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All-electrical control of hole singlet-triplet spin qubits at low-leakage points
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We study the effect of the spin-orbit interaction on heavy holes confined in a double quantum dot in the
presence of a magnetic field of arbitrary direction. Rich physics arise as the two hole states of different spin
are not only coupled by the spin-orbit interaction but additionally by the effect of site-dependent anisotropic g
tensors. It is demonstrated that these effects may counteract in such a way as to cancel the coupling at certain
detunings and tilting angles of the magnetic field. This feature may be used in singlet-triplet qubits to avoid
leakage errors and implement an electrical spin-orbit switch, suggesting the possibility of task-tailored two-axes
control. Additionally, we investigate systems with a strong spin-orbit interaction at weak magnetic fields. By
exact diagonalization of the dominant Hamiltonian we find that the magnetic field may be chosen such that the
qubit ground state is mixed only within the logical subspace for realistic system parameters, hence reducing
leakage errors and providing reliable control over the qubit.
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I. INTRODUCTION

Lately, heavy holes (HHs) confined in quantum dots (QDs)
have gained ground in the race for a first scalable platform
for quantum computation [1–7]. Different implementations
such as HHs in single QDs [8] and flopping mode qubits [9]
have been shown to allow for fast one and two qubit logic,
externally controllable without the need for experimentally
challenging components required in electronic systems such
as oscillating magnetic fields or magnetic field gradients at
the nanoscale [10–14].

Complete control of yet another promising qubit type, the
singlet-triplet qubit [15,16], often relies on magnetic field
gradients [17–19] which require considerable effort for their
experimental realization, or random nuclear fields [20,21]
which are hard to control. It was demonstrated that a singlet-
triplet qubit can be realized if the double QD (DQD) system
possesses site-dependent g tensors [22], which have been ob-
served for holes in the group IV material germanium (Ge)
[23]. Moreover, recent experiments found that a HH singlet-
triplet qubit in planar Ge may be operated fast and coherently
at magnetic fields below 10 mT [24]. These achievements
pave the way towards coupling Ge qubits to conventional
superconductors such as aluminium in the context of su-
persemihybrid circuit quantum electrodynamics [25]. While
complete control was demonstrated with an applied out-of-
plane magnetic field alone, it is desirable to fully understand
the dependence on the direction of the magnetic field in such
systems, e.g., to further increase qubit manipulation speed and
coherence, as well as providing a reliable way to initialize and
read out the system. In this paper, we report the existence
of special magnetic field directions in Ge DQDs where the
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leakage out of the hole-spin qubit subspace is suppressed and
where all-electrical two-axes qubit control is possible (Fig. 1).

There are three characteristic properties of HH systems, in
particular in the semiconductor Ge. (i) Due to the p symmetry
of valence band orbitals, the contact hyperfine interaction
of the hole spins with the nuclear spin bath is weak, thus
reducing decoherence [26–28]. Additionally, since the nuclei
in Ge predominantly have spin zero, it is possible to further
reduce hyperfine interactions by isotopic purification [29]. (ii)
There is a strong spin-orbit interaction (SOI) allowing for
electrical spin control [30]. In planar Ge, the SOI is of (cubic)
Rashba type since the crystal possesses inversion symmetry
[31–33]. (iii) The g tensors are highly anisotropic and can be
site dependent [23,24], yielding additional coupling terms and
thus a higher degree of control. Here, we allow for a magnetic
field of arbitrary direction and show that the combined effects
of the SOI and anisotropic site-dependent g tensors amount to
a spin-orbit switch in a qubit that is at the same time protected
from leakage errors. This is achieved in two steps. First, one
fixes the magnetic field at a specific orientation depending
on the system parameters which we specify, resulting in the
reduction and in some cases even the elimination of leakage
to states outside the logical subspace. With the magnetic field
in place, the coupling between the qubit states can then be
switched on and off electrically, hence offering optimal work-
ing conditions for different quantum computing tasks such as
spin manipulation (SOI turned on) and readout (SOI turned
off).

After introducing the model in Sec. II, we explicitly
determine the optimal working points and derive effec-
tive singlet-triplet qubit Hamiltonians in Sec. III. When the
system is operated at an optimal point, we find Heff =
−Z (ε)|Sg〉〈Sg| + (X (ε)|Sg〉〈T−| + H.c.), where the ground
state singlet |Sg〉 and the triplet |T−〉 are the logical qubit
states. The quantities Z (ε) and X (ε) can be switched on and
off by adjusting the double-dot energy detuning ε (Fig. 1),
hence offering all-electrical two-axes control over the qubit
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FIG. 1. Electrically tunable two-axes control of a hole singlet-
triplet qubit with logical states |Sg〉 and |T−〉. By varying the
double-dot detuning ε one may set either the coupling X or the en-
ergy separation Z to zero (bottom). The Hamiltonian then generates
rotations around the z and x axes of the Bloch sphere, respectively,
and the magnetic field direction can be fixed at an optimal point to
reduce leakage errors (top). All quantities are displayed in units of
the tunnel element tc ∼ 10 GHz, and their explicit forms in terms of
the model parameters are derived in Sec. III.

at a low-leakage point. Since the axes are orthogonal, any
one-qubit gate can be realized using three rotations [34],
avoiding the more complicated control sequences required for
nonorthogonal axes [35]. We proceed to consider the case of
a strong SOI in Sec. IV and find that many of the desirable
properties described in Sec. III still hold in this case. Finally,
Sec. V provides a conclusion.

II. MODEL HAMILTONIAN

We consider a tunnel-coupled DQD with single particle
tunneling matrix element tc in a regime where the (0,2) singlet
is far detuned. A typical architecture realizing the system
as a planar DQD in a Ge-SiGe heterostructure is shown in
Fig. 2. Allowing for spin-flip tunneling processes induced by
the SOI and an external magnetic field of arbitrary direction,
the Hamiltonian reads [36,37]

H = H0 + HSO + HZ ,

H0 = ε|S20〉〈S20| +
√

2tc(|S〉〈S20| + |S20〉〈S|),
HSO = i

√
2tz|T0〉〈S20| −

∑
±

(ty ± itx )|T±〉〈S20| + H.c., (1)

where ε � 0 is the detuning relative to the (1,1)-(2,0) singlet
crossing and tSO = (tx, ty, tz ) is the spin-orbit vector of the
system. Note that tSO is scaled by a factor 1/

√
2 compared

to Ref. [37] to unburden the notation and lighten the expres-
sions later on. Information about the spin-orbit vector may be
obtained, e.g., via magnetotransport measurements [38,39].
Higher order contributions due to the SOI are possible but
suppressed when the orbital spacing induced by the confine-

FIG. 2. Planar DQD system. Holes confined to the middle layer
of a Ge-SiGe heterostructure are subjected to a double quantum well
potential, thus forming a tunnel-coupled planar DQD. The two hole
spin states are affected by the SOI which induces spin-flip tunneling
processes and dot-dependent g tensors. We apply a magnetic field
B with out-of-plane tilting angle ϑ and in-plane tilting angle ϕ as
measured from the DQD axis x. The singlet detuning ε is determined
by the charging energy U and the detuning between the dots ε̃.

ment potentials is the largest energy scale in the system [40].
Moreover, we neglect spin-orbit terms induced by in-plane
magnetic fields [33] as they are negligible at the magnetic field
strengths (B � 10 mT) considered here. Finally, the Zeeman
Hamiltonian HZ contains anisotropic site-dependent g tensors
which lead to additional coupling terms between singlets and
triplets. In general, our analysis applies whenever the two g
tensors are diagonal in a common eigenbasis. In the following
we take the g tensor in each dot to be diagonal in the basis
defined by the cubic crystal and degenerate in the x-y-plane,
g = diag(gx, gx, gz ). In all the plots in this paper, the g ten-
sor components are taken to have values typical for HHs
in Ge, gL

x = 0.2, gR
x = 0, 3, gL

z = 6.5, and gR
z = 4.5, where

L/R labels the left/right dot. Parametrizing the magnetic field
in spherical coordinates with the x-y-plane as the equatorial
plane and the azimuthal angle ϕ measured from the DQD axis
x, B = B(cos ϑ cos ϕ, cos ϑ sin ϕ, sin ϑ ), the Zeeman Hamil-
tonian has the form

HZ = B sin ϑ

2

[∑
±

±g+
z |T±〉〈T±| + g−

z (|S〉〈T0| + H.c.)

]

+ B cos ϑ

2
√

2

[∑
±

e±iϕ (g+
x |T0〉〈T±| ∓ g−

x |S〉〈T±|) + H.c.

]
,

(2)

where g±
x = gL

x ± gR
x and g±

z = gL
z ± gR

z are the sums and dif-
ferences of the g tensor components in the left and right dot.

The proposed model is rather general and may in prin-
ciple be applied to a wide range of materials. However, the
presence of site-dependent and highly anisotropic g tensors in
combination with a strong SOI is typical for HH states, e.g.,
in the semiconductor Ge. Moreover, the specialization on HH
systems allows us to neglect interactions of the hole spins with
the nuclear spin bath.

A. Dominant basis

Although the SOI and the site dependence of the g tensors
are non-negligible effects in HH systems, the largest energy
scale is still expected to be given by the spin conserving tunnel
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coupling tc and the standard Zeeman terms featuring the sum
of g factors in the dots. The case where the spin-flip tunneling
terms induced by the SOI are of the same order of magnitude
as tc is discussed in Sec. IV. For now we work in the regime
where the dominant part of the Hamiltonian is H as given in
Eq. (1) but for vanishing SOI (tSO = 0) and equal g tensors
(gL = gR). It is diagonal in the states

|Se〉 = sin
�

2
|S〉 + cos

�

2
|S20〉,

|Sg〉 = cos
�

2
|S〉 − sin

�

2
|S20〉,

|T0〉 = fz|T0〉 − fx√
2

∑
ν=±

ν e−νiϕ |Tν〉,

|T±〉 =
∑
ν=±

1 ± ν fz

2
e−νiϕ |Tν〉 ± fx√

2
|T0〉, (3)

where we introduce the orbital hybridization angle � =
arctan(2

√
2tc/ε) for the hybridized singlets and the dimen-

sionless functions fx = g+
x cos ϑ/G+, fz = g+

z sin ϑ/G+ with
the effective sum of g factors,

G+ =
√

(g+
x cos ϑ )2 + (g+

z sin ϑ )2, (4)

for the mixed triplet states. Transforming H into the basis
{|Se〉, |Sg〉, |T0〉, |T+〉, |T−〉} yields a Hamiltonian in which
the ground state singlet |Sg〉 is separated from the triplets
by the exchange energy J = √

ε2/4 + 2t2
c − ε/2, and which

features the relevant singlet triplet mixing terms,

H̃ =

⎛
⎜⎜⎜⎜⎝

ε + J 0 i
√

2M+
0 M+

+ M+
−

0 −J −i
√

2M−
0 −M−

+ −M−
−

−i
√

2M+
0 i

√
2M−

0 0 0 0
M+

− −M−
− 0 0 0

M+
+ −M−

+ 0 0 0

⎞
⎟⎟⎟⎟⎠

+ B

2

⎛
⎜⎜⎜⎝

0 0 G−
− G−

a −G−
a

0 0 G+
− G+

a −G+
a

G−
− G+

− 0 0 0
G−

a G+
a 0 G+ 0

−G−
a −G+

a 0 0 −G+

⎞
⎟⎟⎟⎠, (5)

where X ± = X
√

(1 ± cos �)/2, with X representing all quan-
tities carrying upper indices ±. The matrix elements due to the
SOI are given by

M0 = tz fz + fx(tx cos ϕ + ty sin ϕ),

M± = ±itz fx + 1

2i

∑
ν=±1

(νtx − ity)(1 ± ν fz )eiνϕ, (6)

and the Hermiticity of the Hamiltonian is warranted by M∗
± =

M∓, while the effective two-particle g factors read

G− = 1

G+
(g−

x g+
x cos2 ϑ + g−

z g+
z sin2 ϑ ),

Ga = 1

2
√

2G+
(g+

x g−
z − g−

x g+
z ) sin 2ϑ. (7)

The term Ga arises due to the anisotropy of the g tensors and
is only present when the magnetic field has nonzero in- and
out-of-plane components, ϑ ∈ (0, π/2), i.e., when the field is

not aligned with one of the principal axes of the g tensor. Put
differently, the term is a consequence of nonparallel effective
magnetic fields Bd

i = ∑
j gd

i jB j in the dots d ∈ {L, R}, which
enclose an angle

θd = arctan

(
gd

z

gd
x

tan ϑ

)
(8)

with the equatorial plane. Due to the inverse effect of
increased HH light hole (LH) mixing on the g tensor com-
ponents, i.e., a reduction of the out-of-plane g factor and an
enhancement of the in-plane g factor, one expects gL

x > gR
x for

gL
z < gR

z and vice versa. Hence the anisotropy term Ga can be
quite sizable when the g tensors are different. For isotropic g
tensors one has G+ = g+, G− = g−, and Ga = 0.

It is worth pointing out that the energies of the dominant
eigenstates and the couplings between these states obtained
by diagonalization of the dominant part of the Hamiltonian
and the transformation of the nondominant part into this basis
agree with those obtained by naively choosing the global
quantization axis along the sum of effective magnetic fields
BL + BR as detailed in Appendix A. This result is nontrivial
as the quantization axis is fixed to be out of plane in two
dimensional hole systems as a direct consequence of the spin-
momentum locking in the Luttinger-Kohn Hamiltonian and
the position-momentum uncertainty relation [30].

B. Symmetries of the system

The system possesses two symmetries which are not ob-
vious from the Hamiltonian (5): time-reversal symmetry in
combination with the inversion of the magnetic field and sym-
metry under the exchange of the two dots.

First we note that, under the combined inversion of
time, t → −t , and the magnetic field, B → −B (i.e., ϑ →
−ϑ, ϕ → ϕ + π mod 2π ), one has |T0〉 → −|T0〉 and
|T±〉 → |T±〉. Since furthermore iM0 → iM0 and M± →
−M±, the total Hamiltonian (5) is invariant, in particular for
B = 0, where it is time-reversal invariant.

Secondly, we point out a symmetry under the exchange
of the two dots. There is a peculiarity arising due to site-
dependent anisotropic g tensors. When exchanging the g
tensors, ĝL ↔ ĝR, one finds G− → −G− and Ga → −Ga,
which amounts to a relative minus in the coupling terms
between the singlets and the triplets. As a consequence, the
different g tensors distinguish the left and right dot in a way
that can be measured. To understand this observation, one
must work in the enlarged six-dimensional Hilbert space, now
containing both singlets with double dot occupancy, |S02〉 and
|S20〉, with energies U + ε̃ and U − ε̃, respectively, with U be-
ing the charging energy and ε̃ the energy detuning between the
dots in the one particle picture. Note that the spin conserving
tunnel matrix element has the same sign for tunneling events
from |S〉 to both |S02〉 and |S20〉, while the spin-orbit matrix el-
ements satisfy 〈S02|HSO|Tν〉 = −〈S20|HSO|Tν〉 for ν ∈ {0,±}.
Consequently, the Hamiltonian is invariant with respect to
exchanging the g tensors if we furthermore invert the inter-
dot detuning ε̃ and relabel the states |S20〉 ↔ |S02〉 [41]. The
combination of these transformations amounts to a complete
reversal of the system architecture (Fig. 3). Experimentally,
the change of the effective two-particle g factors when ex-
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FIG. 3. Symmetry transformation of the system that exchanges
the left and right dot. The system is invariant when the left and
right g tensors are exchanged, the interdot detuning ε̃ is inverted, and
|S02〉 instead of |S20〉 is used as the measurement point M. Up to a
constant and hence physically irrelevant energy, the DQD setup can
be regarded as being mirrored about the dashed blue line.

changing the one-particle g tensors reflects the fact that one
arbitrarily chooses one site as the (doubly occupied) measure-
ment point by choosing the sign of the interdot detuning, e.g.,
|S20〉 for ε̃ > 0 in this work.

III. SPIN-ORBIT SWITCH

A spin-orbit switch is present in a system if the SOI can
be turned on and off by changing external control parameters
such as gate voltages or an applied magnetic field. When
operating such a system one may utilize the SOI for one
application, e.g., for spin qubit manipulation in the context of
spintronics, while one may choose to turn it off for another,
e.g., for the purpose of spin readout or for assessing the
effect of (residual) nuclear spins in the system. Therefore, a
spin-orbit switch is a highly desirable property in platforms
used for quantum information processing. Recently, this func-
tionality was reported for holes in a Ge/silicon core/shell
nanowire [42].

The logical singlet-triplet qubit space is spanned by the
ground state singlet |Sg〉 and one of the hybridized triplet states
|Tν〉. Hence the relevant couplings are

Dν ≡ 〈Sg|H̃ |Tν〉, ν ∈ {0,±}. (9)

In our approach the mixing terms are obtained by an exact
basis transformation, and there has been no approximation
made so far. Whether the actual physical system is accurately
described by the expressions (9) depends on the validity of the
choice of basis, the requirement being that the diagonal terms
in the Hamiltonian matrix (5) dominate over the off-diagonal
terms. In Fig. 4 we compare the analytical expression for
D− to the exact result obtained by numerical diagonalization
of the Hamiltonian (1). We find excellent agreement, justify-
ing our choice of basis even for relatively large out-of-plane
g factor differences (g−

z ∼ 2) and spin-flip tunneling terms
(tSO ∼ 0.05tc). When the SOI becomes even larger, a differ-
ent choice of basis can be more appropriate (Sec. IV). Note
that, when a Schrieffer-Wolff transformation is performed to
decouple the excited singlet |Se〉 from the four dimensional
low-energy space, the couplings Dν are unchanged to leading
order in the small quantities |tSO|/	E , Bg−

x/z/	E , where 	E
is the energy separation between the low-lying states and |Se〉,
and |tSO|, Bg−

x/z are the mixing terms. Finally, we note that
couplings of the form (9) may be picked up experimentally
by measuring the singlet return probability in combination

FIG. 4. Validity of the model. We show a comparison between
the analytical result for the coupling |D−| defined in Eq. (9) [solid
lines, Eq. (14)] and the exact result obtained by numerical diagonal-
ization of the Hamiltonian (1) (squares) for two different spin-orbit
vectors as indicated in the figure. We set B = 0.1tc, ϕ = 0 and the
detuning is chosen such that the eigenstates of the dominant Hamil-
tonian |Sg〉 and |T−〉 align in energy, ε = [8t2

c − (BG+)2]/2BG+.
Numerically, the coupling is given by half the minimal energy differ-
ence between the two low-lying eigenstates of the full Hamiltonian
as sketched in the lower right inset.

with Landau-Zener schemes [43]. Since all four low-energy
states interact, it can be necessary to perform an additional
Schrieffer-Wolff transformation to obtain an effective two-
level system for which the standard Landau-Zener formalism
can be applied.

As can be seen from Eq. (5), there are two contributions
to Dν as defined in Eq. (9): the SOI via the terms M0 (M±)
and site-dependent g tensors via G− (Ga) for D0 (D±). As
we will see, these terms may counteract for certain magnetic
field angles and detunings such that Dν = 0, which effectively
corresponds to a switched off SOI.

A. Longitudinal coupling

We first consider the coupling between the ground state
singlet |Sg〉 and the unpolarized (longitudinal) triplet |T0〉.
Introducing the sums and differences of effective magnetic
fields for diagonal g tensors in both dots, B±

j = g±
j B j , we may

write

D0 = w · B+
n , (10)

where B+
n = B+/|B+| with |B+| = BG+ the normalized

version of B+ and

w = i
√

2 sin

(
�

2

)
tSO + 1

2
cos

(
�

2

)
B−. (11)

Note that the scalar product in Eq. (10) is defined such that
complex conjugation is performed in the first entry, a · b =∑

j a∗
j b j . Since the spin-orbit vector is real, the vector w is

nonzero for nonvanishing tSO and B−, and we have D0 = 0
only when the vectors B+ and w are orthogonal.
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FIG. 5. Singlet-triplet coupling. (a) The coupling D0 between the
ground-state singlet |Sg〉 and the unpolarized triplet |T0〉 as a function
of the magnitude of the magnetic field B and the tilting angle ϑ

at ε = 50tc. (b) The coupling D− between the ground-state singlet
|Sg〉 and the polarized triplet |T−〉 as a function of the detuning ε

and the tilting angle ϑ at B = 0.1tc. One observes zeros for different
combinations of the two variables as indicated by the dashed white
lines which are drawn according to (a) Eq. (12) and (b) Eq. (17). We
set ϕ = −π/4, tSO = (0.05, 0.05, 0)tc, and normalize both couplings
by their maximum values |Dm

0 | and |Dm
−| in the regime displayed.

A necessary condition for D0 = 0 is G− = 0 and hence

tan ϑ = ±
√

−g−
x g+

x

g−
z g+

z

. (12)

Note that we expect sgn(g−
x ) �= sgn(g−

z ) as the out-of-plane g
factor decreases with stronger HH-LH mixing, while the in-
plane g factor increases. Hence the radicand is positive and a
real solution to Eq. (12) exists. One then finds the additional
conditions for the azimuthal angle:

tx
tz

cos ϕ + ty
tz

sin ϕ = ±
√

−g−
x g+

z

g−
z g+

x

, tz �= 0,

tan ϕ = − tx
ty

, tz = 0. (13)

Hence the line of zero coupling is independent of the magnetic
field strength and the detuning. A plot of the coupling for the
case tz = 0 is shown in Fig. 5(a).

B. Transverse coupling

We now turn to the couplings between the ground state
singlet |Sg〉 and the polarized (transverse) triplets |T±〉. A
classification of magnetic degeneracy points in systems with
site-dependent g tensors and SOI was reported in Ref. [44]. At
these degeneracy points the ground state becomes degenerate
in energy, corresponding to a vanishing coupling between the
two lowest lying states, D− = 0 in our case. In this section,
we investigate how such points can be controlled by the model
parameters, and additionally investigate the zeros of the other
transverse coupling D+. Using the quantities introduced in
Eqs. (10) and (11), one has

D± = ± 1√
2

(w × B+
n ) · v±, (14)

where v± = (− sin ϕ, cos ϕ,∓i/ fx ). In contrast to the scalar
product, the cross product is defined without complex
conjugation, (a × b)k = ∑

i, j εi jkaib j , with the totally anti-
symmetric tensor εi jk . Zero coupling is achieved for

BGa[ϑ (ϕ)] = ±2(tx sin ϕ − ty cos ϕ) tan
�

2
, (15)

where ± corresponds to D± and the polar angle is expressed
in terms of the azimuthal angle,

tz cot(ϑ ) = g+
z

g+
x

(tx cos ϕ + ty sin ϕ). (16)

For a given spin-orbit vector tSO Eq. (15) can be used to
determine the values of B, ϕ, and � for which the coupling
vanishes. By substituting back into Eq. (16) one obtains the
corresponding polar angle ϑ .

It is instructive to look at some special cases for the spin-
orbit vector. If tSO = (0, 0, tz ), one has ϑ = π/2 by Eq. (16)
and hence Eq. (15) is satisfied independently of B, ϕ, and �.
On the other hand, if tSO = (tx, ty, 0), there are two configura-
tions that lead to zero coupling. (i) If Eq. (16) is satisfied by
setting ϑ = 0, Eq. (15) requires tan ϕ = ty/tx, since � �= 0 at
finite detuning. (ii) Equation (16) may also be satisfied by set-
ting tan ϕ = −tx/ty, which is remarkably the same azimuthal
angle as required by Eq. (13) for the longitudinal coupling D0

to vanish. Equation (15) then yields

BGa(ϑ ) = ∓2tSO tan
�

2
= ∓ 4

√
2tctSO

ε + √
ε2 + 8t2

c

, (17)

where tSO =
√

t2
x + t2

y . The purely in-plane form of the spin-

orbit vector is of particular interest as it is predicted, e.g., for
HHs in planar Ge due to the cubic Rashba SOI [9] and for
holes in Ge/Si nanowires [42]. Note that, in contrast to the
longitudinal case discussed above, the spin-orbit switch can be
operated electrically via the parameter � = �(ε), suggesting
the possibility of fast and accurate control over the SOI. We
display the form of the coupling for exemplary values in
Fig. 5(b).

On the grounds of symmetry considerations, it is in prin-
ciple possible that the in-plane degeneracy of the g tensor in
HH systems can be lifted if the confinement potential in the
dots is elliptical. The broken in-plane symmetry allows for
HH-LH induced corrections to the g factors yielding gd

x �= gd
y .

However, this will leave the above results unchanged if the
magnetic field is applied along one of the principal axes of the
elliptical confinement potential, ϕ = 0 or ϕ = π/2.

Finally, we point out another application of our results,
which is the reverse argumentation of before. By studying
the avoided crossing between the ground state singlet and
one of the triplet states, one may obtain information about
the SOI in the system if the g tensors are known, e.g., from
magnetotransport measurements [45,46]. The experimental
parameters used when the crossing vanishes, e.g., the detuning
and magnetic field settings, allow for a determination of the
spin-orbit vector. If the g tensors and the spin-orbit vector
are known, one may estimate the effect of the nuclear spin
bath. Similar schemes have been proposed for systems with
equal and isotropic g tensors but non-negligible hyperfine
interactions [47] and in-plane magnetic fields [48].
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C. Effective qubit Hamiltonians

Having analyzed the form of the longitudinal and trans-
verse coupling terms, we proceed to study two possible qubit
realizations that can benefit from the dependence of the
couplings on the magnetic field direction and the detuning
described above. First, we consider a Sg-T0 qubit, i.e., a qubit
defined by the ground state singlet |Sg〉 and the unpolarized
mixed triplet |T0〉. By projecting the total Hamiltonian (5)
onto the logical basis, we find the effective qubit Hamiltonian

HSgT0 = −J|Sg〉〈Sg| + (D0|Sg〉〈T0| + H.c.). (18)

Since the logical subspace is not ideally decoupled, correc-
tions due to mixing with states outside the qubit space arise.
Computing these corrections by means of a Schrieffer-Wolff
transformation, however, we find that they are negligible as
long as |D±|  BG+ (Appendix B). Moreover, the quality of
the approximation increases and leakage errors can be avoided
by fixing the magnetic field direction such that D− = 0 [cf.
Eqs. (15) and (16)]. The coupling D0 can then be switched
on and off via electrical g factor engineering [49–51] [cf.
Eq. (12)] or by controlling the spin-flip tunneling elements [cf.
Eq. (13)], which are expected to depend on the gate voltages
through the applied potential [9].

More direct control via the detuning ε is possible by defin-
ing the qubit via the two lowest lying states |Sg〉 and |T−〉.
For |D0|, |D+|  BG+ the qubit subspace is well isolated (cf.
Fig. 4) and, by again projecting the total Hamiltonian (5) onto
the logical basis, we obtain the effective qubit Hamiltonian

HSgT− =
[BG+

2
− J

]
|Sg〉〈Sg| + (D−|Sg〉〈T−| + H.c.), (19)

up to an irrelevant total shift in energy. For a realistic form of
the SOI with tSO = (tx, ty, 0) as discussed above, one may set
D0 = 0 by fixing the magnetic field such that tan ϕ = −tx/ty
and ϑ takes the value specified in Eq. (12), resulting in a
strong suppression of leakage errors [see Appendix B and
Fig. 7(c) therein]. By Eq. (17), one then has control over the
coupling D−, which is a purely real quantity at the optimal
value of ϕ, by varying the detuning ε; in particular, the cou-
pling can be switched on and off electrically. This supplies us
with an electrically tunable two-axes control over the qubit.
When the detuning is chosen such that BG+ = 2J (D− = 0),
the Hamiltonian generates x rotations (z rotations), and the
specific values for εx (εz) can be obtained from Eq. (5) and
Eq. (17), respectively,

εx = 8t2
c − (BG+)2

2BG+
, (20)

εz = tc
tSO

4t2
SO − (BGa)2

√
2BGa

. (21)

We display the dependence of the elements in the Sg-T−
qubit Hamiltonian (19) on the detuning in a region including
εx and εz in Fig. 1. In the same figure we show the Bloch
sphere corresponding to the effective two-level system and
the orthogonal rotation axes obtained for the two different
values of the detuning. We fix the magnetic field at an optimal
point by choosing ϕ and ϑ such that D0 = 0 [cf. Eqs. (12)
and (13)], identify Z (ε) = J − BG+/2 and X (ε) = D−, and
set B = 0.1tc and tSO = (0.05, 0.05, 0)tc. Note that even at

the relatively low magnetic field B = 0.1tc ∼ 10 mT leakage
to the only relevant coupled state T+ is negligible (Appendix
B). At this point, one has Z (εz ) ≈ 0.06tc and X (εx ) = 0.003tc,
allowing for Rabi z rotations in the GHz range and x rotations
at tens of MHz. Hence it is feasible to operate the system
below the critical field of conventional superconductors such
as aluminum, suggesting that all-electrically controllable, fast
Sg-T− qubits can be coupled using superconducting transmis-
sion lines [52,53].

IV. STRONG SPIN-ORBIT INTERACTION

For systems where the elements of the spin-orbit vector are
comparable in magnitude to the tunnel coupling tc, the states
defined in Eq. (3) will no longer provide an appropriate basis.
Moreover, since low magnetic fields are attractive considering
integration of the qubit with superconducting resonators, it
is natural to study the regime BG+  |tSO| ≡ tSO. One may
then exactly diagonalize the dominant part of the Hamiltonian
H0 + HSO and treat the Zeeman term HZ as a small perturba-
tion. We find three degenerate states |T̃0〉, |T̃+〉, |T̃−〉 mixing
all (1,1) states with zero energy and two states |±〉 that also
contain an admixture of the (2,0) singlet with energies

E± = ε

2
±

√
ε2

4
+ 2t2

c + 2t2
SO. (22)

The exact form of the eigenstates can be found in Appendix
C. We may identify the states |+〉 ↔ |Se〉 and |−〉 ↔ |Sg〉 in
the sense that they will transition into each other for tSO → 0.
At zero magnetic field the states |T̃ν〉 with ν ∈ {0,±} form
an eigenspace with zero energy. Looking at their behavior at
finite field as tSO tends to zero we may identify |T̃ν〉 ↔ |Tν〉.
Hence, if we are interested in singlet-triplet–like mixing, the
relevant couplings are induced by the Zeeman term,

Cν ≡ 〈−|HZ |T̃ν〉 = B · fν (g±
x , g±

z , tx, ty, tz ), (23)

where ν ∈ {0,±} and the functions fν contain all infor-
mation about anisotropic site-dependent g tensors and the
SOI. As a consequence, the nontrivial zeros of Cν are de-
termined by the orientation of the magnetic field alone. We
note that as in Sec. III the expressions are unchanged when
we decouple the energetically high lying state |+〉 via a
Schrieffer-Wolff transformation to leading order in BG+/	E ,
where the denominator denotes the energy separation 	E ∼√

ε2 + 8t2
c + 8t2

SO between the states in the subspaces and
BG+ is the relevant scale of the mixing terms.

Clearly, in an eigenbasis of H0 + HSO, the SOI does not
amount to a coupling of the eigenstates. One may then control
the couplings simply by tuning the magnitude of the magnetic
field. However, for gate operation it is desirable to have the
coupling between the logical qubit states (e.g., C0 turned on),
while all other couplings should be absent to avoid leakage
errors. This can be achieved by controlling the orientation of
the magnetic field relative to the spin-orbit vector. The explicit
form of the couplings Cν is easily computed from Eq. (23) but
lengthy, and we restrict our attention to determining the points
where Cν = 0.
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FIG. 6. Coupling C0 as a function of the magnetic field direc-
tion. We display a spherical plot with inset x-y plane (left) and the
corresponding planar plot as a function of the polar angle ϑ and the
azimuthal angle ϕ (right). The line of zero coupling (solid black line)
is drawn according to Eq. (24). We set ε = 100tc, tSO = (tx, ty, tz ) =
(2, 2, 1)tc, and normalize the coupling by its maximum value |Cm

0 | in
the regime under consideration.

One finds C0 = 0 for any azimuthal angle ϕ as long as the
polar angle is chosen such that

tan ϑ = g+
x tytc − g−

x txtz
g−

z

(
t2
c + t2

z

) cos ϕ − g+
x txtc + g−

x tytz
g−

z

(
t2
c + t2

z

) sin ϕ. (24)

We display the absolute value of C0 and its dependence on the
magnetic field direction for exemplary values of the spin-orbit
vector in Fig. 6. Moreover, we find C+ = 0 if the following
conditions are satisfied:

g+
z tx

(
t2
c + t2

z

)
sin ϑ = ξ1(ϕ) cos ϑ,

ξ1(ϕ) = [
g−

x tctxty + g+
x tz

(
t2
c + t2

y + t2
z

)]
cos ϕ

+ [
g−

x tc
(
t2
c + t2

y + t2
z

) − g+
x txtytz

]
sin ϕ,

g+
z ty

(
t2
c + t2

z

)
sin ϑ = ξ2(ϕ) cos ϑ,

ξ2(ϕ) = −[
g+

x txtytz + g−
x tc

(
t2
c + t2

x + t2
z

)]
cos ϕ

+ [
g+

x tz
(
t2
c + t2

x + t2
z

) − g−
x txtytc

]
sin ϕ,

(25)

and C− = 0 for

g+
z tx sin ϑ = (g+

x tz cos ϕ + g−
x tc sin ϕ) cos ϑ,

g+
z ty sin ϑ = (g+

x tz sin ϕ − g−
x tc cos ϕ) cos ϑ. (26)

For a given spin-orbit vector, the conditions (24)–(26) can
easily be rearranged to obtain the angles ϑ and ϕ solely in
terms of the tunnel coupling, the spin-orbit vector, and the g
factors.

Finally, we consider the special case of an in-plane spin-
orbit vector tSO = (tx, ty, 0) as in Sec. III. We encode the qubit
in the states |−〉 and |T̃0〉, which are split by the modified
exchange energy,

J̃ =
√

ε2

4
+ 2t2

c + 2t2
SO − ε

2
> 0, (27)

at zero magnetic field. As can be seen from Eqs. (25) and (26),
we may set C+ = C− = 0 by choosing

ϕ = − arctan

(
tx
ty

)
, ϑ = − arctan

(
g−

x tc
g+

z tSO

)
. (28)

For these values, one has C0 �= 0 and so the qubit ground state
|−〉 is completely decoupled from the states outside the logical
subspace but coupled to the excited qubit state; the strength
of the coupling can be controlled by the magnitude of the
magnetic field B. Of course, the coupling cannot be made
arbitrarily large in this way since the condition BG+  tSO

must be met to ensure that the approach presented in this
section can accurately describe the physical system.

V. CONCLUSION

Starting from a general phenomenological model for spins
confined in a DQD system subject to a magnetic field, we
show the existence of magnetic field strengths and directions
where the coupling between the ground state singlet and the
triplet states vanishes. The effect is due to canceling contribu-
tions from the SOI and anisotropic site-dependent g tensors,
both of which are characteristic features of semiconductor
hole systems. With the magnetic field fixed at one such op-
timal point one may avoid leakage to states outside the logical
subspace and at the same time operate the qubit all electri-
cally. In particular, we demonstrate that for realistic system
parameters an electrical spin-orbit switch can be implemented
and controlled by the detuning, allowing for highly tunable
two-axes control in hole singlet-triplet qubits. This property
can be used in quantum information processing units built
from singlet-triplet qubits to tune into regimes best suited for
the tasks of readout and initialization (low coupling) as well
as qubit manipulation (high coupling). Since fast operations at
optimal points are feasible at low magnetic fields (∼10 mT),
different singlet-triplet qubits can be interconnected using su-
perconducting resonators.

Moreover, we study systems with a strong SOI operated at
low magnetic fields, and demonstrate that for a realistic form
of the spin-orbit vector there exists a particular direction of the
magnetic field where the coupling between the qubit ground
state and states outside the logical subspace can be set to zero.
At this optimal point the qubit ground state is protected from
leakage errors, and the strength of the coupling to the excited
qubit state can be tuned by the magnitude of the magnetic
field.

Future research may focus on the precise form of the SOI,
e.g., in two-dimensional Ge HH systems, to include effects
such as a magnetic field dependence of the spin-orbit elements
as well as spin-orbit terms induced by magnetic fields which
are not time reversal invariant and thus not described by the
model used in this work.
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FIG. 7. Leakage in hole singlet-triplet qubits. (a) Sg-T0 qubit. Leakage |	+| to the state |T+〉 as a function of the magnetic field strength
and its polar angle at the optimal point 	− = 0. One finds |	+| < 0.001 for all ϑ outside the region shown. The magnetic field direction can be
fixed to a region of low leakage (blue) by fixing the detuning [Eq. (20)]. (b),(c) Sg-T− qubit. (b) Leakage |δ+| to the state |T+〉 as a function of
the magnetic field strength and the detuning at an optimal point where D0 = 0. One finds |δ+| < 0.002 even for magnetic fields B as low as 0.1tc.
(c) The total leakage |δ0 + δ+| to the states |T0〉 and |T+〉 at ε = 50tc in a region around the optimal points at ϑ = ± arctan

√−g−
x g+

x /g−
z g+

z

(dashed white lines). Sizeable leakage errors arise when the magnetic field orientation is not chosen such that D0 = 0. The leakage is even
larger for angles outside the region shown. We set tSO = (0.05, 0.05, 0)tc and ϕ = −π/4.

APPENDIX A: FIXING THE QUANTIZATION AXIS

In this Appendix we relate the results of the main text to
the case where one may choose the orientation of the quanti-
zation axis freely. Defining the spin operators and the effective
magnetic field in dot d as Sd

i = σ d
i /2 and Bd

i = ∑
j gd

i jB j ,
respectively, one finds for the Zeeman Hamiltonian

HZ = 1
2B

+ · (SL + SR) + 1
2B

− · (SL − SR), (A1)

where we define B± = BL ± BR. Choosing the quantization
axis along B+ and denoting this direction by x3, we find by
decomposing B− into components parallel and perpendicular
to B+

HZ = BG+
2

(
SL

3 + SR
3

) + BG−
2

(
SL

3 − SR
3

)
+ BGa√

2

[
cos ξ

(
SL

1 − SR
1

) + sin ξ
(
SL

2 − SR
2

)]
, (A2)

where the effective g factors are as given in Eq. (7) and Si is the
spin operator along xi, i = 1, 2, 3. The angle ξ only amounts
to an irrelevant phase and may thus be set to zero. One can see
from the Hamiltonian (A2) that the hybridized triplets (3) are
the same as those obtained by choosing the quantization axis
along the sum of effective magnetic fields.

While the form of the part of the Hamiltonian describing
the detuning and tunneling between the singlets is invariant
under a change of the quantization axis, the part of the Hamil-
tonian describing the SOI may be transformed into the basis
defined by the above choice of the quantization axis, and we
recover the matrix elements in Eq. (6) after performing an
additional transformation into the basis of hybridized singlets
[cf. Eq. (3)].

APPENDIX B: EFFECTIVE QUBIT
HAMILTONIANS AND LEAKAGE

In this Appendix we quantify our claim of Sec. III and
show that the effective qubit Hamiltonians shown in Eqs. (18)
and (19) are accurate, since leakage to states outside the
logical subspace is suppressed. For this purpose we decouple
the qubit space from the remaining states in the (1,1) charge
configuration by means of a Schrieffer-Wolff transformation.

For the Hamiltonian in Eq. (18), the logical subspace is
spanned by the states |Sg〉 and |T0〉. Upon application of a
Schrieffer-Wolff transformation, these states will be changed
to the perturbed states |Seff

g 〉 and |Teff
0 〉, and we find to leading

order

H eff
SgT0

= (−J + BG+[	+ − 	−])
∣∣Seff

g

〉〈
Seff

g

∣∣
+ (

D0
[
1 + 	+ + 	−

]∣∣Seff
g

〉〈
Teff

0

∣∣ + H.c.
)
, (B1)

where

	± = 2|D±|2
4|D0|2 ∓ BG+(2J ± BG+)

. (B2)

At 	+ = 	− = 0 we recover Eq. (18) of the main text. Work-
ing at an optimal point, we can achieve 	− = 0 by fixing the
direction of the magnetic field or the detuning according to
Eqs. (15) and (16). The term 	+ then determines the remain-
ing leakage out of the original logical subspace {|Sg〉, |T0〉} to
the state |T+〉.

An analogous analysis applies for the case of the Sg-T−
qubit Hamiltonian (19), yielding

H eff
SgT− =

(BG+
2

[1 + 2δ0 + 4δ+] − J
)∣∣Seff

g

〉〈
Seff

g

∣∣
+ (

D−[1 + δ0 + δ+]
∣∣Seff

g

〉〈
Teff

−
∣∣ + H.c.

)
, (B3)
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where

δ0 = |D0|2
2|D−|2 − BG+J

, (B4)

δ+ = |D+|2
2|D−|2 − BG+(BG+ + 2J )

. (B5)

One may achieve δ0 = 0 by choosing the magnetic field ori-
entation according to Eqs. (12) and (13). At this point the term
δ+ determines the residual leakage out of the original logical
subspace {|Sg〉, |T−〉} to the state |T+〉.

As can be seen from Fig. 7, the leakage for both qubits dis-
cussed above is well below one percent for realistic parameter

settings. For the Sg-T0 qubit, the detuning can be chosen such
that |	+| < 0.001. On the other hand, for the Sg-T− qubit, one
has |δ+| < 0.002 at B = 0.1tc for the detuning values required
for gate operation (cf. Fig. 1). Figure 7(c) highlights the strong
suppression of leakage in the Sg-T− qubit at an optimal point
with D0 = 0, emphasizing the importance of operating the
singlet-triplet qubit at the optimal points reported in this paper.

APPENDIX C: EIGENBASIS OF THE ORBITAL AND
SPIN-ORBIT HAMILTONIAN

The Hamiltonian H0 + HSO given in Eq. (1) of the main
text may be diagonalized exactly, yielding the orthonormal
eigenstates

|T̃0〉 = 1√
t2
c + t2

z

(itz|S〉 + tc|T0〉), (C1)

|T̃+〉 = 1√
2t2

c

(
t2
c + t2

z

)(
2t2

c + 2t2
z + t2

x + t2
y

) [√
2(ty + itx )t2

c |S〉 − i
√

2(ty + itx )tctz|T0〉 + 2tc
(
t2
c + t2

z

)|T+〉], (C2)

|T̃−〉 =
√

8(ty − itx )tc
(
t2
c + t2

z

)
[tc|S〉 − itz|T0〉] − 2tc

(
t2
c + t2

z

)
(ty − itx )2|T+〉 + 2tc

(
t2
c + t2

z

)(
2t2

c + 2t2
z + t2

x + t2
y

)|T−〉√
8t2

c

(
t2
c + t2

z

)2(
t2
c + t2

SO

)(
2t2

c + 2t2
z + t2

x + t2
y

) , (C3)

|±〉 = 1√
4
(
t2
c + t2

SO

) + εE±
[iE±|S20〉 +

√
2itc|S〉 +

√
2tz|T0〉 − (tx + ity)|T+〉 + (tx − ity)|T−〉], (C4)

where tSO = |tSO|. The states |T̃0〉, |T̃+〉, |T̃−〉 are degenerate with zero energy and have been orthogonalized by hand, while the
states |±〉 have energies

E± = ε

2
±

√
ε2

4
+ 2t2

c + 2t2
SO. (C5)
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