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Pauli spin blockade with site-dependent g tensors and spin-polarized leads
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Pauli spin blockade in double quantum dots has matured into a prime technique for precise measurements
of nanoscale system parameters. In this work we demonstrate that systems with site-dependent g tensors and
spin-polarized leads allow for a complete characterization of the g tensors in the dots by magnetotransport
experiments alone. Additionally, we show that special polarization configurations can enhance the often elusive
magnetotransport signal, rendering the proposed technique robust against noise in the system and inducing a
giant tunnel magnetoresistance effect. Finally, we incorporate the effects of the spin-orbit interaction and show
that in this case the leakage current contains information about the g tensors and the degree of spin polarization
in the leads.

DOI: 10.1103/PhysRevB.103.245412

I. INTRODUCTION

The search for a scalable quantum computer has seen a
steady increase in the complexity of solid-state quantum dot
systems and their manipulation [1–3]. As a consequence, it
is more important than ever to have as precise a knowledge
about system parameters as possible. The Pauli spin blockade
(PSB)—or rather, the lifting of the blockade—has become
an important tool in extracting information from the system
under consideration using magnetotransport measurements
[4–9]. At its heart, PSB is the inability of a triplet state formed
from one electron in each of the two dots of a double quantum
dot (DQD) to transition to a configuration with both electrons
in the right dot. The reason for this blockade is that the only
energetically available state in the (0,2) charge configuration
is a singlet, and the transition is thus forbidden by spin con-
servation. The blockade may then be harnessed to read out
the spin of the electron or hole via charge sensing [10–15].
Lifting of the blockade may occur by various mechanisms
that influence the spin of the particle, such as interaction with
the nuclear spin bath [16], the spin-orbit interaction (SOI)
[17–20], and combinations of the above in systems with a
valley degree of freedom and disorder [21,22]. Site-dependent
g tensors, which occur due to unavoidable imperfections in
quantum dot growth or engineering [23–28], may also lift the
PSB, and the resulting leakage current carries information
about the spin-orbit vector of the system and the g-tensor
components in the dots [29]. Conversely, knowledge of the
g tensors can be used to precisely measure magnetic fields in
the context of magnetometry [30,31].

There has been broad interest in spin-polarized leads cou-
pled to quantum dots (QDs) in recent years, e.g., for the
purpose of qubit initialization and readout [32–36]. Still, the
vast majority of investigations on spin blockade lifting in
DQDs assumes that the leads are unpolarized in the spin
of the particles. In this paper we drop this assumption and
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consider the case of arbitrarily spin-polarized leads. Previous
studies containing DQD systems coupled to spin-polarized
leads looked at fixed polarizations [37–43] or characterized
the transport by exploring the electric conductance and trans-
mission probabilities [44–47]. In contrast, we focus on the
leakage current, and by deriving effective lead-dot tunneling
rates show that the form of the current is sensitive to the degree
of spin polarization in the leads.

We start by introducing the model and formalism of
spin-polarized leads in Sec. II. In Sec. III we proceed by
investigating different polarization configurations and demon-
strate that there exists a configuration where the maximum
of the leakage current contains information about the g ten-
sors in the dots and another at which the g-tensor resonance
found in Ref. [29] is amplified. These results allow for a
full determination of the g-tensor components in the two dots
from magnetotransport measurements alone. Moving towards
a more faithful description of many condensed-matter sys-
tems, we take into account the SOI in Sec. IV and show
that information about the g tensors and spin polarizations in
the leads may be extracted from the leakage current. Finally,
Sec. V provides a conclusion.

II. SPIN-POLARIZED LEADS

The common setup for PSB is a DQD connected to leads
(Fig. 1), which is tuned to the (0,1)-(1,1)-(0,2) triple point in
the charge stability diagram. Consequently, the relevant two-
particle states are

|S02〉 = c†
R↑c†

R↓|0〉,

|S〉 = 1√
2

(c†
L↑c†

R↓ − c†
L↓c†

R↑)|0〉,

|T0〉 = 1√
2

(c†
L↑c†

R↓ + c†
L↓c†

R↑)|0〉,

|T+〉 = c†
L↑c†

R↑|0〉, |T−〉 = c†
L↓c†

R↓|0〉, (1)
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FIG. 1. Basic setup for PSB with completely polarized leads.
When a bias voltage is applied, electrons may tunnel from the left
lead to the left dot with rate �′ and from the right dot to the right
lead with rate � (blue arrows), thereby creating a charge cycle.
Once in the DQD, the states in the (1,1) charge configuration must
transition to the singlet in the (0,2) charge configuration aided by the
interdot tunnel coupling t (green arrow). A characteristic feature of
completely polarized leads is that one spin making up this singlet
is unable to leave the system (solid black arrows). (a) One case
of complete and parallel polarizations in the leads, pL pR = 1, and
(b) one case of complete and antiparallel polarizations, pL pR = −1.

where c†
ds creates a single-particle spin state s ∈ {↑,↓} in dot

d ∈ {L, R} from the vacuum |0〉. The state |S02〉 is the singlet
in the (0,2) charge configuration, while |S〉 is the singlet and
|T0,±〉 are the triplets in the (1,1) configuration. We assume the
interdot detuning ε to be of the order of the charging energy U
and much larger than the tunnel coupling t , t � U ∼ ε, such
that the (2,0) singlet is energetically well separated and may
be neglected. In this regime the basic Hamiltonian describing
a tunnel coupled DQD with site-dependent g tensors in an
external magnetic field B is given by H = H0 + HZ , with

H0 = �|S02〉〈S02| + t (|S〉〈S02| + |S02〉〈S|)
HZ =

∑
d

Bd · Sd ,
(2)

where � is the detuning between the (1,1) and (0,2) charge
configurations, and t is the tunnel matrix element. Note that
t = √

2tc is scaled by factor of
√

2 compared to the single-
particle tunnel element tc to ease comparison with previous
studies [16,17,29]. Finally, Bd

i = ∑
i gd

i jB j is the effective
magnetic field in dot d ∈ {L, R} caused by the anisotropy of
the g tensors. Such anisotropy is observed, e.g., in hole sys-
tems in germanium [48,49]. Throughout this paper we work
in units where h̄ = μB = 1 such that rates and magnetic fields
are measured in units of energy.

When a bias voltage is applied electrons may tunnel to and
from the leads, thereby creating a charge cycle. We allow for
finite temperature T as long as the thermal energy is small
compared to the bias window, kBT � |μL − μR|, where μL

(μR) is the chemical potential in the left (right) lead. The rate
of electrons entering the system by tunneling from the left
lead to the left dot is given by �′, while the rate of electrons

leaving the DQD system by tunneling from the right dot to the
right lead is �. We consider the weak-coupling regime such
that Kondo correlations are absent. Moreover, both tunneling
events are assumed to be spin conserving, i.e., there is no
spin-flip tunneling to and from the leads. In Appendix A we
show that spin-flip processes can be incorporated naturally
into our model if one wishes to drop this assumption. We
work in the common PSB bottleneck setup, �′ � �, such
that the left dot is effectively refilled with the rate �, i.e., as
soon as the second electron leaves the right dot, and for the
case of unpolarized leads each of the four states in the (1,1)
configuration is refilled with a rate �/4. In the following we
aim to derive the probability to occupy a given state in the
(1,1) configuration, conditional on starting in the (0,2) singlet.

To describe the case of nonzero spin polarizations, we
define the degree of spin polarization (DSP) in a given lead
containing spin-1/2 particles to be

p = 2

N

N∑
i=1

〈
Si

z

〉 = N↑ − N↓
N↑ + N↓

= D↑ − D↓
D↑ + D↓

∈ [−1, 1], (3)

where N = N↑ + N↓ is the sum of the numbers of up and
down spins (electrons or holes) in the lead, 〈Si

z〉 ≡ 〈χi|Sz|χi〉
denotes the expectation value of the component of the spin
operator along the quantization axis (“z-axis”) when the ith
particle is in the spin state χ , and we assume a common
quantization axis in both leads and the DQD. In the final
equality in Eq. (3) we assume a constant density of states
Ds for spin s at the relevant energy and low temperatures
such that the effects of the Fermi distribution function are
negligible. In semiconductor physics, one is typically inter-
ested in the cases of electrons and heavy holes. While the
latter possess a total angular momentum of 3/2, they may
be described as an effective spin-1/2 system. To derive ef-
fective DSP-dependent refilling rates, we consider the system
to be in the (0,2) singlet state, which is occupied at least once
during a transport cycle. For a DSP in the right lead pR the
probability of an electron remaining in the system after a
time much longer than 1/� is PR(σ ) = (1 − σ pR)/2, where
σ ∈ {1,−1} denotes the normalized magnetic spin quantum
number. Similarly, the probability of an electron of spin σ

entering the system by tunneling from the left lead to the left
dot is given by PL(σ ) = (1 + σ pL )/2. Since these probability
distributions are independent (the leads do not interact), the
probability of achieving a configuration with an electron of
spin σ in the left dot and an electron of spin σ ′ in the right
dot is P(σ, σ ′) = PL(σ )PR(σ ′). Consequently, the probability
to refill a state | j〉 in the (1,1) configuration is

Pj =
∑
σ,σ ′

P(σ, σ ′)|〈σσ ′| j〉|2. (4)

By multiplying the above probabilities with the dot-lead tun-
neling rate �, we obtain the effective refilling rates of the
states in the (1,1) configuration,

�S = �T0 = P(1,−1) + P(−1, 1)

2
� = 1 + pL pR

4
�,

�T± = P(±1,±1)� = (1 ± pL )(1 ∓ pR)

4
�. (5)
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TABLE I. Special cases of spin polarization in the leads and the
corresponding effective refill rates �i for the four (1,1) charge states.
Cases I and II correspond to complete and parallel DSPs in the leads,
characterized by pL pR = 1. Cases III and IV, on the other hand,
correspond to complete and antiparallel DSPs, pL pR = −1. Case V
is the standard case of unpolarized leads considered in conventional
PSB investigations.

Case (pL, pR ) �S/� �T0/� �T+/� �T−/�

I (1,1) 1/2 1/2 0 0
II (−1,−1) 1/2 1/2 0 0
III (1, −1) 0 0 1 0
IV (−1, 1) 0 0 0 1
V (0, 0) 1/4 1/4 1/4 1/4

As they are derived from probability considerations, the set of
rates satisfies �S + �T0 + �T+ + �T− = �. Conventional PSB
investigations take into account the special case of unpo-
larized leads, pL = pR = 0, for which all states are refilled
equally with rate �/4. In other extreme cases, one may work
in a reduced state space when calculating the leakage current
by choosing the applied magnetic field properly. An overview
over some prominent special cases and the resulting refill rates
is given in Table I. In the following we look at the case of
complete and equal DSPs in both leads in more detail and
derive an explicit analytical expression for the leakage current.

III. LEAKAGE CURRENT

In this section we first review the basic model that de-
scribes transport through a DQD and allows us to calculate
the leakage current. We then look at a special case of DSPs
that allows us to reduce the state space and obtain an exact
analytical expression for the leakage current. Finally, we look
at arbitrary DSPs and identify regions in which the g-tensor
resonance found in Ref. [29] is more pronounced compared
to a setup with unpolarized leads.

To model the transport quantitatively, we treat the DQD as
an open system, described by the master equation in the basis
{|S02〉, |S〉, |T0〉, |T+〉, |T−〉},

i[H, ρ] =
∑

k

�k
(
LkρL†

k − 1
2 {L†

k Lk, ρ}) + Drel[ρ], (6)

where the sum runs over all states in the (1,1) charge con-
figuration, the curly brackets denote the anticommutator, and
we work in the steady state, ρ̇ = 0. The Hamiltonian H is
given in Eq. (2), the rates �k are as given in Eq. (5), and
Lk = |k〉〈S02| are quantum jump operators in the framework
of the Lindblad formalism. The left-hand side of Eq. (6)
describes the unitary dynamics of the DQD system, while the
right-hand side contains dissipative processes. The first term
on the right-hand side of the equation describes the effective
refilling processes, and the second term, Drel[ρ], models in-
trinsic relaxation processes, e.g., due to the SOI. Finally, the
leakage current I is determined by the probability of forming a
singlet in the (0,2) charge configuration multiplied by the rate
of this state to be emptied by a tunneling event to the right
lead, I = e�〈S02|ρ|S02〉.

A. Fully polarized leads

We first consider the special case of fully polarized parallel
leads, i.e., pL pR = 1 [Fig. 1(a)]. Note that in the absence of
spin relaxation the polarized triplets |T±〉 will not be occupied
in this configuration if the system is initialized in the (0,2)
singlet. If the magnetic field is chosen to be along one of the
principal axes of the g tensors, which are assumed to be diago-
nal in the same basis, B = Bkk̂, the effective magnetic fields in
both dots are parallel, BL ‖ BR. Fixing the quantization axis
along this direction, we may work in a reduced Hilbert space
spanned by the states |S02〉, |S〉 and |T0〉. Moreover, we include
isotropic relaxation processes, mediated by phonons, which
occur when the thermal energy is larger than the Zeeman
splitting, kBT > |g|Bk , where |g| is the largest component of
the (diagonal) g tensor. This type of relaxation does not lead to
blocked states, as every transition can occur in both directions.
Working in the limit �rel � �, t , one may then derive an
effective relaxation rate from the unpolarized triplet to the
singlet in the (1,1) charge configuration such that we may
continue to work in the three-dimensional reduced state space.

When a singlet is formed, the electron in the left dot will
tunnel to the right dot and from there to the lead before
the singlet can relax into any of the triplets. At zero field,
the triplet |T0〉 is a blocked state. If the system is refilled into
the |T0〉 state, the blockade can only be lifted by relaxation
chains ending in the singlet state |S〉, which will transition
coherently into the (0,2) configuration without further re-
laxation. Assuming equal rates among all (1,1) states, the
probability for the process |T0〉 → |S〉 along paths including
n transitions (there are 2n−1 such paths) is given by P(n) =
2n−1/3n, satisfying

∑∞
n=1 P(n) = 1 via a geometric series.

Consequently, the expected number of transitions needed to
reach the singlet is 〈n〉 = 3. Since all occupied triplets tran-
sition with a rate �rel, the total rate along a path with n
transitions is �n = �rel/n. Therefore the expected value for
the rate connecting the unpolarized triplet to the singlet is

�TS ≡ 〈�n〉 = �rel

∞∑
n=1

2n−1

n3n
≈ 0.55 �rel. (7)

We remark that the reasoning behind Eq. (7) is qualitative in
the sense that all relaxation rates are assumed equal, and so
the numerical factor may deviate from 0.55 depending on the
system. However, the simplifications retain the basic physical
characteristics and allow us to treat an otherwise complicated
problem in a clear and compact fashion. We treat �TS as an
effective triplet-singlet relaxation rate in the reduced space
spanned by the states {|S02〉, |S〉, |T0〉}. The presence of the
polarized triplet states |T±〉 results in a reduced relaxation rate
of the unpolarized triplet. While |T0〉 is emptied with a rate
�rel in the full five-state model, it is effectively only emptied
with a rate �TS ≈ 0.55 �rel in the reduced three-state model
(Fig. 2). As a result, the dissipator in Eq. (6) has the form

Drel[ρ] = �TS
(|S〉〈T0|ρ|T0〉〈S| − 1

2 {|T0〉〈T0|, ρ}). (8)

The leakage current I = e�〈S02|ρ|S02〉 is obtained by exactly
solving the master equation in Eq. (6), including the dissipa-
tive term in Eq. (8) with the normalization constraint Trρ = 1.
It is instructive, however, to first solve the system in the
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FIG. 2. Visualization of the effective rate approach. In the full
five-state model, the unpolarized triplet state |T0〉 transitions with a
rate �rel to another state (to any particular of the three remaining
states with a rate �rel/3). Blue arrows indicate transitions within
the triplet subspace, while red arrows indicate one-way transitions
from the triplets to the singlet in the (1,1) configuration, which
will subsequently tunnel into the (0,2) configuration without further
relaxation. In the three-state model one may combine all these rates
into a single effective rate �TS from the unpolarized triplet to the
singlet [purple arrow, Eq. (7)].

absence of relaxation processes, �TS = 0,

I0 = 2e�t2

2t2 + (g−
k Bk )2 + 4t4/(g−

k Bk )2 + 4�2 + �2
, (9)

where g−
k = gL

k − gR
k . The magnetotransport curve I0(Bk )

possesses characteristic maxima at B∗
k = ±√

2t/g−
k , where

the current takes the value Imax
0 = 2e�t2/(6t2 + 4�2 + �2)

[Fig. 3(a)]. The occurrence of a maximum can be understood
qualitatively. On the one hand, the energy separation between
the singlet-triplet hybridized states grows with increased mag-
netic field, decreasing the current. On the other hand, the rate
with which the unpolarized triplet may transition to the singlet

FIG. 3. Leakage current for pL pR = 1. (a) The exact analytical
magnetotransport curve I0(Bk ) as given by Eq. (9). It shows a distinct
maximum at B∗

k = √
2t/g−

k independent of the detuning �. (b) The
leakage current, including high-temperature relaxation processes at
zero detuning, � = 0. We find good agreement between the numeri-
cal data points and the analytical result (gray line). In particular, the
zero-field value is finite and agrees well with the analytical result,
Eq. (10). For the sake of clarity, the curves and numerical data points
are shifted by constant values as indicated in the figure. The dot-lead
tunneling rate was set to � = 0.1t for both plots.

via the hybridized states as a result of different g factors in
the dots is increased for larger magnetic field strengths. These
counteracting effects lead to an optimal value of the magnetic
field. When �TS �= 0 the current is modified. The current can
still be determined analytically but the expression becomes
quite lengthy, and we display it in Appendix B. However, as
we can see from Fig. 3, the current is changed qualitatively
only at zero field, where the current becomes finite and takes
the value

I (Bk = 0) = 3

5
e�

(
2 + �2

t2
+ �2

4t2
+ �

2�TS

)−1

. (10)

The factor of 3/5 is due to the temporary population of the
polarized triplet states |T±〉, which are blocked. Consequently,
only three out of five states contribute to the transport, causing
the reduction. Figure 3(b) shows a comparison between the
exact analytical solution to the effective three-state model and
the numerical magnetotransport curve for the full five-state
model. For the numerics we use the full isotropic relaxation
term Drel[ρ] = −�relρ + ∑

j,d σ d
j ρσ d

j /6, where j ∈ {x, y, z}
runs over all three Pauli matrices and d labels the two dots.
We see good agreement between the exact analytical solution
and the numerical results. The zero-field value depends on the
relaxation rate and thus allows the determination of the latter
from magnetotransport measurements. Additionally, the posi-
tion of the maximum is robust against the effects of isotropic
relaxation, and its measurement allows us to determine the
difference in g factors. Together with the g-tensor resonance
found in Ref. [29], B∗

k = t/
√

gL
kgR

k , the g factors along k̂ may
thus be completely determined without any prior knowledge
necessary.

Clearly, the current will vanish in the presence of
low-temperature spin-relaxation processes, since there are
one-way transitions to the blocked spin ground state |T−〉
(for gL/R

z > 0). As these relaxation processes are expected
to be present at cryogenic temperatures used in quantum
information technology, one must apply a magnetic field per-
pendicular to the spin quantization axis to couple the polarized
triplets to the unpolarized triplet and the singlet to obtain a
nonzero current. The next section is devoted to investigating
the case of general DSPs in this setup.

B. Arbitrary degrees of spin polarization

We now consider arbitrary spin polarizations in the leads,
i.e., the DSPs in the leads may take any value in the
interval [−1, 1]. In this case we solve the steady-state
master equation in Eq. (6) in the full PSB Hilbert space
H = span{|S02〉, |S〉, |T0〉, |T+〉, |T−〉} numerically. We in-
clude low-temperature relaxation processes with rate �rel/2
described by the dissipator

Drel[ρ] = �rel

2

∑
d∈{L,R}

(
Sd

−ρSd
+ − 1

2

{
Sd

+Sd
−, ρ

})
, (11)

where Sd
± = Sd

x ± iSd
y are the spin ladder operators in dot d .

Additionally, we now allow for a magnetic field with compo-
nents both parallel and perpendicular to the quantization axis,
B = (Bx, 0, Bz ). We aim to explore the effect of spin-polarized
leads on the leakage current in the g-tensor resonance setup
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FIG. 4. Leakage current I (pL, pR) as a function of the DSPs in
the left and right leads. (a) The case of a vanishing field along z,
and (b) the case of the magnetic field fixed at the g-tensor resonance
of the system, B∗

z = t/
√

gL
z gR

z . The regions in the pL-pR plane for
which the current is highest are exchanged as the magnetic field is
increased, an observation that can be explained on grounds of energy
considerations (see text). The blue circles indicate the points used
in calculating a giant tunnel magnetoresistance via Eq. (12). (c) The
normalized ratio of the rate of the polarized triplet |T−〉 transitioning
to the (0,2) configuration, �−, and the rate of the hybridized states
|α0,±〉 transitioning to the (0,2) configuration, �α , as a function of the
magnetic field. The parameter values used for all plots are � = 0,
gL

z = 5.5, gR
z = 5.4, gL

x = 0.4, gR
x = 0.3, �rel = 0.001t , �R = 0.01t ,

and Bx = 0.1t .

of Ref. [29]. For this we work at zero detuning, � = 0, and
small magnetic fields perpendicular to the quantization axis,
(gL

x + gR
x )Bx � t . In this limit the dominant Hamiltonian is

diagonal in the two polarized triplets and three hybridized
states |α0,±〉 mixing the singlets and the unpolarized triplet.
Transitions between these states are due to different g tensors
in the dots and yield a nonzero leakage current that depends
on the DSP in the leads, which we display in Fig. 4.

At zero magnetic field along z, Fig. 4(a), the configurations
with pL pR = 1 produce the highest current because half of
the time a singlet state is formed in the (1,1) charge config-
uration which can directly transition into the spin singlet in
the (0,2) charge configuration [Fig. 1(a)]. The configurations
with pL pR = −1 show a reduced current, because now a po-
larized triplet is formed when the DQD is refilled [Fig. 1(b)].
These states must first transition to the (1,1) singlet (with
rate ∼g−

x Bx) before the blockade is lifted. At the g-tensor
resonance, i.e., for Bz = B∗

z = t/
√

gL
z gR

z , the effect of the DSPs
in the leads is rather different [Fig. 4(b)]. The configuration
(pL, pR) = (−1, 1) shows the highest current, since only the
ground-state triplet |T−〉 is refilled and can transition res-
onantly and unhindered by the relaxation processes to the
(0,2) charge configuration via hybridized states containing a
superposition of |T0〉, |S〉, and |S02〉. The cases with pL pR = 1
show the lowest current, as the rate �α of transitioning to

the (0,2) singlet from the hybridized states |α0,±〉 is much
smaller than the rate of transitioning to the (0,2) singlet from
the polarized triplets [Fig. 4(c)]. The asymmetry between the
cases (pL, pR) = (−1, 1) and (pL, pR) = (1,−1) is induced
by the low-temperature relaxation processes, since the triplets
are split by the Zeeman energy for nonzero magnetic fields.
While the triplet |T+〉 can also transition resonantly to the
(0,2) configuration, it is at risk of relaxing into the unpolarized
triplet or the singlet, thereby slowing down the transport. This
behavior may be used in experiments to amplify the magneto-
transport signal. Since the current is reduced for pL pR = −1
at zero field but enhanced at B∗, the g-tensor resonance is more
pronounced in systems where the leads show complete but
opposite DSPs.

Remarkably, we find a giant tunnel magnetoresistance [50]
when the magnetic field is tuned to the g-tensor resonance B∗

z .
Fixing the left lead to be completely polarized with pL = −1,
we find a large sensibility of the current on the DSP in the
right lead. Defining the resistance coefficient [51,52]

δ
(
p1

R, p2
R

) = R
(
p1

R

) − R
(
p2

R

)
R
(
p2

R

) = I
(
p2

R

) − I
(
p1

R

)
I
(
p1

R

) , (12)

where R(pj
R) ∝ 1/I (pj

R) is the resistance when the right lead
has a DSP pj

R, and the two distinct configurations in the right
lead that are to be compared are labeled by j ∈ {1, 2}. A com-
parison between the parallel and antiparallel configuration is
achieved for pj=1

R = −1 and pj=2
R = 1, and we find values

of δ(−1, 1) exceeding 100%. Hence, a fully polarized lead
coupled to a DQD held at the g-tensor resonance may be used
to read out the DSP in the target lead.

We remark that in this work we do not consider the ef-
fect of the hyperfine interaction of the electron or hole spin
with the host nuclei spins, which is a small effect in many
materials of interest, e.g., for heavy holes in germanium, and
may be neglected completely when working with isotopically
purified materials. Also, cotunneling processes are not taken
into account. While both effects have been shown to affect the
leakage current [16,53–56], we expect no qualitative change
in our results when they are included in the model. Indeed,
the two additional terms in the Hamiltonian would yield an in-
creased current, which is most pronounced at zero field, while
the effects of site-dependent g tensors and nonzero DSPs in
the leads result in magnetotransport features at finite fields.

Furthermore, to introduce the transport formalism and in-
vestigate the effects of spin-polarized leads together with
site-dependent g tensors in a clear and disentangled fashion,
the SOI has only been considered indirectly as one mechanism
for spin relaxation so far. We now turn to a more complete
description of the DQD system by explicitly including the
SOI, which is ubiquitous in solid-state systems and of great
interest for qubit gate manipulation in spin-based quantum
information technology [57,58].

IV. SPIN-ORBIT INTERACTION

The SOI plays an integral role in many materials of in-
terest, such as valence-band states in germanium, and it is
responsible for a number of effects that may be harnessed in
qubit engineering. In this section we analyze the effect of the
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SOI on the leakage current and how the DSPs in the leads
affect characteristic features known from conventional PSB
investigations.

For systems where the SOI preserves time-reversal sym-
metry, the spin-flip tunneling terms induced by the SOI are
described by the general Hamiltonian,

HSO = itSO · |T〉〈S02| + H.c., (13)

where tSO = (tx, ty, tz ) is the spin-orbit vector of the system,
and

|T〉 =

⎛
⎜⎝

|Tx〉
|Ty〉
|Tz〉

⎞
⎟⎠ = 1√

2

⎛
⎜⎝

|T−〉 − |T+〉
i(|T−〉 + |T+〉)√

2|T0〉

⎞
⎟⎠ (14)

is a vector containing triplet states in a combination such that
tSO transforms as a real vector under coordinate transforma-
tions [17]. An example of non-time-reversal symmetric SOI
is provided by heavy holes in semiconductors, where parts of
the effective SOI are induced by a magnetic field.

In the limit Bzg−
z , tSO � t , where tSO = |tSO|, one may

compute the current for an applied field of magnitude Bz

according to the formula

I

e�
=

(∑
i

�i

�
decay
i

)−1

, (15)

where the sum runs over all blocked states, the refill rates �i

are as given in Eq. (5), and the decay rates of the blocked state
|i〉 transitioning to the (0,2) singlet �

decay
i are computed using

first-order perturbation theory. We find

e�

I
= e�

I+
+ pL pR

e�

I−
+ pR − pL

2

(Bzg+
z )2 − 4t2

Bzg+
z

(
t2
x + t2

y

)�,

e�

I±
=

(
t

Bzg−
z

)2

± 2t4
(Bz,�)

(t2
x + t2

y )(Bzg+
z )2

,


(Bz,�) =
[(

Bzg+
z

2t

)2

− 1

]2

+
(

�Bzg+
z

2t2

)2

, (16)

where I+ is the current for nonpolarized leads, I− contains
the effect of spin polarization (pL, pR �= 0), and the last term
in the first line of Eq. (16) introduces an asymmetry in the
detuning and the magnetic field when the DSPs in the leads are
not equal (pL �= pR, Fig. 5). The term I− increases the current
when pL pR > 0, i.e., when the leads are both predominantly
filled with one spin state. The maximum of the current as a
function of the detuning at fixed magnetic field is found to be

�max = pL − pR

1 − pL pR
�r, �r = (Bzg+

z )2 − 4t2

2Bzg+
z

. (17)

Note that this shift is independent of the SOI in the system and
thus provides a clear signature of different DSPs in the leads
which can be picked up in experiment. As pL pR � 1, the sign
of �max is determined by the sign of (pL − pR)�r , �r being
the resonant detuning where the hybridized singlet energies
due to the tunnel coupling align with the Zeeman energies of
the polarized triplets. At Bz > 0 the low-energy triplet |T−〉
is energetically favorable over the ground-state singlet for

FIG. 5. Leakage current in the presence of spin-flip tunneling
processes induced by the SOI. We plot the current I as a function
of the detuning � and compare the numerical results (dots) to the
analytical expressions [solid lines, Eq. (16)]. The current is enhanced
for nonzero lead polarizations if pL pR > 0 (orange curve). When
the DSPs differ in the two leads, the current becomes asymmetric
in the detuning (blue curve). We set Bz = 0.3t , gL

z = 5.5, gR
z = 4.5,

and tx = ty = tz = 0.01t .

�r > 0. If pL < pR a spin-down state is more likely to enter
the system than to leave it. To compensate for this polarization
bias the (0,2) configuration must be energetically favorable,
and hence we find the maximum of the current at negative
detunings, �max < 0. On the other hand, if the triplet is not
favorable (�r < 0), in an otherwise equal situation the (1,1)
configuration must be favored to increase spin-down refill
events, leading to �max > 0. If there is no bias in polarization
across the system, the triplet is equally likely to be refilled
as emptied and no compensating detuning between (1,1) and
(0,2) is required, and the current has a maximum at zero detun-
ing as for the case of unpolarized leads. Since the DSPs in the
leads can be determined from other measurements [59], one
may extract the sum of the g-tensor components from Eq. (17).

We note that when the magnetic field has a component
perpendicular to the common quantization axis, we observe
the same behavior as in Sec. III B but with the generalized
g-tensor resonance from Ref. [29]. In the simplest case, when
the spin-orbit vector is parallel to one of the principal axes of
the g tensor and the dominant magnetic field is applied along
this direction, B = Bkk̂, one has B∗

k =
√

t2 + t2
SO/

√
gL

kgR
k . As

before, the current may be enhanced at this point by tuning
the leads close to the configuration with pL pR = −1. In com-
bination with the sum of g tensors obtainable from (17) as
described above, this allows for a full characterization of the
g tensors even in the presence of the SOI.

V. CONCLUSION

We show that the DSPs in the leads connected to a DQD
influence the leakage current. By working in a reduced state-
space for the case of equally oriented fully polarized leads, we
obtain an exact analytical expression for the leakage current,
which contains information about the relaxation rate via its
zero-field value and the g-tensor components in the dots via
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its position of the maximum. The latter allows for a full deter-
mination of the g tensors when combined with the resonance
proposed in Ref. [29], which we show to be more pronounced
compared to the standard case of unpolarized leads when the
DSPs are tuned close to the point (pL, pR) = (−1, 1). More-
over, when the system is operated at the g-tensor resonance,
we observe a giant tunnel magnetoresistance exceeding 100%,
suggesting the possibility of using a lead coupled to a DQD
with site-dependent g tensors as a read-out tip. Finally, we
incorporate the effects of the SOI and find that the above
results still hold when working with a generalized g-tensor
resonance. Moreover, we demonstrate that one may obtain
information about the DSPs and g tensors by recording the
leakage current for various detunings. Our results pave the
way for an exact determination of the g tensors in a DQD
system and the DSPs in the leads by magnetotransport mea-
surements alone. Future research paths may explore DQDs
in other transport regimes to assess the usefulness of these
regimes in determining system parameters.

APPENDIX A: DOT-LEAD SPIN-FLIP TUNNELING

One may drop the assumption made in the main text
that the tunneling processes to and from the leads are spin-
conserving. If the probability for a spin-flip tunneling event
from/to lead d ∈ {L, R} is given by rd < 1/2, then the al-
tered probabilities of an electron or hole of normalized spin
σ ∈ {−1, 1} entering the system from the left lead (d = L) or
remaining in the right dot (d = R) are

P̃d (σ ) = Pd (σ )(1 − 2rd ) + rd , (A1)

where PL(σ ) = (1 + σ pL )/2, PR(σ ) = (1 − σ pR)/2 for a de-
gree of spin polarization in the left (right) lead pL (pR). The
effective dot-lead tunneling rates may then be calculated by
inserting the probabilities in Eq. (A1) into Eq. (5) of the
main text. In the case where the spin exchange with the leads
becomes completely random, r = 1/2, one has P̃d (σ ) = 1/2,
and thus �i = 1/4 for all states |i〉.

APPENDIX B: ANALYTICAL CURRENT FOR COMPLETELY POLARIZED LEADS

In this Appendix we display the analytical current obtained by solving the system of equations (6) with the dissipator (8)
containing the effective rate (7) in the regime described in Sec. III A. We find

I = 3

5
e�

X

Y
, (B1)

where the numerator and denominator are given by

X = 4t2[(g−
k Bk )4��TS + ��TS

(
(4t2 + �TS(� + �TS))2 + 4�2

TS�
2)

+ (g−
k Bk )2(4�2t2 + �3 �TS + 4�2

TSt2 + �2 �2
TS + ��3

TS + �4
TS + 4�TS(� + �TS) �2)],

Y = �5[2(g−
k Bk )2�TS + �3

TS

] + 2�4[5�2
TSt2 + �4

TS + 2(g−
k Bk )2(2t2 + �2

TS

)]
+ 8(g−

k Bk )2�2
TSt2

[
4t2 + (g−

k Bk )2 + �2
TS + 2�2

]
+ �3�TS

[
32t4 + 4(g−

k Bk )4 + 4(g−
k Bk )2(3t2 + �2

TS + 4�2) + �2
TS(20t2 + �2

TS + 8�2)
]

+ 2�2
[
16t6 + 2(g−

k Bk )4(2t2 + �2
TS) + (g−

k Bk )2(8t4 + 11�2
TSt2 + �4

TS + 8(2t2 + �2
TS)�2)

+ �2
TS(40t4 + 9�2

TSt2 + 4(5t2 + �2
TS)�2)

] + ��TS
[
2(g−

k Bk )6 + (g−
k Bk )4(4t2 + �2

TS − 16�2)

+ 4(2t2 + �2)
((

4t2 + �2
TS

)2 + 4�2
TS�

2) + 2(g−
k Bk )2

(
20t4 + 9�2

TSt2 + 56�2t2 + 16�4
)]

. (B2)

The gray line in Fig. 3 is drawn according to the above equation for the current. At zero field, Bk = 0, we recover Eq. (10) of the
main text.
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