribu-
tions, we use Eqs. (14) and (15) and also use the expansions
given by Eqs. (A9) (note that by using these equations, we
assume U0 � ε0 which is valid for all relevant valued for the
electric field Fz, see Eq. (53)]. We finally arrive at the result

�int = −iC0
eFz

2k0
, (51)

and

�t = −�int

[
1 − 1

2Ũ0
+ i

k0z0√
Ũ0

]−1

. (52)

The last term in the square bracket is a number larger
than 1 (having Fz = 2 to 20 MV/m for a SiGe barrier, we
find k0z0/

√
Ũ0 � 5). This indicates that |�int| is larger than

|�t | (by nearly a factor of 6.) In Appendix D, we study
how Eq. (52) is modified in a Si/SiO2 heterostructure, see
Eq. (D1).

We conclude that the valley-orbit coupling (and hence also
the valley splitting) within the leading order scales linearly
with the electric field while it is independent of the interface
potential (as long as U0 � ε0). This linear dependence is
experimentally observed in Ref. [3] for a SiO2 barrier (that
has a much stronger interface potential U0 = 3 eV compared
with SiGe) and it is also predicted from a theory analysis
assuming that the envelope function has zero amplitude inside
the barrier [23].

In addition to the linear-in-electric-field term, here we find
the valley splitting also has a small nonlinear dependence
on the electric field (note that 1/Ũ0 ∝ F 2/3

z ). This nonlinear
contribution originates from the penetration of the envelope
function into the barrier, and can be neglected so long as
Ũ0 � 1; this holds provided

Fz � U0

√
2mlU0

eh̄
. (53)

For a SiGe barrier with U0 = 150 meV, the right side of
the above inequality becomes ∼280 MV/m. This essentially
means for all practically relevant values for Fz, the valley
splitting remains a linear function of the electric field (note

2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

FIG. 7. |�int| and |�t | contributions to the valley-orbit coupling
for a SiGe barrier. As explained in the main text, the dominant
contribution to the valley-orbit coupling comes from the amplitude
of the envelope function at the barrier interface described by |�int|.

that the electrical breakdown field is reported to be 30 MV/m
for Si and 25 MV/m for Si0.75Ge0.25 [32].)

In Fig. 7, we used Eqs. (51) and (52) and show |�int| and
|�t | as a function of the electric field Fz. The values that we
show in the figure are in agreement with Refs. [21] and [30]
where |�vo| ∼ 200 μeV is reported for Fz = 15 MV/m.

Finally, from Eq. (51) and (52), we find that the valley
phase of a quantum dot with perfect interface up to the leading
order only depends on the interface potential,

φv � tan−1

[ −h̄k0√
2mlU0

]
, (54)

that becomes φv � −0.44π for a SiGe barrier.
We close this section by noting that Eqs. (51) and (52)

indicate that the valley-orbit coupling for an ideal quantum
dot does not depend on the silicon layer thickness, dt . This
is a consequence of our initial assumption that the envelope
function has a negligible amplitude at the lower SiGe/Si in-
terface due to the electric field. At the limit where Fz → 0,
this assumption clearly breaks down, and both lower and
higher interfaces become equally important. In this case, it
has been shown, using both the effective mass approximation
as well as the tight-binding method, that the valley splitting
oscillates as a function of the silicon layer thickness [19,33].
We also note that the electric field Fz is, in turn, influenced
by the electron density. References [34] and [35] include a
direct measurement of the valley splitting as a function of the
electron density.

B. Magnetic dependence of the valley split
ting for an ideal quantum dot

We now extend the results of the last section by including
an in-plane magnetic field. As we have shown in Sec. II B,
the electron envelope function �xyz,0 in the presence of an in-
plane magnetic field includes excited states of the out-of-plane
motion ψz,n, see Eq. (25) and (27). Compared to the ground
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FIG. 8. The valley splitting for a quantum dot with ideal interface
at Fz = 15 MV/m as a function of magnetic field. Here we have taken
B = B(cos(θ ), sin(θ ), 0) and set θ = π/4. The size of the quantum
dot is the same as indicated in the caption of Table I: x0 = 12 nm and
y0 = 15 nm. (Inset) The valley splitting at B = 10 T as a function of
direction of the magnetic field.

state ψz,0, the excited states can have a larger amplitude at
the Si/SiGe interface, and penetrate further to the barrier.
As such, we generally expect that the valley splitting should
increase in an in-plane magnetic field. In addition, as one can
see from Fig. 3, depending on the electric field, the excited
states can have a sizable amplitude at the lower SiGe/Si
interface z = −dt . Therefore we take into account both upper
and lower interfaces and consider a barrier potential of the
form U (z) = U0θ (z) + U0θ (−z − dt ). We use Eqs. (25) and
(27) and find for the valley-orbit coupling:

�ideal
vo (B, Fz ) = �0

vo

[
1 + B2

xB2
yx′2

0 y′2
0 η2

]
+ C0B2

x

(
y′

0

z0

)2 ∑
n,n′

αnαn′

∫ ∞

−∞
e−2ik0zψz,nU (z)ψz,n′dz

+ C0B2
y

(
x′

0

z0

)2 ∑
n,n′

βnβn′

∫ ∞

−∞
e−2ik0zψz,nU (z)ψz,n′dz. (55)

Using the excited states ψz,n from Sec. II A, we numeri-
cally calculate the above integrals. The coefficients αn, βn and
η are introduced in Sec. II B and as we explained there, up to a
few Tesla, the terms containing α and β are strongly dominant
over the correction containing η. Therefore, to the leading
order, the magnetic contribution to the valley splitting scales
quadratically with the magnetic field. Moreover, at finite mag-
netic fields, the valley splitting becomes dependent on ratio of
the lateral confinement to the electrical confinement, x′

0/z0 and
y′

0/z0, see Eqs. (23) and (24).
Equation (55) indicates that for an elliptical quantum dot at

a fixed magnetic field, the valley splitting reaches its maximal
value when the direction of the magnetic field is perpendicular
to the axis with the larger radius. In the main plot of Fig. 8,
we show the valley splitting as a function of magnetic field
at a fixed direction. In the inset plot of the figure, we show

the valley splitting as a function of the direction of the field.
We observe that the valley splitting for a quantum dot with
an ideal interface only slightly increases with the magnetic
field; even by having a magnetic field as large as |B| = 10 T,
the increase in valley splitting is only nearly 2% whereas the
deviation in the valley splitting due to changing the direction
of the field (at the used set of parameters) is only around 1%
(note that for a circular quantum dot, x0 = y0, changing the
direction of the magnetic field does not change the valley split-
ting due to the symmetry of the system). This also indicates
that the dominant contribution to the valley splitting remains
a linear function of the electric field Fz at the finite magnetic
fields.

C. Valley splitting of a quantum dot with disordered interface

We now consider a realistic quantum dot with miscuts and
steps at the Si/SiGe interface and aim to study the valley
splitting and its electromagnetic dependence. We take the
interface potential given by Eq. (31) and use the resulting
envelope function Eq. (33). We then find for the valley-orbit
coupling,

�dis
vo = N2

0

[
�ideal

vo + �s + �(1) + �(2)
]
, (56)

where �ideal
vo is the valley-orbit coupling for an ideal interface

given by Eq. (55), �s is the largest contribution originating
from the interface disorders and reads

�s = C0

∫ ∞

−∞
e−2ik0zψ2

x,0(By)ψ2
z,0Ustepsdxdz , (57)

and �(1) is a contribution that is first order with respect to
D′

xyz,0 and reads

�(1) =
∑
m,n

�(1),{m,n} = 2C0

∑
m,n

γ ′
m,n fm,n , (58)

where

fm,n =
∫ ∞

−∞

[
e−2ik0zψx,m(By)ψz,n

× Ustepsψx,0(By)ψz,0

]
dxdz. (59)

The last term, �(2), is a small and sub-leading contribution
that is second-order with respect to D′

xyz,0 and ψ
(1)
xyz,0. More

details on this term can be found in the Appendix E.
Note that, in general, we have |�(2)| � |�(1)| and |�(1)| <

|�vo|, |�s|. However, as we discuss below, depending on the
number and location of interface steps, |�vo + �s| can be-
come a small number. In this case, the contribution from �(1)

becomes (more) important in determining the valley splitting
and its phase.

1. A single step at the interface

Let us now study the structure and effects of �s and �(1).
We begin by considering the simplest case; that is, when there
is only a single step at the interface. We take the width of
the step to be +a/4; the step potential is then obtained from
Eq. (32) by taking xs4 → +∞ and xs1, xs2 → −∞. We then
take xs3 = xs � 0 to be the position of the only interface step.
From Eq. (57) for a quantum dot with a single interface step,
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FIG. 9. (a) The normalized valley splitting for a quantum dot
with single interface step as a function of the step location. The
dash-dotted line is found by using analytic relations Eqs. (48), (60),
and (61) and taking N0 = 1. The solid and dashed lines are deduced
from numerical calculation. (b) The valley phase of a quantum dot
with a single interface step as a function of the step location. Both
panels are obtained at at B = 0 and Fz = 15 MV/m.

we obtain

�1s
s (xs) � − 1

2
�0

voErfc(
√

2xs/x′
0(By))

× [
1 − e−(a0/2z0 )(

√
Ũ0+ik0z0 )

]
. (60)

In order to analyze �1s
(1), we note that a complete assess-

ment of this term requires numerical calculations. However,
we can obtain a rough estimation by only considering the
largest contribution to Eq. (58), i.e., the term corresponding
to m = 1 and n = 0. For further simplicity, we also drop the
second-order correction to the envelope function, D(2)

xyz,0, so
that we take γ ′

1,0 = γ1,0 and N0 = 1. We then arrive at the
largest contribution to �(1) due to m = 1 and n = 0,

�1s
(1),{1,0}(xs) � − γ1,0�

0
vo

√
2

π
e−2(xs/x′

0(By ))2

× [
1 − e−(a0/2z0 )(

√
Ũ0+ik0z0 )

]
, (61)

in which

γ1,0 = ε0

h̄ω′
x(By)

1

2
√

2π
e−2(xs/x′

0(By ))2

× 1√
Ũ0

[
1 − e−(a/2z0 )

√
Ũ0

]
. (62)

�1s
s (xs) and �1s

(1),{1,0}(xs) are clearly out of phase with
�ideal

vo . This can significantly modify and suppress the valley
splitting. Note that �1s

s (xs) and �1s
(1),{1,0}(xs) are monotoni-

cally decreasing if the interface step is located further away
from the quantum-dot center.

In Fig. 9(a), we present the normalized valley splitting as a
function of the step location at B = 0. By neglecting �(1) in
the valley-orbit coupling (shown in the figure by the dashed

black line), we observe, as predicted, that the valley splitting
is monotonically decreasing as the interface step moves closer
to the quantum dot center. At x = 0, the valley splitting is
suppressed by 75%. This amount of suppression is reported
in Ref. [22] where a variational ansatz is used to approximate
the envelope function in the presence of a single step. By
taking into account the �1s

(1),{1,0}(xs) contribution (shown by
the dash-dotted red line), we observe that the valley splitting
only becomes further suppressed.

Remarkably, if we numerically calculate �1s
(1) from Eq. (58)

and take into account not only the dominant term correspond-
ing to m = 1 and n = 0, �1s

(1),{1,0}, but also the other terms
due to the out-of-plane excited states, �1s

(1),{m,n�1}, we observe
that the valley splitting has in fact a nonmonotonic behavior
as a function of the distance between the single interface
step and the quantum dot center. Indeed, the terms �ideal

vo ,
�1s

s , and �1s
(1),{1,0} are originating from the ground state of

the out-of-plane motion, ψz,0. As it is already shown, the
closer the step to the quantum dot center, the smaller the sum
|�ideal

vo + �1s
s + �1s

(1),{1,0}| becomes. At the same time, placing
the step closer to the center would increase |�1s

(1),{m,n�1}| (due
to the increase of the coefficients γm,n�1) until at some point
the contribution from �1s

(1),{m,n�1} becomes the dominant term
in the total valley splitting. When the interface step is placed
any closer to the quantum dot center, the valley splitting then
begins to rise. In Appendix F, we study this effect in detail and
show how considering the term �1s

(1),{m,n�1} would influence
the real and imaginary parts of the total valley-orbit coupling,
�dis

vo . It turns out that at the step location where the valley
splitting reaches to its minimum, xs = x1s

m , we have

Re
[
�dis

vo

(
xs = x1s

m

)] = Im
[
�dis

vo

(
xs = x1s

m

)]
. (63)

At xs < x1s
m , the dominant contribution to the �dis

vo becomes
a real number while Re[�dis

vo ] increases by placing the step
closer to the center. At xs > x1s

m , the dominant contribution
to the �dis

vo becomes an imaginary number while Im[�dis
vo ]

increases by placing the step further away from the quantum
dot center. The nonmonotonic behavior of the valley splitting
as a function of the location of a single interface step is also
predicted in Ref. [36] where the authors use a tight-binding
method.

In Fig. 9(b), we have shown the valley phase as a function
of the step location. Note that the valley phase, given by
Eq. (45), is a π -periodic function defined within [−π/2, π/2].
Therefore the sudden jump of the valley phase that occurs at
xs ∼ 0.45x0 can be removed by subtracting π from the values
above the jump.

Let us now study how the valley splitting scales with the
electric and magnetic fields. As we have shown in Sec. III A,
the valley-orbit coupling for an ideal quantum dot �0

vo is a
linear function of the electric field. As such, the �1s

s term
given by Eq. (60) is also linear in electric field. However,
�1s

(1) is a nonlinear function with respect to the electric field.
Given Eq. (62), the dominant coefficient γ1,0 scales linearly
with the electric field, and this gives rise to a quadratic scaling
of �1s

(1),{1,0} with the electric field (more accurately, if we keep
c1 in Eq. (41), it is easy to show that �1s

(1),{1,0} acquires one
more term that is cubic in the electric field.)
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FIG. 10. (a) The normalized valley splitting for a quantum dot
with a single interface step for various step location at B = 0, as a
function of the electric field strength. (b) The normalized valley split-
ting as a function of the in-plane magnetic field. Here we assumed
B = B(cos π/4, sin π/4, 0) and Fz = 15 MV/m.

Therefore, in general, the valley splitting for a quantum dot
with a single interface is a nonlinear function of the electric
field due to the �(1) term as well as the normalization constant
N0 � [1 + ∑

m,n γ 2
m,n]−1/2. In Fig. 10(a), we show the valley

splitting as a function of the electric field for several locations
for the single interface step.

Since �(1) grows with the electric field faster than a linear
function, for xs > x1s

m , we expect the valley splitting should
scale sub-linearly by the electric field. The further the step
is located away from the center, the smaller �(1) becomes so
that the valley splitting approaches being a linear function of
the electric field. For xs < x1s

m , the valley splitting is mainly
determined from the terms with n � 1 in �(1). Therefore
numerical analysis is required to find the dependency of the
valley splitting on the electric field.

In order to understand how the valley splitting changes
with an in-plane magnetic field, we note that the confine-
ment length x′

0(By) is reduced by the magnetic field. Using
Eqs. (23), the effect of the magnetic field to the evolution of
�1s

s (xs) and �1s
(1),{1,0}(xs) is equivalent as if x′

0 = x0 and xs is
located from the center at a larger distance,

xs → xs

(
1 + 1

4

mt

ml

x4
0

l4
By

)1/4

. (64)

Therefore we expect that the magnetic field should always
increase the valley splitting if xs > xm. Since the magnetic
field effectively increases xs, the increase of the valley split-
ting by the magnetic field is larger at the step location where

the slope of the curve given in the panel (a) of Fig. 9 is steeper.
For xs < xm, the magnetic field decreases �1s

(1),{m,n�1}(xs)
that controls the valley splitting. However, we observe that
the valley splitting still slightly increases as a function
of the magnetic field due to the increase of �ideal

vo + �1s
s

with the magnetic field. We display the valley splitting as a
function of the in-plane magnetic field in the panel (b) of
Fig. 10.

2. Two steps at the interface

We now consider a quantum dot with two interface steps
having widths −a0/4 and a0/4. The step potential is then
obtained from Eq. (32) by taking xs1 → −∞ and xs4 → +∞.
For further simplification, we also assume that the two steps
are placed symmetrically around the center so that we can
write −xs2 = xs3 = xs. In this case, finding the contribution
from �(1) requires numerical analysis (even only for the term
with m = 1 and n = 1 in Eq. (58).) However, we can still
obtain qualitative understanding of the behavior of the valley
splitting by only considering the effect of �s. In order to
arrive to the extension of Eq. (57) for a quantum dot with
two symmetrically located steps, we integrate over z by parts,
similar to Sec. III A, and neglect the small integral containing
ψ ′

z,0. With this, we arrive at

�2ss
s (xs) � −1

2
�intErfc(

√
2xs/x′

0(By))

×
[

2 − e−ik0a0/2ψz,0

(
a0

4z0

)2

/ψz,0(0)2

− eik0a0/2ψz,0

(
− a0

4z0

)2

/ψz,0(0)2

]
. (65)

If the steps are located at the center, xs = 0, we find from
the above equation (taking Fz = 15 MV/m) �2ss

s (xs = 0) �
(1.93 − 0.18i)�int that is larger than �ideal

vo in Eq. (56) [note
that �ideal

vo is largely determined by �int; see Eqs. (48) and (55)
and Fig. 7]. When the steps are located away from the center,
it reduces �2ss

s (xs) so that eventually at some point |�ideal
vo |

becomes larger than |�2ss
s |. As such, we can expect that the

valley splitting of a quantum dot with two symmetrically
located steps is a also nonmonotonic function of the steps’
location, xs.

This behavior is clearly shown in the panel (a) of Fig. 11.
The dash-dotted line of the figure shows the valley splitting
obtained by neglecting �(1), using Eqs. (48), (55) and (65),
and setting N0 = 1. The blue line is obtained by numerical
calculation with all terms in Eq. (56) included. We observe
that the effect of �(1) is to further suppress the valley splitting
as well as shift the step location where the valley splitting
reaches its minimum. At this step location, xs = x2ss

m ∼ 0.3x0,
the valley splitting is suppressed by more than 90%. The panel
(b) of the figure shows how the valley phase is changed as a
function of the step location. As mentioned before, the sudden
jump can be removed by using the π periodicity of the valley
phase.

We now study the electromagnetic dependence of the val-
ley splitting for a quantum dot with two symmetrically locates
interface steps. Given Fig. 11, away from x2ss

m , the dominant
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FIG. 11. (a) The normalized valley splitting for a quantum dot
with two interface steps. (b) The valley phase as a function of the
steps’ location. In both panels, we used B = 0 and Fz = 15 MV/m.

contribution to the valley splitting is due to �ideal
vo and �s. As

such, we expect the scaling of the valley splitting with the
electric field has to be approximately linear. This behavior is
shown in the panel (a) of the Fig. 12. At the step locations
close to x2ss

m , the contribution due to �(1) becomes important
so that we can expect a strong nonlinear dependency on the
electric field; this is shown in the panel (b) of the figure. We
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FIG. 12. [(a) and (b)] The normalized valley splitting as a
function of the step location and electric field at B = 0. (c) The
normalized valley splitting as a function of an in-plane mag-
netic field. Similar to the Fig. 10(b), here we assumed B =
B(cos π/4, sin π/4, 0) and Fz = 15 MV/m.

FIG. 13. The normalized valley splitting as a function of position
of two interface steps at B = 0 and Fz = 15 MV/m.

note that such nonlinear scaling of the valley splitting with
respect to the electric field is also reported in experiment [34].

In the panel (c) of the figure, we show how the valley
splitting is changed by the magnetic field. For xs < x2ss

m , the
valley splitting is mainly controlled by �2ss

s . As such, since
this term reduces by the magnetic field, the valley splitting is
also decreasing as well. For xs > x2ss

m , �ideal
vo is the dominant

contribution to the valley splitting; therefore, the magnetic
field always increases the valley splitting by reducing �2ss

s
(and �(1).) Note that this effect is stronger for the step lo-
cations where the slope of the curve shown in Fig. 11(a) is
steeper.

Finally, we relax the condition of the two steps being
symmetric around the quantum-dot center and use the step po-
sitions xs2 = xL

s � 0 and xs3 = xR
s � 0 in Eq. (32). In Fig. 13,

we present our result for the normalized valley splitting as
a function of the position of each step. Note that due to the
nonsymmetric nature of the step potential, the valley splitting
turns out not to be symmetric with respect to the location of
the steps. We observe that the valley splitting can completely
vanish in some specific configuration of the interface steps;
this is also predicted in Ref. [22] using a simpler model. We
have also studied the valley splitting for models including
three and four interface steps, and we observed qualitatively
similar behavior for the valley splitting as a function of elec-
tric and magnetic fields as presented in this section.

IV. SUMMARY AND CONCLUSIONS

To summarize, the valley splitting is one of the important
properties for the silicon quantum dots that directly influ-
ences the lifetime and scalability of silicon spin qubits. As
such, understanding the behavior and tunability of the valley
splitting is very important. In this work, we studied how the
valley splitting responds to the electromagnetic field for both
ideal and disordered quantum dots. We considered a realistic
potential profile for a SiGe/Si/SiGe quantum dot by taking
into account both lower and upper Si/SiGe interfaces as well

043180-12



ELECTROMAGNETIC CONTROL OF VALLEY SPLITTING … PHYSICAL REVIEW RESEARCH 2, 043180 (2020)

the interface between upper SiGe layer and the insulating
layer hosting the gate electrodes; see Fig. 1 and Eq. (2). While
so far the out-of-plane electron motion has been studied by
variational methods in a simpler potential model including
only one Si/SiGe interface, we found the exact (within ef-
fective mass theory) envelope functions of the ground state as
well as the excited states for the out-of-plane electron motion.
This has enabled us to find the electron envelope function
in the presence of finite magnetic field as well as interface
disorder. In both cases, the envelope function reflects the cou-
pling between in-plane to out-of-plane degrees of freedom,
see Eqs. (25) and (33). Our analysis enables us to obtain the
coupling coefficients using perturbation theory, for arbitrary
configurations for the interface disorder.

We showed that in an ideal quantum dot, the valley split-
ting, within the leading order, always scales linearly with the
out-of-plane electric field; see Fig. 7. Moreover, the valley
splitting slightly increases with an applied in-plane magnetic
field (by 2% for B = 10 T) due to the coupling to the out-
of-plane excited states; see Fig. 8. The presence of interface
disorder can significantly modify and suppress the valley
splitting. We considered a stair-like disordered interface and
studied the suppression of valley splitting due to the interface
miscuts. We found up to 80% suppression caused by a single
interface step, see Fig. 9, whereas two interface steps can
completely diminish the valley splitting, see Fig. 13.

For a quantum dot with a disordered interface, we found
that depending on the number and locations of the interface
steps, the valley splitting can scale nonlinearly with the elec-
tric field; see the Fig. 10(a) and panels (a) and (b) of Fig. 12. If
there is only one miscut at the interface, the magnetic field al-
ways increases the valley splitting (by up to 7% for B = 10 T),
see the Fig. 10(b). However, for multiple interface miscuts, the
magnetic field can both increase or even suppress the valley
splitting, depending on the configuration of the miscuts [we
observed an increase by up to 8% and a decrease by up to
−13% for the set of parameters used in panel (c) of Fig. 12].

In the theory of spin relaxation induced by the valley cou-
pling, one important set of quantities are the transition dipole
matrix elements between the valley states [3,18]. For an ideal
quantum dot, the envelope function has an in-plane mirror
symmetry (Fig. 4). This, in turn, gives rise to vanishing of
the in-plane dipole matrix elements. However, the presence
of the interface disorder can break the in-plane mirror sym-
metry (Fig. 6). Our findings for the envelope function in the
presence of disorder now enable the prediction of the dipole
matrix elements as a function of the electromagnetic field. To
our knowledge, the dipole matrix elements have always been
taken as fitting parameters. Future work will be needed to
further develop the theory of spin relaxation induced by the
valley coupling based on a calculation of the transition dipole
matrix elements and valley splitting in a magnetic field.
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APPENDIX A: BOUND STATES OF A TRIANGULAR
POTENTIAL WELL: A SELF-CONSISTENT

APPROXIMATION

In this Appendix, we present our analysis leading to the
ground-state energy and wavefunction given by Eqs. (14)
and (15) for SiGe/Si/SiGe heterostructures. Furthermore, we
argue that our analysis can be extended in order to include
analytical expressions for the ground and first few excited
states of Si/SiO2 heterostructures. We start by making the
reasonable assumption that in the case of SiGe barrier, the
ground-state energy is much smaller than the interface po-
tential Ez,0 � U SiGe

0 . We now note that if the barrier is SiO2,
the barrier potential is much higher, U SiO2

0 = 3 eV, than the
SiGe barrier potential, U SiGe

0 = 0.15 eV. Therefore, in this
case, we can assume not only the ground-state energy but also
the energy of the first few excited states as well are much
smaller than the barrier potential, Ez,n � U SiO2

0 . This assump-
tion enables us to neglect the thickness of the barrier (since
in this case the eigenstate under the barrier quickly decays to
zero). Moreover, as pointed out in Sec. II A, the electric field
pushes the envelope function towards the upper barrier so that
we can neglect the silicon layer thickness as well. Therefore
we simplify the full potential [given by Eq. (2) for the Si/SiGe
quantum dot] and take it as U (z) = U barrier

0 θ (z).
Here we stress again that the following analysis is valid in

the case of SiGe barrier only for n = 0 (i.e., the ground state).
For the excited states, the energy can become comparable to
U SiGe

0 and therefore the thickness of the barrier has to be taken
into account for a proper assessment. In such a case, one needs
to rely on numerically solving Eq. (9). In the case of SiO2
barrier, n is relaxed and contains both ground and excited
states. We note that eventually for some high-lying excited
states, the assumption of Ez,n � U SiO2

0 breaks down. However,
since those states are far split in energy from the ground state,
their contribution in the perturbative analysis is negligible (see
Table III). For simplicity, in the following we only use U0 and
bear in mind that the interface potential depends on the barrier.

We use the confinement length and energy given by
Eqs. (4) and (5) to define the dimensionless quantity,

ζ̃n(z) =
{

Ũ0 − z̃ − ε̃z,n , z > 0
−z̃ − ε̃z,n . z � 0

. (A1)

We then arrive to the below Schrödinger equation for the
envelope function

d2

dz̃2
ψz,n − ζ̃nψz,n = 0. (A2)

Inside the silicon layer where z � 0, ψz,n is given by the Airy
function of the first kind,

ψz,n = Mnz−1/2
0 Ai(−z̃ − ε̃z,n), z � 0. (A3a)

Let us now consider the form of the eigenstate inside the
barrier; the exact solution for the envelope function, up to
prefactors, reads Ai(Ũ0 − z̃ − ε̃z,n). However, in order to find
an analytic relation for the energy, we try to approximate
the envelope function in the barrier. If there was no elec-
tric field inside the barrier [i.e., the −z̃ term in ζ̃n(z > 0)
was absent], the eigenstates would have been proportional
to exp(−

√
Ũ0 − ε̃z,nz). Due to the presence of the electric

043180-13



AMIN HOSSEINKHANI AND GUIDO BURKARD PHYSICAL REVIEW RESEARCH 2, 043180 (2020)

field, the potential barrier is reduced along z and the wave
function can further penetrate into the barrier. To take this
into account, we introduce a parameter λn into the exponent of
the exponentially decaying wave function that allows further
penetration into SiGe provided λn < 1. We thus approximate
the wave function inside the barrier by

ψz,n � Mnz′−1/2
0 Ai(−ε̃z,n)e−λ

√
Ũ0−ε̃z,nz. z > 0. (A3b)

We now use the appropriate boundary condition concern-
ing the first derivative of ψz,n at the z = 0 interface,

1

mSi
l

d

dz
ψz,n|z→0− = 1

mbarrier
l

d

dz
ψz,n|z→0+ . (A4)

Here, mSi
l = 0.98 me and mSiGe

l � mSi
l . For the case of Si/SiO2

quantum dot, we follow Ref. [37] and consider SiO2 as a direct
gap crystalline material in which case mSiGe

l � 0.34 me (note
that SiO2 can also be an amorphous material; in this case, the
effective mass is not well defined, see Ref. [37] for details.)
We then find the penetration parameter λn from Eq. (A4),

λn = mbarrier
l

mSi
l

Ai′(−ε̃z,n)

Ai(−ε̃z,n)

1√
Ũ0 − ε̃z,n

. (A5)

We now self-consistently determine the ground-state energy
by noting,

ε̃z,n = 〈ψz,n| d2

dz̃2 − z̃ + Ũ0θ (z̃)|ψz,n〉
〈ψz,n|ψz,n〉 . (A6)

From the above equation and using Eqs. (A3) and (A5) we
finally arrive at

(Ũ0 − ε̃z,n)Ai′(−ε̃z,n)Ai2(−ε̃z,n)

= 1

2
Ai3(−ε̃z,n) + Ai′3(−ε̃z,n). (A7)

In order to find the solution of the Eq. (A7), we note
that for the infinite potential well Ũ0 = ∞, the eigenenergy
is determined by the roots of the Airy function, the first
few of which read −r0 � −2.3381, −r1 � −4.0879, −r2 �
−5.5205, −r3 � −6.7867, and − r4 � −7.9441. This sug-
gests that so long as the eigenenergy is much smaller than the
barrier potential, ε̃z,n � Ũ0, the solutions of Eq. (A7) should
remain close to the roots of the Airy function. As such, we
consider a solution of the form

ε̃z,n = rn + δε̃n, (A8)

and expand Ai and Ai′ functions around −rn. We keep terms
up to quadratic order in δε̃n to find

Ai(−ε̃z,n) = −δε̃nAi′(−rn) + O
(
δε̃3

n

)
, (A9a)

Ai′(−ε̃z,n) = Ai′(−rn) − 1

2
δε̃2

n rnAi′(−rn) + O
(
δε̃3

n

)
. (A9b)

By substituting Eqs. (A9) into Eq. (A7) and keeping terms up
to quadratic order, we find Ũ0δε̃

2
n = 1. This indicates that the

leading order correction is independent on the energy level, n,
and we find δε̃ = ±1/

√
Ũ0.

In order to determine which sign is physically acceptable,
we note from Eqs. (A3b) and (A5) that the wave function
decays inside the barrier provided Ai′(−ε̃z,n)/Ai(−ε̃z,n) > 0.

This is satisfied only if δε̃ has a negative sign. In this case, we
also find λn < 1, as expected. Note that if we have kept the
expansions in Eq. (A9) up to the cubic order, we would have
found a correction to the ε̃z,n of order Ũ −3/2

0 .
Finally, from the normalization of the envelope function,

we find

M0 =
[
ε̃z,0Ai(−ε̃z,0)2 + Ai′(−ε̃z,0)2

+ 1

2

mSi
l

mbarrier
l

Ai(−ε̃z,0)3/Ai′(−ε̃z,0)
]−1/2

. (A10)

In order to simplify this, we use Eqs. (A8) and (A9) and find
Mn � 1/Ai′(−rn).

APPENDIX B: ENERGY CORRECTION DUE TO THE
MAGNETIC FIELD AND INTERFACE STEPS

In Secs. II B and II C, we studied the corrections to the
envelope function due to the presence of an in-plane magnetic
field and interface steps. Here in this Appendix, we comple-
ment those sections by studying the energy correction to the
ground-state energy up to the second order, E ′

0 = E (1)
0 + E (2)

0 ,
for a SiGe/Si/SiGe quantum dot. In general, it follows from
the standard stationary perturbation theory that the first- and
second-order corrections to the ground-state energy read

E (1)
0 = 〈ψx,0ψy,0ψz,0|Hpert|ψx,0ψy,0ψz,0〉 (B1)

and

E (2)
0 =

∑
m,q,n

|〈ψx,mψy,qψz,n|Hpert|ψx,0ψy,0ψz,0〉|2
−nh̄ω′

x − qh̄ω′
y + Ez,0 − Ez,n

, (B2)

where the in-plane confinement frequencies are given by
Eqs. (21) and (22).

We start by considering the perturbation due to the pres-
ence of an in-plane magnetic field, in which case Hpert is given
by Eq. (18). We then immediately see that E (1)

0 = 0, while we
find for the second-order correction,

E (2)
0 = − 1

4

mt

ml
h̄

(
�2

Bx

ω′
y

+
�2

By

ω′
x

) ∑
n=0

|〈ψz,n|∂/∂ z̃|ψz,0〉|2

− 1

16

√
mt

ml

x′2
0

l2
Bx

y′2
0

l2
By

h̄�Bx �By

ω′
x + ω′

y

. (B3)

Here, the cyclotron frequency �x(y) and the magnetic length
lx(y) are given by Eqs. (19) and (20). In Fig. 14, we use the
set of parameters given by the caption of Table I (in particular
x0 = 12 nm and y0 = 15 nm) and show the correction to the
ground-state energy relative to the (smaller) in-plane orbital
splitting, |E (2)

0 |/h̄ω′
y. We observe that even at B = 10 T, this

relative correction is nearly 2%. We also note that the correc-
tion to the ground-state energy relative to the total unperturbed
energy, |E ′

0|/E0 where E0 = (h̄/2)(ω′
x + ω′

y) + Ez,0, is about
two orders of magnitude smaller than the values shown in the
Fig. 14. This indicates that indeed applying the perturbation
theory remains valid within all range of the considered mag-
netic fields.

We now move on to study the correction to the ground-
state energy due to the presence of the interface steps. Here we
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FIG. 14. The correction to the ground-state energy of an ideal
quantum dot due to the presence of an in-plane magnetic field nor-
malized to the in-plane orbital splitting. Similar to Fig. 8, here we
have taken B = B(cos(θ ), sin(θ ), 0) and set θ = π/4.

consider a single interface step similar to what is considered
in Sec. III C. We then find for the first-order correction,

E (1)
0 = 1

4
ε0Erfc(

√
2xs/x′

0)
1 − e

a0
2z0

(
√

Ũ0− 1
2

1√
Ũ0

)√
Ũ0 − 1

2
1√
Ũ0

. (B4)

In order to calculate the second order correction, similar
to Sec. III C, we only consider the largest contribution in
Eq. (B2) corresponding to m = 1 and n = 0 (note that due
to the symmetry of the interface steps along the ŷ axis in our
model, only the term with q = 0 has a nonvanishing contribu-
tion.) We then find up to the leading order,

E (2)
0 � − 2

π

(
E (1)

0

)2

h̄ω′
x

e−4x2
s /x′2

0

Erfc(
√

2xs/x′
0)2

(B5)

In Fig. 15, we use Eqs. (B4) and (B5) to show the first- and
second-order corrections to the ground-state energy due to the
presence of a single interface step at xs. Here we also observe
that the total correction to the energy is much smaller than
the unperturbed ground-state energy (i.e., the ground-state
energy of an ideal quantum dot.) Moreover, the second-order
correction is much smaller than the first order correction. This
is an indication that the perturbative analysis works properly.
We have also calculated the correction to the ground-state
energy in the presence of two interface steps, similar to our
discussion in Sec. III C, and have found similar results as
presented here. We therefore conclude in this Appendix that
applying the perturbation theory is fully justified.

APPENDIX C: SECOND-ORDER CORRECTION TO THE
ENVELOPE FUNCTION DUE TO THE INTERFACE

DISORDER

Here we present the complete form of the second-order
correction due to the interface steps. According to perturba-
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FIG. 15. The correction to the ground-state energy due to the
presence of a single interface step at xs normalized to the unperturbed
ground-state energy. Here we assumed B = 0, while the other param-
eters are the same as given by Table I.

tion theory, we have

D(2)
xyz,0 =

∑
{m′,n′}�={m,n}

∑
{m,n}�={0,0}

γm,nζ
m,n
m′,n′ψx,m′ψz,n′

−
∑

{m,n}�={0,0}
γm,ncm,nψx,m′ψz,n′ , (C1)

where γm,n is given from Eq. (36) and here we defined

ζ m,n
m′,n′ = 〈ψx,m′ψz,n′ |Usteps|ψx,mψz,n〉

En,z − En′,z + (m − m′)h̄ω′
x

, (C2)

cm,n = 〈ψx,0ψz,0|Usteps|ψx,0ψz,0〉
E0,z − En,z − mh̄ω′

x

. (C3)

In order to arrive to Eq. (37), we only keep the dominant
terms; i.e., in the set of γm,n, we keep γ1,0, and in the set of
ζ m,n

m′,n′ , we keep ζ 1,0
2,0 and ζ 1,0

0,0 . Finally, in the set of cm,n, we
keep c1,0.

APPENDIX D: VALLEY SPLITTING IN Si/SiO2

HETEROSTRUCTURES

Here we build on our findings from Appendix A to study
how the valley splitting in an ideal Si/SiO2 heterostructure
scale with the electric and magnetic fields. Following our
discussion in Sec. III A and similar to Eq. (48), we can again
separate the valley-orbit coupling into two terms accounting
for the contribution due to the amplitude of the envelope
function at the interface, �int, and another term containing
the contribution due to the tail of the envelope function inside
the SiO2 barrier, �t . Given Eqs. (A3a) and (49), the �int

contribution for a Si/SiO2 heterostructure takes the same form
as a Si/SiGe heterostructure given by Eq. (51).

However, given Eqs. (A3b) and (50), we realize that due
to the different effective masses between the Si (or SiGe)
and crystalline SiO2, the contribution due to the tail of the
envelope function inside the barrier is changed from Eq. (52)
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TABLE III. The out-of-plane eigenenergies Ez,n and coefficients
αn and βn (in units of inverse Tesla) for a SiO2 barrier at Fz =
30 MV/m. The other parameters are the same as given in the caption
of Table I. Here the ground-state energy reads Ez,0 = 74.83 meV.

n Ez,n (meV) αn (10−5 T−1) βn (10−5 T−1)

1 133.50 1.84 1.84
2 181.52 0.55 0.55
3 223.97 0.28 0.28
4 262.77 0.18 0.18
5 298.93 0.12 1.12

and is modified to

�t = −�int
mSi

l

mSiO2
l

[
1 − 1

2Ũ0
+ i

k0z0√
Ũ0

]−1

. (D1)

Therefore, while in Si/SiGe quantum dots, |�int| is larger than
|�t | by nearly a factor of 6 (see Fig. 7), this ratio for Si/SiO2

is reduced by mSiO2
l /mSi

l and becomes nearly a factor of 2.
This is also in agreement with the findings in Ref. [30] where
a variational ansazt for the out-of-plane envelope function is
employed. Given Eqs. (49) and (D1), we see that the domi-
nant contribution to the valley-orbit coupling remains a linear
function of electric field for an ideal Si/SiO2 quantum dot
[as the term 1/Ũ0 ∝ F 2/3

z is only a negligible contribution in
Eq. (D1)–also see Eq. (53)].

We now turn to study how the valley splitting of an ideal
Si/SiO2 quantum dot evolves with an in-plane magnetic field.
We first note that the correction to the envelope function due to
the presence of an in-plane magnetic field has the same form
as given by Eq. (27), while the out-of-plane states ψz,n and
thus the perturbative coefficients αn and βn are different com-
pared with the Si/SiGe quantum dots. As such, the evolution
of the valley splitting in the magnetic field also remains the
same as given by Eq. (55).

Here, in Table III, we show an example of the eigenen-
ergies as well as the perturbative coefficients αn and βn.
Note that the perturbative parameter η from Eq. (30) is in-
dependent on the out-of-plane motion and is determined only

from the in-plane confinement. We also note that for Si/SiO2

heterostructures, the typical applied electric field is larger
than the Si/SiGe heterostructures and is reported to be Fz =
30 MV/m in Ref. [3]. In this case, we find z0 � 1.12 nm
and Ũ0 � 89. Due to this stronger electrical confinement, we
observe in Table III that within the shown numerical precision,
αn = βn while, noticeably, they take values that are nearly
two orders of magnitude smaller compared with the values for
Si/SiGe (obtained at Fz = 15 MV/m), see Table I. Moreover,
the perturbative coefficients decay by one order of magnitude
by taking up to five excited states enabling us to set nmax = 5
as the upper cutoff in the summation given by Eq. (27). We
conclude here that the effect of an in-plane magnetic field
to the valley splitting of an ideal Si/SiO2 is generally much
smaller than that of a Si/SiGe quantum dot (due to signifi-
cantly smaller αn and βn coefficients).

Let us now consider a single step at the Si/SiO2 interface;
we note from Eqs. (60) and (61) that since the interface
potential U0 is much larger compared to Si/SiGe quantum
dots, the adverse effect of �1s

s and �1s
1 becomes smaller. In

particular, we find at xs = 0 the valley splitting is reduced by
only around 50% (as opposed to nearly 80% suppression at
xs = 0 for Si/SiGe, see Fig. 9). We would like to add here that
disorder has a more complex nature in Si/SiO2 heterostruc-
tures compared with the Si/SiGe heterostructures. While in
the latter case, the disorder happens through atomic steps at
the interafce (i.e. height of the interface potential), in Si/SiO2

quantum dots, in addition to the interface atomic steps, there
can be disorder through a missing Oxygen atom. In Ref. [37],
it has been shown that such a disorder can actually increase
the valley splitting.

APPENDIX E: VALLEY SPLITTING OF A DISORDERED
QUANTUM DOT IN MAGNETIC FIELD: HIGHER-ORDER

TERMS

In this Appendix, we present the form of the sub-leading
contribution �(2) in Eq. (56). Using Eqs. (31) and (33), we
find

�(2)(B) = C0

{
B2

x

(
y′

0

z0

)2 ∑
n,n′

αnαn′

∫ ∞

−∞
e−2ik0zψx,0(By)2ψz,nψz,n′Usteps(x, z)dxdz

+B2
y

(
x′

0

z0

)2 ∑
n,n′

βnβn′

∫ ∞

−∞
e−2ik0zψx,1(By)2ψz,nψz,n′Usteps(x, z)dxdz

+B2
xB2

yx′2
0 y′2

0 η2
∫ ∞

−∞
e−2ik0zψx,1(By)2ψ2

z,0Usteps(x, z)dxd

+
∑

m,n,n′
γm,nγm,n′

∫ ∞

−∞
U (z)e−2ik0zψz,nψz,n′dz

+
∑

m,n,m′,n′
γm,nγm′,n′

∫ ∞

−∞
e−2ik0zψz,nψz,n′ψx,m(By)ψx,m′ (By)Usteps(x, z)dxdz

}
. (E1)

The perturbative coefficients α, β, η and γ are given in Secs. II B and II C, and using the excited states ψz,n from Sec. II A, we
can numerically evaluate the integrals.
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APPENDIX F: THE EFFECT OF OUT-OF-PLANE EXCITED
STATES IN �(1)

In this Appendix, we explain in more detail the effect of
the excited states ψz,n�1 to the valley splitting for a quantum
dot with single interface step. The step potential Eq. (32) in
this case becomes

U 1s
steps(x, z) = −U0θ (x − xs)θ (z)θ

(
z − a0

4

)
. (F1)

In Sec. III C, we found the contributions from �1s
s and

�1s
(1),{1,0} are out-of-phase with �ideal

vo , therefore, these terms
would monotonically suppress the valley splitting. Here we
show that once the out-of-plane excited states ψz,n are taken
into account, the real part of �1s

(1) gives rise to a nonmono-
tonic behavior of the valley splitting as a function of the step
location, as shown in Fig. 9(a).

To see this effect, let us integrate Eq. (59) over z by parts
to find,

fm,n � iU0
1

2k0

∫ ∞

xs

ψx,mψx,0dx

×
[
ψz,n(0)ψz,0(0) − e−ik0a0/2ψz,n

(a0

4

)
ψz,0

(a0

4

)]
,

(F2)

where we have neglected the small contributions containing
integral over e−2ik0zψz,nψ

′
z,0 and e−2ik0zψ ′

z,nψz,0. As we have
shown in Sec. III A, the dominant contribution in �ideal

vo is
given by �int from Eq. (51) which is an imaginary quantity
and is due to the amplitude of the envelope function at the
Si/SiGe interface.

Given Eqs. (F2) and (58), the imaginary part of �1s
(1) is

in opposite phase with �int [note that in Eq. (F2) we have

0 0.2 0.4 0.6 0.8 1
-50
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50

100
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FIG. 16. Imaginary and real parts of the valley-orbit coupling
for a quantum dot with single interface step at B = 0 and Fz = 15
MV/m. In order to obtain the analytical results, we used �ideal

vo from
Eq. (48), �1s

s from Eq. (60) and �1s
(1),{1,0} from Eq. (61). For the nu-

merical results, we calculated all contributions in Eq. (56) including
terms with n � 1 in �1s

(1),{m,n}.

e−ik0a0/2 = −0.891 − 0.454i]. Therefore the closer the step is
located to the quantum dot center, the more the imaginary part
of total valley-orbit coupling is suppressed. On the other hand,
the real part of the valley-orbit coupling is increased when the
step is closer to the center, and at some point it becomes the
dominant contribution to the total valley-orbit coupling. We
plot the imaginary and real parts of the valley orbit coupling
in Fig. 16. The lines labeled analytic are obtained by using
the analytic relations we obtained in Sec. III C for D1s

s and
D1s

(1),{1,0} whereas the lines labeled numeric are found from
numerically evaluating the valley-orbit coupling including all
terms in �1s

(1),{m,n}. We observe that the nonmonotonic behav-
ior of the valley splitting as a function of step location can
be seen only by taking into account the out-of-plane excited
states ψz,n.
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