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Natural heavy-hole flopping mode qubit in germanium
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Flopping mode qubits in double quantum dots (DQDs) allow for coherent spin-photon hybridization and fast
qubit gates when coupled to either an alternating external or a quantized cavity electric field. To achieve this,
however, electronic systems rely on synthetic spin-orbit interaction (SOI) by means of a magnetic field gradient
as a coupling mechanism. Here we theoretically show that this challenging experimental setup can be avoided
in heavy-hole (HH) systems in germanium (Ge) by utilizing the sizable cubic Rashba SOI. We argue that the
resulting natural flopping mode qubit possesses highly tunable spin coupling strengths that allow for qubit gate
times in the nanosecond range when the system is designed to function in an optimal operation mode which we
quantify.
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I. INTRODUCTION

The potential of implementing and manipulating physical
qubits in semiconductor systems was first recognized in the
late twentieth century [1–5] and has since been demonstrated
in countless experiments [6–8]. In particular, strongly con-
fined HH states in nanoscale quantum systems have been
investigated theoretically [9–15] and realized in recent years
in various architectures ranging from one-dimensional hut-
and nanowires to two-dimensional hole gases in planar het-
erostructures [16–23]. Long coherence times due to the weak
interaction with the host atomic nuclear spin bath and the
absence of a valley degree of freedom in the valence band
promote the binary pseudospin of such HH states to prime
candidates for a reliable qubit [24].

In this paper, we propose a qubit built from the spin of
the bonding HH state in a planar DQD. Compared to single
quantum dot (QD) systems [25], such so-called flopping mode
qubits possess a large dipole coupling to an applied alternat-
ing or quantized cavity electric field, allowing for coupling
strengths beyond the decoherence rate [26–28]. An alternative
qubit-cavity construction uses multielectron exchange-only
qubits [29]. Among the most promising candidates for a plat-
form for flopping-mode spin qubits are electrons in Silicon
and Carbon DQDs, which have seen detailed studies regard-
ing their performance and decoherence properties [30–36]. In
these systems, a magnetic field gradient perpendicular to the
DQD axis is applied to achieve a coupling between bonding
and antibonding states of different spin. The magnetic field
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gradient enables the electron spins to distinguish between
different positions in space and may therefore be seen as
synthetic SOI. While coherent spin rotations via a cavity field
could be achieved within this setup, experimental realizations
rely on micromagnets and it is yet unclear how such systems
can be scaled to include a large number of qubits. On contrast,
we show that HHs in Ge can form a natural flopping mode
qubit, i.e., one that does not require synthetic SOI via a mag-
netic field gradient. As a result, it is expected to be realizable
with far less effort in the laboratory and less prone to errors
due to imperfections in dot engineering than its conduction
band counterpart.

The feature that allows us to achieve a natural HH flop-
ping mode qubit is the cubic Rashba SOI. This type of SOI
is characteristic for valence band states and stems from the
electric field produced by the atomic nuclei experienced by
the HHs in a quantum well which introduces structural in-
version asymmetry along the growth direction. Starting from
the semimicroscopic Hamiltonian of a HH in a DQD subject
to the cubic Rashba SOI and an out-of-plane magnetic field,
we derive the ground state Hamiltonian describing the one
particle states in the left and right dot, and obtain an explicit
expression for the tunnel matrix element. Additionally, we
find terms describing spin-flip tunneling and intradot spin
flips, which are induced by the SOI and the effect of excited
orbitals. These terms allow for spin couplings in the bonding
state when the system is coupled to a classical alternating
or a quantized cavity electric field. We investigate one- and
two-qubit gate times and find operation times in the nanosec-
ond and microsecond range, respectively. The performance of
the device depends crucially on system parameters such as
the applied magnetic field, the interdot distance, the strength
of the Rashba SOI and the dot detuning, and may thus be
optimized via quantum engineering.

The remainder of this paper is structured as follows. In
Sec. II, we introduce the HH system and derive the DQD
Hamiltonian in the orbital ground state. Building on these
results, we take into account the effect of excited orbitals in
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FIG. 1. Potential landscape of a DQD as a function of the in-
plane coordinates x (along the DQD axis) and y as given by Eq. (1b)
with m = 0.1m0, h̄ω0 = 1 meV, and a = 50 nm. On top of the po-
tential surface, we show a schematic of the flopping mode qubit,
i.e., a single HH spin in the bonding state subject to an out-of-plane
magnetic field B.

a perturbative fashion in Sec. III. In Sec. IV, we change into
the basis of bonding and antibonding states and investigate the
coupling of these states via electric fields. We proceed to look
at special parameter cases and derive effective spin-photon
couplings allowing for spin rotations in the bonding state in
Sec. V. Finally, Sec. VI provides a conclusion and an outlook
on possible future research concerning natural flopping mode
qubits.

II. LOW-ENERGY HEAVY-HOLE STATES

We consider a semiconductor heterostructure with a Ge
quantum well such that the HHs in the material are subject to
strong confinement along the out-of-plane (z) axis. To model
an in-plane DQD we introduce a quartic, locally harmonic
confining potential V forming a double quantum well with
dot separation 2a (Fig. 1). Moreover, we allow for a static
out-of-plane magnetic field B and take into account the cubic
Rashba SOI such that the system may be described by the
Hamiltonian H = H0 + HR [9–11],

H0 = π2
x + π2

y

2m
+ V (x, y) + g

2
μBBσz, (1a)

V (x, y) = 1

2
mω2

0

(
(x2 − a2)2

4a2
+ y2

)
, (1b)

HR = iλR(σ+π3
− − σ−π3

+), (1c)

where π = p + eA is the canonical momentum, m the in-
plane HH mass, g > 0 the out-of-plane HH g-factor and σz

the Pauli matrix along the quantization axis. The cubic Rashba
term HR features the spin ladder operators σ± = (σx ± iσy)/2
with in-plane Pauli matrices σx/y, π± = πx ± iπy and the spin-
orbit parameter λR = 3γsαR〈Ez〉/2h̄m0�, where γs = 5.11 is
the Luttinger parameter in spherical approximation, αR the
Rashba coefficient, 〈Ez〉 the average electric field induced by
the structural inversion asymmetry due to out-of-plane con-
finement, m0 the bare electron mass and � the HH-light hole
splitting. There exists another cubic Rashba term which turns

out to be far less sizable and may be neglected completely for
the case of the valence band states in Ge where the spherical
approximation applies [37].

The time-independent Schrödinger equation with the
Hamiltonian (1a) may be solved exactly close to the QD cen-
tres x = ±a, where the quartic potential (1b) becomes locally
harmonic. In locally symmetric gauge, AL/R = B(−y, x ±
a, 0)/2, we obtain Fock-Darwin states ψFD

nl (Appendix A)
shifted to x = −a (x = a) for the left (right) dot with en-

ergies Enl = l h̄ωL + (n + 1)h̄ω, where ω =
√

ω2
0 + ω2

L and
ωL = eB/2m denotes the Larmor frequency. In what follows
we work in the most general gauge for confinement and con-
stant magnetic field along z,

A =
(

−Bc0y + h̄

elB
cx, B(1 − c0)x + h̄

elB
cy, 0

)
, (2)

where c0, cx, cy are arbitrary real constants, and we introduce
the factor h̄/elB including the magnetic length lB = √

h̄/eB
such that c0, cx, cy are dimensionless. When transforming the
left and right dot wave functions into this gauge, they acquire
a magnetic phase and read

ψ
L/R
nl (x, y) = e

iy (1−2c0 )x±a

2l2B ei
cx x+cyy

lB ψFD
nl (x ± a, y). (3)

Since there is a finite overlap

S = 〈
ψL

00

∣∣ψR
00

〉 = exp

(
−a2m

(
ω2

0 + 2ω2
L

)
h̄ω

)
(4)

between the single QD ground states, we orthogonalize to ob-
tain the Wannier states |L/R〉 = √

N (ψL/R
00 − γψ

R/L
00 ), where

the normalization factor is given by N = (1 − 2γ S + γ 2)−1

and γ = (1 − √
1 − S2)/S [38,39]. Defining the Wannier-

spin states |L/R, s〉 ≡ |L/R〉|s〉 with pseudospin quantum
number s ∈ {↑,↓} and the Pauli operators for position (τ ) and
spin (σ ), we obtain for the HH Hamiltonian H in the orbital
ground state basis {|L,↑〉, |L,↓〉, |R,↑〉, |R,↓〉},

H = −ε

2
τz − tcτx + g

2
μBBσz + η̃τyσy, (5)

where

tc = 3Nγ

4

(
h̄ω2

0

ω
+a2mω2

0

)
, η̃=λRN (1−γ 2)S

(
amω2

0

ω

)3

.

(6)

The energy detuning between the two dots ε is applied via gate
voltages in experiments and we add it as a phenomenological
control parameter. On a more microscopic level there arises
a spin-conserving tunnel matrix element tc due to the DQD
potential. On the other hand, there is a spin-flip tunneling term
η̃ due to the Rashba SOI. This term plays an important role in
the ground state spin coupling in the bonding state discussed
in the following.

As a consequence of the U(1) gauge invariance of quantum
electrodynamics all observable quantities obtained are gauge-
invariant, i.e., they do not depend on the constants c0, cx and
cy. Additional constant gauge phases, which only affect the
gauge field  but do not change the vector potential under the
transformation A → A + ∇, can be undone by choosing an
appropriate representative from the ray of states in the Hilbert
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FIG. 2. Comparison of the matrix elements in the DQD system. We show the tunneling element tc and the spin-orbit induced spin-flip
terms χ and η as given in Eqs. (6) and (13) as a function of the magnetic field B (solid lines) and the results of the numerical study (circles).
For the spin-flip tunneling term η we display the constituent terms separately to highlight the high accuracy of the approximative analytical
results. We use the system parameters h̄ω0 = 1 meV, a = 50 nm, � = 100 meV, m = 0.1m0, and αR〈Ez〉 = 10−11 eV m.

space for the wave function in each dot. Since the dependence
of the tunnel coupling tc on the magnetic field exceeds a pure
phase shift1 (Fig. 2), our results go beyond the standard inter-
pretation of Peierls substitution prescription,2 which always
ought to be treated with the appropriate care [40–42]. Indeed,
the validity of the approximation stating that the tunnel ele-
ments are only changed by a phase factor upon the application
of an external magnetic field relies on strongly localized Wan-
nier functions such that the area Aψ they enclose in the x-y
plane is much smaller than the area of a flux quantum, AB =
h̄π/eB. The DQD potential discussed in the present work
yields local eigenfunctions that do not satisfy this assumption.
To be specific, the mean area of the Fock-Darwin ground state
ψFD

00 is estimated to be Aψ = π〈ψFD
00 |x2|ψFD

00 〉 ∼ π h̄/mω, and
thus Aψ/AB ∼ ωL/ω ∼ 0.1 at B = 1 T.

III. EFFECT OF HIGHER ORBITAL STATES

To include the effects of higher orbital states we consider
the SOI as a small perturbation and work with the single-dot
ground states within first-order perturbation theory,

|ψ̃00⇑〉 = |ψ00↑〉 + λR

√
6ω3

+(h̄m/ω)3/2

3h̄ω+ − h̄ωZ
|ψ33↓〉,

|ψ̃00⇓〉 = |ψ00↓〉 − λR

√
6ω3

−(h̄m/ω)3/2

3h̄ω− + h̄ωZ
|ψ3−3↑〉, (7)

where h̄ωZ = gμBB and ω± = ω ± ωL. Note that the nor-
malization is omitted as it differs from unity only in
second order in the small perturbation parameter ξR =
λR(h̄mω0)3/2/(3h̄ω− + h̄ωZ ). The perturbative approach is
valid as long as |ξR| � 1, which holds for all relevant mag-
netic field strengths, B � 100 T for αR〈Ez〉 = 10−11 eVm and

1Indeed, the effect is even more pronounced than in comparable
electronic systems due to the low in-plane HH mass, m � 0.1m0,
where m0 is the bare electron mass.

2In his original work, Peierls himself pointed out that the effect of
a nonzero magnetic field exceeds a pure phase factor [54].

� = 100 meV. Due to the cubic SOI the altered ground states
each contain a component with opposite spin in the third
excited orbital level. As in Sec. II, the states in the left and
right dot are obtained by shifting the position coordinate to
the dot centres x → x ± a and gauge transforming back to
common gauge, Eq. (2),

ψ̃L/R
σ (x, y) = e

iy (1−2c0 )x±a

2l2B ei
cx x+cyy

lB ψ̃00,σ (x ± a, y). (8)

where ψ̃00,σ (x, y) is the position space representation of the
states defined in Eq. (7). The index σ = ⇑,⇓ labels the
constituents of a Kramers pair for each dot, which we refer
to as a pseudospin doublet. We find the overlaps S⇑/⇓ =
〈ψ̃L

⇑/⇓|ψ̃R
⇑/⇓〉 = S(1 + O(ξ 2

R )),

S⇑⇓ = 〈ψ̃L
⇑|ψ̃R

⇓〉 = S
6λRm3a3ω6

0

h̄ω2
(
9ω2

0 + 6ωLωZ − ω2
Z

) , (9)

S⇓⇑ = −S⇑⇓, with S as given in Eq. (4). Neglecting the over-
laps containing powers of ξR, we obtain the Wannier-spin
states, which are orthogonal within our approximation,

|L/R, σ 〉 =
∣∣ψ̃L/R

σ

〉 − γ |ψ̃R/L
σ 〉√

1 − 2γ S + γ 2
. (10)

We proceed to project the HH DQD Hamil-
tonian H = H0 + HR onto the Wannier basis
{|L,⇑〉, |L,⇓〉, |R,⇑〉, |R,⇓〉}. To facilitate the integrals
appearing in the calculations, we use the behavior of
the unperturbed left and right dot states including a
magnetic phase in symmetric gauge under (partial) parity
transformations,

ψL
nl (−x,−y) = (−1)nψR

nl (x, y),

ψL
nl (−x, y) = (−1)nψR

nl (x, y)∗. (11)

The spin-conserving matrix elements and the out-of-plane
Zeeman term receive corrections only at second order in ξR

which we neglect. In contrast, non-spin-conserving terms ap-
pear in first order in the SOI, and as a result the Hamiltonian
features corrections to the spin-flip tunneling term η̃ as well
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as an extra intradot spin-flip term χ ,

H = −ε

2
τz − tcτx + g

2
μBBσz + ητyσy + χτzσx, (12)

where η = η̃ + δη̃1 + δη̃2 + g
2μBb, η̃, ε and tc as in Eq. (6)

and

χ = λRN̄3mω2
0 h̄2

8ω3a

(
ω3

−
3ω− + ωZ

− ω3
+

3ω+ − ωZ

)
,

δη̃1 = λRN̄
√

6

(
h̄m

ω

) 3
2 ∑

±

ω3
±
〈
ψL

00

∣∣h0

∣∣ψR
3±3

〉
3h̄ω± ∓ h̄ωZ

,

δη̃2 = 6λRSm3a3ω6
0

ω2
(
9ω2

0 + 6ωLωZ − ω2
Z

)(
ω + 3h̄ω2

0

32a2mω2

)
,

b = λRBN̄S
a3m3ω6

0

ω3h̄

2ωZ − 6ωL

9ω2
0 + 6ωLωZ − ω2

Z

. (13)

We make use of the abbreviations N̄ = N (1 − γ 2) and h0 =
H0 − gμBBσz/2, and the wave functions ψd

nl are the unper-
turbed shifted Fock-Darwin states including a magnetic phase
from transforming back to symmetric gauge. The matrix el-
ements appearing in δη̃1 are straightforward to calculate but
lengthy; they are shown in Appendix B. Analysing the form
of the novel terms, we find that the quantity χ acts as an
intrinsic magnetic field gradient of strength 2χ . Note that
χ (−B) = −χ (B) and hence χ (B = 0) = 0. While the term
arises in a perturbative approach in the SOI, its magnitude
may be sizable as it does not depend on the overlap S between
the left and right dot states. At B = 1 T one has 2χ � 0.6 μeV
for a HH-light-hole splitting � = 100 meV and a Rashba
coefficient αR〈Ez〉 = 10−11 eV m, which is of the same or-
der of magnitude as the magnetic field gradients applied in
electronic systems, μB�Bx ∼ 1.6 μeV [30,31]. Finally, the
corrections to the spin-flip tunneling matrix element η̃ are
threefold: δη̃1 arises due to the DQD potential and b is due to
the out-of-plane magnetic field in our approximation of zero
overlap between different pseudospins. On the other hand, δη̃2

is due to a nonvanishing overlap between states of different
pseudospin, and the only instance where our approximation
breaks down. The δη̃2 contribution can be treated within a
different approximative approach as detailed in Appendix C 2.
A comparison of the matrix elements as a function of the
magnetic field is shown in Fig. 2. In the figure, the analytical
results are complemented by numerical data which takes into
account all overlaps between the dot states and also second-
order terms in the spin-orbit parameter ξR (Appendix C 1.).
We find excellent agreement, a posteriori justifying the ap-
proximations made.

IV. ELECTRIC COUPLING OF BONDING AND
ANTIBONDING STATES

A. Bonding-antibonding basis

It is useful to diagonalize the effective DQD Hamiltonian
H , Eq. (12), at zero magnetic field and vanishing SOI, yielding
the eigenbasis {|−,⇑〉, |−,⇓〉, |+,⇑〉, |+,⇓〉} with energies
E± = ±√

t2
c + ε2/4 (Appendix D). Since the |−〉 states are

lower in energy compared to the |+〉 states, we refer to them
as bonding and antibonding, respectively, a nomenclature in-

FIG. 3. Spin coupling mechanism in the bonding state. We show
the unperturbed Zeeman-split energies of the bonding (green lines)
and antibonding (orange lines) states as a function of the detuning.
The red and blue double-headed arrows represent transitions due to
the dipole coupling (�c, gc) and SOI (η, χ ), respectively, which
can be combined to obtain an effective spin coupling in the bond-
ing state (�s, gs, purple dashed arrows). On the right we display
the probability densities of bonding (bottom) and antibonding (top)
states according to the applied Wannier formalism at zero detuning.
Brighter colors correspond to larger values.

spired by similar states in molecular physics. To understand
the mixing of these states in the system under considera-
tion, we proceed to transform the total HH Hamiltonian H
at nonzero magnetic field and in the presence of the SOI into
the bonding-antibonding basis,

H =

⎛
⎜⎜⎜⎝

−K− χs 0 −η − χc

χs −K+ η − χc 0

0 η − χc K+ −χs

−η − χc 0 −χs K−

⎞
⎟⎟⎟⎠, (14)

where we define χs = χ sin θ , χc = χ cos θ with the
DQD orbital mixing angle θ = arctan (ε/2tc) and K± =√

t2
c + ε2/4 ± gμBB/2. As one can see, the SOI couples or-

bital states of different pseudospin. Our aim is to complement
this coupling with dipole transitions induced by an electric
field, i.e., transitions between orbital states of equal spin, to
obtain effective spin rotations in the orbital of lowest energy
(Fig. 3).

B. Coupling to electric fields

Both classical electric fields and quantum mechanical
photons may be coupled to the DQD system. Neglecting dia-
magnetic contributions, the minimally coupled Hamiltonian
reads

HI = e

m
Ae · π, (15)

where the time-dependent vector potential Ae may describe
a classical alternating electric field or photons within the
framework of cavity quantum electrodynamics. In the present
case, the light must be polarized along the DQD axis x to
couple bonding and antibonding states, and we find for the
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dimensionless momentum operator �x = πx/
√

mh̄ω0,

�x = dcτy + ds

(
2γ

1 + γ 2
+ sin θτx + cos θτz

)
σy, (16)

where the operators for position (τ ) and spin (σ ) act in the
bonding-antibonding basis and the dipole elements read

dc = N (1 − γ 2)S
aω0

rω
+ O

(
ξ 2

R

)
,

ds = λRN (1 + γ 2)S
m2a2ω0

2rω2

∑
±

± ω3
±C∓

ωZ ∓ 3ω±
,

C± = 2a2m

h̄ω3

(
ω4

0 ± 4ω3
Lω± + ω2

0ωL(5ωL ± 3ω)
) − 3

ω±
ω

,

(17)

with the typical lateral QD size r = √
h̄/mω0. Hence, the

electromagnetic fields achieve a coupling dc between bonding
and antibonding states of equal spin. Additionally, due to the
effect of higher orbital states which are admixed due to the
SOI, there are non spin-conserving transitions within a dot of
strength ds and ds cos θ as well as transitions between the two
dots of strength ds sin θ . For all cases the coupling strength
is sensitive to the interdot distance and the applied magnetic
field. We now turn to the description of the explicit coupling
to a classical alternating and a quantized cavity electric field.

Electric dipole spin resonance (EDSR) aims to manipulate
the spin degree of freedom with the aid of an alternating
electric field and has been shown to be implementable in a
variety of systems [43–45]. For the DQD system in this study,
we assume a field of amplitude E , driving frequency ωd and
polarization along the DQD axis x, E (t ) = −E cos(ωdt )ex.
The Hamiltonian describing this field is given by

HE = eE
ωd

√
h̄ω0

m
sin(ωdt )�x ≡ h̄�c sin(ωdt )�x, (18)

where we define the coupling strength h̄�c = eErω0/ωd for
later convenience.

Finally, we turn to the description of a quantized cavity
field. A single cavity mode of frequency ωc is described by
the Hamiltonian Hc = h̄ωcν

†ν, where ν† and ν denote the
photon creation and annihilation operator, respectively. The
interaction of the cavity photons with the HHs confined in the
DQD for linearly polarized light along x is of the form

Hc = h̄gc(ν + ν†)�x, (19)

where gc = e
√

ω0/2ε0εrmV ωc is the single dot charge cou-
pling strength of the cavity containing the volume of the cavity
V and the material specific relative permittivity εr (εr = 16 in
Ge) [46,47].

V. SPIN ROTATIONS IN THE BONDING STATE

The goal of this study is to define a qubit via the spin states
in the low-energy bonding orbital. In Sec. IV, we showed that
electric fields can couple bonding and antibonding states of
equal spin and that the SOI perturbs the bonding spin states
such that they couple to the antibonding state of opposite spin.
It was argued that the combined effects of the cavity field and
the SOI should allow for an effective spin coupling in the

bonding orbital. In this section, we quantify this claim and
show that in the logical qubit space defined by the perturbed
bonding states, the total electric field-HH flopping mode qubit
Hamiltonian may either be written in EDSR form,

HEDSR = �

2
σz + h̄�s sin (ωdt )σy, (20)

when the qubit is driven by a classical field, or in Rabi form,

Hcav = �

2
σz + h̄ωcν

†ν + h̄gs(ν + ν†)σy, (21)

for the case of interactions with single photons. The EDSR-
qubit Hamiltonian (20) may be used to perform single qubit
operations, while two-qubit gates can be implemented with
the cavity-qubit Hamiltonian (21). As one- and two-qubit
gates are universal for quantum computation [48], the interac-
tions described are sufficient to operate a complete quantum
computer.

In the following, we derive explicit expressions for the
qubit energy separation � and the effective spin couplings
�s and gs for two special cases. Additionally, we highlight
the strong dependence of the coupling on system parameters
such as the interdot distance, the dot detuning and the applied
magnetic field.

A. Weak magnetic fields and spin-flip tunneling

Assuming interdot distances 2a ∼ 100 nm, we find
|χ/η| � 1 for B � 0.1 T, allowing us to neglect χ at weak
magnetic fields (cf. Fig. 2). In this limit, we may exactly
diagonalize the HH Hamiltonian in Eq. (14) to obtain the
eigenstates

|−,⇑〉 = cos φ−|−,⇑〉 − sin φ−|+,⇓〉, (22a)

|−,⇓〉 = cos φ+|−,⇓〉 + sin φ+|+,⇑〉, (22b)

|+,⇑〉 = cos φ+|+,⇑〉 − sin φ+|−,⇓〉, (22c)

|+,⇓〉 = cos φ−|+,⇓〉 + sin φ−|−,⇑〉, (22d)

where

φ± = − arctan
η

K± +
√

K2± + η2
(23)

are the spin-orbit mixing angles.
On the one hand, an electric field couples the bonding

and antibonding states of equal spin, e.g., |−,⇑〉 and |+,⇑〉.
On the other hand, the SOI couples bonding and antibonding
states of opposite spin via spin-flip tunneling, e.g., |−,⇑〉
and |+,⇓〉 [cf. Eq. (22a)]. The combination of both effects
therefore couples the logical states |−,⇑〉 and |−,⇓〉. This is
seen most easily by expressing the interaction Hamiltonians in
Eqs. (18) and (19) in the basis defined by Eqs. (22a)–(22d) in
which the HH Hamiltonian H is diagonal. At the level of the
qubit space spanned by the logical basis {|0〉 = |−,⇓〉, |1〉 =
|−,⇑〉}, we find effective flopping-mode qubit Hamiltonians
as given in Eqs. (20) and (21) with the effective spin couplings
�s = �cd and gs = gcd containing the common dimension-
less electric dipole matrix element

d = dc sin φ + ds

[
2γ

1 + γ 2
cos φ + cos φ cos θ

]
, (24)
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FIG. 4. The relative spin coupling strength |d| for both EDSR
and photonic interactions as a function of the detuning ε and half
the interdot distance a. There is a critical line where the coupling
increases abruptly, described by the resonance condition gμBB =√

4t2
c + ε2 (white dashed line). We use h̄ω0 = 1 meV, g = 10, � =

100 meV, B = 0.1 T, m = 0.1m0, and αR〈Ez〉 = 10−11 eVm.

where dc and ds are as defined in Eq. (17), φ = φ+ + φ−
and φ = φ+ − φ− (Appendix E). By definition, d describes
the ratio of spin to charge coupling strengths and its absolute
value |d| is thus referred to as the relative spin coupling
in what follows. It is shown as a function of the detuning
ε and half the interdot distance a in Fig. 4. The coupling
changes abruptly in a narrow region around the resonance
gμBB = √

4t2
c + ε2, corresponding to the point where the en-

ergies of unperturbed bonding and antibonding states |−,⇑〉
and |+,⇓〉 align in energy. Beyond this critical line, i.e., when
E+⇑ < E−⇓, the excited qubit state in Eq. (22a) changes its
character to be predominantly antibonding. This allows for
strong dipole couplings to the qubit ground state, and the spin
coupling mediated by the electric field is increased. Remark-
ably, the regime where the coupling becomes strongest is also
the regime where the qubit is nearly ideally isolated from the
rest of the Hilbert space, reducing leakage errors and hence
defining an optimal operation mode (Appendix F). We find the
same form for the spin coupling if the tunnel matrix element
is modulated via the in-plane confinement energy h̄ω0 instead
of the interdot distance (Appendix G). The energies of the
system read

E±σ = ±
√

η2 + ( ±
√

t2
c + ε2/4 + σgμBB/2

)2
, (25)

where we define σ = 1 (σ = −1) for spin up (down) states,
and the qubit energy gap is � = E−⇑ − E−⇓. Hence, for
B = 0.1 T, we have �/h̄ in the GHz range, allowing resonant
coupling of the bonding ground state spin to photons confined
in superconducting resonators [49].

B. Symmetric dot configuration

As the most pronounced coupling strengths appeared at
zero detuning, ε = 0, in Sec. V A, we restrict our attention
to the case of a symmetric DQD in this section, allowing us to
consider arbitrary magnetic field strengths. Upon diagonaliz-
ing the HH Hamiltonian in Eq. (14), the new eigenenergies of

the system read

E±σ = ±
√

(σgμBB/2 ± tc)2 + (σχ ∓ η)2, (26)

from which the energy separation between the logical states
can be easily computed as � = E−⇑ − E−⇓. The spin states
in the same orbital are degenerate at zero field, B = 0 due to
χ (B = 0) = 0, in accordance with Kramers’ theorem.

Turning to the mixing between the qubit states, one may
look at the eigenstates of (14). They have the same form as in
Eqs. (22a)–(22d) with the modified spin-orbit mixing angles

φ± → �± = − arctan
η ∓ χ

K± +
√

K2± + (η ∓ χ )2
. (27)

Consequently, we obtain the same form for the effective elec-
tric field mediated spin couplings �s = �cd and gs = gcd
with d as in Eq. (24) at θ = 0. The relative coupling |d|
as a function of half the interdot distance and the applied
magnetic field is displayed in Fig. 5. As can be seen from the
plot, the coupling strength shows a strong dependence on the
applied magnetic field and the interdot distance. Indeed, there
exists a critical line where the coupling changes abruptly. It
is described by the resonance condition gμBB = 2tc, which
is explained physically as in Sec. V A by equal energies of
unperturbed bonding and antibonding states and a change of
character in the excited qubit state when the line is crossed
(Appendix F). The subsequent decrease in |d| is due to the
exponential decay of the dipole elements dc and ds in both a
and B [Eq. (17)]. This knowledge can be taken into account
in QD manufacturing to maximize the relative spin coupling
strength |d| by constructing the system such that the interdot
distance equals 2amax, where amax is the value of a where
|d| becomes maximum for a fixed magnetic field. In a DQD
where the interdot distance is tunable (or, alternatively, the in-
plane confinement energy, see Appendix G), the characteristic
step form of |d| may be utilized as a spin-orbit switch by only
slightly changing a [Fig. 5(b)]. Since the dependence of d
on the magnetic field shows a similar behavior [Fig. 5(c)],
varying the magnetic field may also be used to control the
qubit-field interaction. Such tunable couplings are of great
importance in quantum processing units. Large couplings can
be used to quickly manipulate the spin qubit state, while low
couplings may be used to isolate a given spin state, e.g., for
the purpose of qubit read-out or initialization.

C. Feasible qubit gate times

Finally, we may estimate one- and two-qubit gate times
which may be achieved with a natural HH flopping mode
qubit in present-day experiments. We assume the system to
be engineered such that the qubit is operated at the optimal
point, where we may reach relative spin couplings |d| > 1/4
(cf. Fig. 5).

One-qubit gates are most efficiently driven by an alter-
nating electric field of magnitude E and frequency ωd . For
a QD of confinement energy h̄ω0 = 1 meV (yielding a lat-
eral size of r ∼ 25 nm) and an electric field at the resonant
driving frequency ωd = � ∼ 100 GHz at B = 1 T, we find
�s ∼ (1–10) E [V/m] MHz and thus one-qubit gate times
τ1 ∼ 1/�s of less than a nanosecond for E ∼ (0.1–1) kV/m.
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FIG. 5. The relative spin coupling strength |d| for both EDSR
and photonic interactions. (a) Contour plot of d as a function of
half the interdot distance a and the magnetic field B. The dashed
white line shows the critical line gμBB = 2tc where the coupling
changes abruptly. [(b) and (c)] Line cuts at different magnetic fields
(b) and dot separations (c) as indicated in the figure. Due to the
magnetic compression of the oscillator states a smaller dot separation
is favourable for larger magnetic fields. We find a characteristic step-
like increase in the coupling when varying the control parameter,
implying a high degree of control over the coupling strength. The
remaining parameters are chosen as in Fig. 4.

On the other hand, two-qubit gates may be implemented
by harnessing the long-range spin-photon coupling introduced
by a bosonic cavity to obtain a controlled interaction between
distant spins. For instance, the iSWAP gate may be performed
in the dispersive regime, i.e., for |δ| = |ωc − �/h̄| � gs, in
time τ = (4k + 1)π |δ|/2g2

s with k = 0, 1, 2, . . . [34]. The en-
tangling and universal CNOT gate may then be implemented
using two iSWAP gates and one-qubit gates [50,51]. As
superconducting resonators have typical coupling strengths
of gcωc/2πω0 � 1–10 MHz for QDs of lateral size r �
10–100 nm [49], HH flopping mode systems in Ge allow

for fast two-qubit logic with typical gate operation times
τ2 ∼ |δ| [MHz] μs.

VI. CONCLUSION

We show that a flopping mode qubit arises naturally for
HHs in Ge, i.e., without the need to create synthetic SOI
via a magnetic field gradient. This is made possible by the
strong cubic Rashba SOI, which leads to intradot spin flips
and interdot spin-flip tunneling. Utilizing these processes, we
derive an effective electric field mediated spin coupling of the
bonding state for different parameter regimes. Additionally,
we quantify and physically motivate optimal points of oper-
ation and argue that the spin coupling is highly tunable and
can reach several ten percent of the charge coupling when the
system is engineered accordingly. Consequently, one-qubit
gate times in the nanosecond range and two-qubit gate times in
the microsecond range are feasible in present-day experiments
with natural HH flopping mode qubits. Our results highlight
yet another possible application in quantum computing of the
versatile platform Ge.

Further research may include the generalization of the sys-
tem geometry to elliptical QDs where the effect of the SOI
is expected to become more diverse due to a less restrictive
symmetry, i.e., the SOI may couple the ground state of a
given spin to more than one excited level. Moreover, typical
relaxation times for flopping mode systems realized with HHs
in Ge need to be calculated to estimate their performance
under realistic conditions and definitively judge their potential
as fast and reliable qubits. While the coupling of spin and
charge degree of freedom opens an additional channel for
dephasing and relaxation processes, one may work at a sweet
spot to mitigate the effects of the environment. A detailed
study of sweet spots in flopping mode systems may be found
in Ref. [35].

APPENDIX A: FOCK-DARWIN STATES

The Fock-Darwin states ψFD
nl (x, y) are eigenstates of the

Hamiltonian

HFD = π2
x + π2

y

2m
+ 1

2
mω0(x2 + y2), (A1)

where π = p + eA with A = B(−y, x, 0)/2 in the symmetric
gauge. Due to the circular symmetry of the system, it is con-
venient to express the general wave functions in planar polar
coordinates (ρ, ϕ),

ψnl (ρ, ϕ) =
√

n!

π (n + |l|)!
eilϕ

b

(ρ

b

)|l|
L|l|

n

(
ρ2

b2

)
e−ρ2/2b2

,

(A2)

where we introduce the main and azimuthal quantum
numbers n and l ∈ {−n,−n + 2, . . . , n − 2, n}, respectively,
L|l|

n (ρ2/b2) = (−1)|l|∂ |l|
ρ Ln+|l|(ρ2/2b2) denote the generalized

Laguerre polynomials and b2 = h̄/m
√

ω2
0 + ω2

L with Larmor
frequency ωL = eB/2m [52,53]. In the main text, we only
need the ground state (n = 0) and the third excited states with
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extremal azimuthal quantum number (n = 3, l = ±3). They
read in cartesian cooridnates (x, y),

ψFD
00 = 1√

πb
e−(x2+y2 )/2b2

, (A3)

ψFD
3±3 = 1√

6πb4
(x ± iy)3e−(x2+y2 )/2b2

. (A4)

APPENDIX B: MATRIX ELEMENTS IN THE SPIN-FLIP
TUNNELING TERM

In this Appendix, we display the matrix elements needed
for the calculation of the correction to the spin-flip tunneling
term δη̃1 in Eq. (13) of the main text. Writing h0 = H0 −
gμBBσz/2, they read

〈
ψL

00

∣∣h0

∣∣ψR
3±3

〉 =
∫

R2
dx dy ψL∗

00 h0ψ
R
3±3 = S

√
3h̄/2mω

32ah̄ω3

{
4a4m2ω6

0

h̄
(5h̄ + a2m(ω ∓ 3ωL ))

+ h̄2ω4
0

[
− 6 + 4a4m2ωL

h̄2 (17ωL ∓ 11ω) + 4a6m3ω2
L

h3
(5ω ∓ 7ωL ) + a2m

h̄
(11ω ∓ 9ωL )

]

+ 2h̄ω2
0ωL

[
∓ 8a6m3ω4

L

h̄2 ± 3h̄ω + 8a4m2ω3
L

h̄

(
3 + a2mω

h̄

)

+ h̄ωL

(
∓3 + 4a2mω

h̄

)
∓ 4a2mω2

L

(
1 + 6a2mω

h̄

)]}
− Sa3

√
6
( m

h̄ω

)3/2
ω3

∓(4h̄ω ± 3h̄ωL ). (B1)

APPENDIX C: WANNIER STATES INCLUDING EXCITED
ORBITALS

1. Numerical computation of matrix elements

In our numerical study we incorporate the overlaps be-
tween states of different pseudospin, resulting in the overlap
matrix MS in the basis {|ψ̃L

⇑〉, |ψ̃L
⇓〉, |ψ̃R

⇑〉, |ψ̃R
⇓〉} defined in

Sec. III of the main text,

MS = I + δMS =

⎛
⎜⎜⎜⎝

1 0 S⇑ S⇑⇓
0 1 −S⇑⇓ S⇓

S⇑ −S⇑⇓ 1 0

S⇑⇓ S⇓ 0 1

⎞
⎟⎟⎟⎠, (C1)

where the off-diagonal elements collected in δMS are much
smaller than unity in the present system. Aiming to or-
thogonalize the states, we introduce the Wannier matrix W
connecting the left and right dot eigenstates to the Wannier
states, ⎛

⎜⎜⎜⎝
|L,⇑〉
|L,⇓〉
|R,⇑〉
|R,⇓〉

⎞
⎟⎟⎟⎠ = W

⎛
⎜⎜⎜⎜⎝

|ψ̃L
⇑〉

|ψ̃L
⇓〉

|ψ̃R
⇑〉

|ψ̃R
⇓〉

⎞
⎟⎟⎟⎟⎠ (C2)

The orthonormalization condition 〈d, σ |d ′, σ ′〉 = δdd ′δσσ ′ for
d ∈ {L, R} and σ ∈ {⇑,⇓} can be moulded into the Wannier
equation in matrix form,

W MSW † = I. (C3)

Solving this system of nonlinear equations yields the com-
ponents of W and thus the Wannier states. We choose the
physical solution given by the one with the largest diagonal
elements. With the Wannier states at hand, one may then
compute the matrix elements by numerical integration for
different values of the magnetic field. A comparison between
the numerical approach and the analytical results given in
Eqs. (6) and (13) is shown in Fig. 2.

2. Approximative solution to the Wannier equation

When comparing the numerical data to the approximative
solutions of Sec. III, we find that all terms are in excellent
agreement except for a correction to the spin-flip tunneling
element due to a nonvanishing overlap between states of dif-
ferent pseudospin,

δη̃2 = W22W32
(〈
ψL

00

∣∣h0

∣∣ψL
00

〉 + 〈
ψR

00

∣∣h0

∣∣ψR
00

〉)
, (C4)

where h0 = H0 − gμBB/2 and Wnm denote the components
of the Wannier matrix W . We may approximate the solu-
tion to Eq. (C3) as W = I − δMS/2, resulting in an error
only at quadratic order in the small off-diagonal elements,
W MSW † = I + O(δM2

S ). Consequently, the spin-flip correc-
tion reads

δη̃2 = 6λRSm3a3ω6
0

ω2
(
9ω2

0 + 6ωLωZ − ω2
Z

)(
ω + 3h̄ω2

0

32a2mω2

)
, (C5)

which is the form displayed in Eq. (13) of the main text. The
approximation is expected to hold for small overlaps between
different dot states, and we naively expect good agreement
with the exact numerical results for a � 30 nm (Fig. 6). Note,
however, that this bound is too pessimistic as we can solve
the Wannier equation exactly for S⇑⇓ = 0 and only have to
resort to the approximative solution for the computation of
δη̃2, which tends to zero as the dot separation is decreased. As
a consequence, even for dot separations smaller than 2a = 60
nm the spin coupling is not changed noticeably as can be seen
from Fig. 7.

APPENDIX D: BONDING-ANTIBONDING BASIS

The bonding-antibonding basis is defined to be the
eigenbasis of the Hamiltonian H = − ε

2τz − tcτx, where the
operators τ are Pauli matrices with respect to the left and right
dot states with the convention τz = |L〉〈L| − |R〉〈R|. One finds

UHU † = diag(−E , E ), (D1)

013194-8



NATURAL HEAVY-HOLE FLOPPING MODE QUBIT IN … PHYSICAL REVIEW RESEARCH 3, 013194 (2021)

FIG. 6. Validity of the approximative solution to the Wannier equation. We show the overlap S as a function of the magnetic field B and
(a) half the dot separation a and (b) the in-plane confinement energy h̄ω0. The approximation is valid in the green region, while it does not
accurately describe the system in the red region. For S � 0.3 (to the right of the dashed line), the error caused by neglecting second-order
terms is less than ten percent. We use the system parameters g = 10, � = 100 meV, m = 0.1m0, and αR〈Ez〉 = 10−11 eV m, as well as
(a) h̄ω0 = 1 meV and (b) a = 50 nm.

where E = √
t2
c + ε2/4 and

U =
(

cos ϑ sin ϑ

− sin ϑ cos ϑ

)
, (D2)

with the hybridization angle ϑ =
arctan (2tc/(ε + √

ε2 + 4t2
c )). Since ϑ ∈ [0, π/2] for tc > 0,

it may be rewritten as ϑ = π/4 − θ/2 with the orbital angle
θ = arctan(ε/2tc).

APPENDIX E: MOMENTUM OPERATOR IN
SPIN-ORBIT BASIS

The dimensionless momentum operator in the basis defined
by Eqs. (22a)–(22d) in Sec. V A of the main text has the form

�x = (dc sin φ + ds cos φ cos θ )τzσy

+ 2γ

1 + γ 2
ds(cos φσy + sin φτyσz ) + ds sin θτxσy

+ (dc cos φ − ds sin φ cos θ )τy, (E1)

where φ = φ+ + φ− and φ = φ+ − φ−. In the logical space
defined by the pseudospin in the bonding state, one finds �x =
dσy with

d = dc sin φ + ds

[
2γ

1 + γ 2
cos φ + cos φ cos θ

]
. (E2)

For the symmetric dot configurations discussed in Sec. V B
the form is the same after setting θ = 0 and substituting
φ± → �±.

APPENDIX F: CRITICAL LINE OF THE SPIN
COUPLING STRENGTH

The spin-orbit mixing angles are of the form ζ± =
arctan ± with

± = f±

h ± gμBB/2 +
√

f 2± + (h ± gμBB/2)2
, (F1)

FIG. 7. Comparison between approximated analytical (solid lines) and exact numerical results (circles) for the relative spin coupling
strength |d| for various magnetic fields as given by the line cuts in Fig. 5(b). In each plot, we display the region of half the interdot distance a
in which |d| shows the characteristic step form. We find excellent agreement between analytics and numerics even for a < 10 nm. The system
parameters are set to h̄ω0 = 1 meV, g = 10, � = 100 meV, m = 0.1m0, and αR〈Ez〉 = 10−11 eVm.
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FIG. 8. Relative pin coupling strength |d| as a function of the in-plane confinement energy h̄ω0 and (a) the detuning ε (b) the applied
magnetic field B corresponding to the special cases discussed in Sec. V A and Sec. V B, respectively. The dashed white lines indicate the critical
lines and are described by the equations (a)

√
4t2

c + ε2 = gμBB and (b) 2tc = gμBB as detailed in Appendix F. We set g = 10, � = 10 meV,
m = 0.1m0, αR〈Ez〉 = 10−11 eV m and a = 50 nm.

where f± = η and h = √
t2
c + ε2/4 ( f± = η ∓ χ and h = tc)

in Sec. V A (Sec. V B). Since ds � dc, the relative spin cou-
pling strength is of the form

d � dc sin(ζ− + ζ+) � dc sin ζ−, (F2)

where the last approximation is valid due to the larger denom-
inator in ζ+ for B > 0 and f± � h. For gμBB ≶ 2h one has
− ≶ 1. Moreover, since − > 0, the corresponding spin-
orbit mixing angle may be written as

ζ<
− = 1

2
arctan λ−, ζ>

− = 1

2
arctan λ− ± π

2
, (F3)

where the sign in ζ>
− is positive (negative) for f− > 0 ( f− <

0) and

λ− = f±
h ± gμBB/2

. (F4)

Since λ− � 1 outside a narrow region around the resonance
gμBB = 2h, | sin ζ−| displays a characteristic step-like behav-
ior. Consequently, the relative spin coupling also shows this
behavior, accompanied by the exponential decay of dc in both
a and B. The critical line gμBB = 2h, i.e., the point where the
coupling strength changes abruptly is shown as dashed white
lines in the contour plots in Secs. V A and V B.

The physical reason for the critical line is that the unper-
turbed states |−,⇑〉 and |+,⇓〉 align in energy. When the
energy of the state |+,⇓〉 is reduced further, the excited qubit
state [Eq. (22a)] changes its character as the antibonding state
|+,⇓〉 becomes the dominant contribution. Hence, it becomes
more and more susceptible to the electric dipole coupling with
the state |−,⇓〉 which is the dominant contribution to the
ground qubit state |−,⇓〉.

We remark that beyond the critical line, the qubit space is
almost ideally isolated from the rest of the Hilbert space under
consideration. Using that ds is negligibly small compared to dc

and taking into account the above considerations, the momen-
tum operator in the spin-orbit basis reads (Appendix E),

�x � dc sin ζ−τzσy + dc cos ζ−τy. (F5)

Since ζ− � ±π/2 beyond the critical line, one has cos ζ− �
0, and the qubit space is decoupled in good approximation.

APPENDIX G: SPIN COUPLING WITH VARIABLE
CONFINEMENT ENERGY

In this Appendix, we consider the spin coupling strengths
derived in Secs. V A and V B but with a fixed dot separation.
Instead, the tunability of the tunnel coupling tc is taken into
account by varying the in-plane confinement energy h̄ω0. The
results are shown in Fig. 8.
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