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Crosstalk analysis for single-qubit and two-qubit gates in spin qubit arrays

Irina Heinz * and Guido Burkard †

Department of Physics, University of Konstanz, D-78457 Konstanz, Germany

(Received 21 May 2021; revised 30 June 2021; accepted 9 July 2021; published 20 July 2021)

Scaling up spin qubit systems requires high-fidelity single-qubit and two-qubit gates. Gate fidelities exceeding
98% were already demonstrated in silicon-based single and double quantum dots, whereas for the realization
of larger qubit arrays, crosstalk effects on neighboring qubits must be taken into account. We analyze qubit
fidelities impacted by crosstalk when performing single-qubit and two-qubit operations on neighbor qubits with
a simple Heisenberg model. Furthermore, we propose conditions for driving fields to robustly synchronize Rabi
oscillations and avoid crosstalk effects. In our analysis, we also consider crosstalk with two neighbors and show
that double synchronization leads to a restricted choice for the driving field strength, exchange interaction, and
thus gate time. Considering realistic experimental conditions, we propose a set of parameter values to perform a
nearly crosstalk-free CNOT gate and so open up the pathway to scalable quantum computing devices.
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I. INTRODUCTION

Spin qubits [1] in silicon quantum dots [2] are a promising
candidate to realize large scale quantum computers [3]. Due to
the dilute nuclear spin environment and weak spin-orbit cou-
pling, silicon enables long coherence times and high-fidelity
spin manipulation [4]. Single-qubit gates can be implemented
via electric dipole spin resonance (EDSR) by modulating elec-
trostatic gate voltages causing motion of the dot electrons.
Two-qubit gates additionally make use of exchange interac-
tions between neighboring electron spins [5–9] operating at a
symmetric operation point (“sweet spot”) to suppress charge
noise to first order [10–12]. Dephasing effects can be reduced
through a large energy splitting due to a strong magnetic field
gradient [13] realized by a micromagnet [14,15].

High-fidelity CNOT gate implementations have already
been proposed and demonstrated in a Si/SiGe heterostruc-
ture double quantum dot architecture [8,16]. Nevertheless,
scalable spin qubit platforms [17,18] suffer from unwanted
interactions of qubits with the environment and fluctuations
of interacting fields yielding crosstalk, dephasing, and charge
noise, which represent challenges for experimental realiza-
tion. Hence, a better understanding of the underlying effects
is crucial for error prevention and thus high-fidelity perfor-
mance of gates within qubit arrays. In this paper, we focus
on crosstalk effects of single-qubit and two-qubit gates on
neighboring qubits induced, e.g., by capacitive coupling be-
tween gates, which can decrease the fidelity by several percent
[19]. Here, we concentrate on crosstalk and disregard pure
gate errors affecting operating qubits, which have been studied
extensively [6,10,19].

This paper is organized as follows. For our description,
we consider a Heisenberg spin model in Sec. II. On this
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basis, we quantify crosstalk in terms of neighboring qubit
fidelity in Sec. III and address the responsible values to reduce
crosstalk errors with simple synchronizations in Sec. IV. For
single-qubit rotations around the y axis, we also consider
second-neighbor and next-nearest-neighbor coupling leading
to off-resonant Rabi oscillations, which also occur in sys-
tems driven with global striplines [20,21], and give a possible
cancellation condition for unwanted rotations. Similarly, we
suggest a double synchronization and a thoughtful choice of
values for EDSR driving and exchange interaction strengths
to implement mostly crosstalk-free CNOT gates in spin qubit
arrays in Sec. IV B. In Sec. V, we determine the crosstalk
of simultaneously driven single-qubit operations which are
applied in quantum algorithms and give conditions to max-
imize the overall fidelity. Finally, to evaluate the robustness
of synchronizing Rabi frequencies, we analyze the impact of
charge noise on the fidelity in Sec. VI.

II. THEORETICAL MODEL

For our analysis, we consider a gate defined linear quantum
dot array operated in the (1, 1, . . .) charge regime, where
the exchange interaction between two spins can be tuned by
middle barrier gates, such as in Refs. [16] and [8] (Fig. 1).
Neglecting excited valley states and spin-orbit coupling, the
system can be described theoretically by the Heisenberg
Hamiltonian,

H =
∑
〈i, j〉

Ji j (t )

(
Si · S j − 1

4

)
+

∑
i

Si · Bi, (1)

where Ji j is the tunable exchange interaction between nearest-
neighbor spins Si and S j , denoted by 〈i, j〉, required for
two-qubit operations, and Bi = (0, By,i(t ), Bz,i ) is the exter-
nal magnetic field at the position of spin Si. Magnetic fields
are represented in energy units throughout this paper, i.e.,
Bphysical = B/gμB, and we furthermore set h̄ = 1. The total
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FIG. 1. Schematic setup for a gate defined linear array of three
quantum dots inside a large homogeneous magnetic field (not shown)
and a magnetic gradient field as, e.g., induced by a micromagnet.
Each dot is occupied with an electron representing a qubit with
distinguishable spin resonance frequencies enabled by the gradient
∂Bz/∂x. Modulations of gate voltages G1 and G2 shift the respective
electrons in the z direction along the gradient ∂By/∂z such that an
effective oscillating magnetic field is generated. This also leads to
crosstalk on a neighboring qubit at gate G3. Exchange interaction J
between two spins is controlled by electrostatic voltages at the mid-
dle barrier gates B1 and B2 and is required for two-qubit operations.

magnetic field consists of a large homogeneous field and a
field gradient in the z direction along the x axis (see Fig. 1),
e.g., caused by a micromagnet, Bz,i = Bz + bz,i, allowing one
to individually address single spins, and a small field gra-
dient, such as a time-dependent EDSR driving field in the
y direction, By,i(t ) = By0,i + By1,i cos(ωt + θ ). The latter in
general can describe ESR or EDSR, where the effective mag-
netic driving strength for EDSR is proportional to the electric
field depending on the device architecture, natural or artifi-
cial spin-orbit coupling mechanism, and applied gate voltage
[22,23]. In the rotating frame H̃ (t ) = R†HR + iṘ†R, with R =
exp(−iωt

∑
i Si ), we make the rotating wave approximation

(RWA), which results in resonant and off-resonant Rabi terms.
To evaluate the crosstalk of single-qubit and two-qubit gates
on the neighboring qubit, we calculate the fidelity [24],

F = d + |Tr[U †
idealUactual]|2

d (d + 1)
, (2)

where d is the dimension of the Hilbert space, Uideal is the
desired qubit operation, which in the case of crosstalk would
be 1 for the neighboring qubits, and Uactual is the actual oper-
ation containing unwanted off-resonant Rabi oscillations with
a detuned Rabi frequency,

�̃ =
√

�2 + δω2
z . (3)

Here, � denotes the resonant Rabi frequency and δωz is the
detuning between driving and resonance frequencies.

III. CROSSTALK ANALYSIS

In the following, we always consider a gate performed on
qubit 1 (1 and 2) for single-qubit (two-qubit) operations and
their corresponding crosstalk on the nearest-neighbor qubit
2 (3) in the form of an unwanted magnetic driving field on
the neighboring qubit, which for EDSR can be capacitively
induced [25,26] by the actual driving field By1,1 (By1,2) applied
on the corresponding gate [27].

z

yx

(a) (b)

FIG. 2. Fidelity of neighbor qubit 2 remaining in its state
while driving a Y gate on qubit 1 at resonance frequency Bz,1 =
(2π )18.493 GHz assuming α = 0.4. (a) Off-resonant Rabi oscil-
lations of qubit 2 in a Bloch sphere representation. (b) Fidelity
depending on driving strength By1,1 (blue) shows maxima if the syn-
chronization condition (7) is fulfilled. Fidelity after the subsequent z
rotation (red) leads to no effective crosstalk at synchronization con-
ditions. Here, 	Bz = (2π ) 0.2 MHz, By1,2 = αBy1,1, and α = 0.4.

A. Single-qubit gate: Y gate

For a complete set of single-qubit gates, rotations around
two axes are required. Since z rotations can simply be im-
plemented in software by incorporating the rotation angle
in the phase of the microwave pulse [8], we focus on the
performance of y rotations, which are realized by driving
the operating qubit 1 at its resonance frequency, ωz,1 = Bz,1

(a similar analysis is possible for X and other single-qubit
gates). The capacitive coupling between the gate electrodes
and the single electrons representing qubits can lead to a
small effective magnetic field at neighboring qubit 2, which
results in an off-resonant Rabi oscillation with detuned Rabi
frequency given by Eq. (3), where the resonant Rabi fre-
quency is �2 = By1,2/2 and the detuning amounts to δωz,2 =
Bz,2 − Bz,1. For numerical examples, we assume a resonance
frequency for Bz,1 of (2π )18.493 GHz as in Ref. [8], and vary
the nearest-neighbor qubit crosstalk field By1,2 as well as the
z-field gradient 	Bz = Bz,2 − Bz,1, and investigate the fidelity
of the idle qubit 2. We find that with increasing By1,2, the
driving strength becomes larger and the fidelity oscillates and
decreases, as shown in Fig. 2(b). On the other hand, the in-
creasing field gradient in the z direction causes the resonance
frequencies of the single qubits to further diverge and leads
to further off-resonant Rabi oscillations such that the fidelity
increases.

To verify the accuracy of the RWA used for the fidelity
calculations, we take into account higher-order corrections
within the Floquet-Magnus expansion (FME) for periodi-
cally driven systems [28–31], and compare RWA with FME
corrected fidelities in Appendix A. Although the main contri-
bution to the corrections comes from the nonvanishing part of
By0,2, which is neglected in the RWA, the fidelity only slightly
changes even for very large values of By0,2 compared to the
driving field By1,2. Since for micromagnet-induced inhomo-
geneous fields the gradient field in the y direction is typically
considerably smaller than By1,2 [14,32], we find that indeed
the RWA is a good approximation for the relevant regime of
operation.
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B. Two-qubit gate: CNOT gate

Two-qubit gates between neighboring qubits (in our case,
qubits 1 and 2) can be performed by switching on their ex-
change interaction as depicted in Fig. 1. A CNOT gate can be
implemented by adiabatically switching on J12 = J to shift
energy levels such that distinct transition frequencies allow
individual addressing of the |10〉 ↔ |11〉 transition. Com-
bined with a driving field matching the appropriate transition
frequency, this results in a CNOT gate (�CNOT) with an off-
resonant Rabi oscillation (�off) that can be canceled out by
a simple synchronization of Rabi frequencies [16],

�CNOT = 2m + 1

2n
�̃off, m, n ∈ Z, (4)

which we will refer to as the CNOT synchronization in the
remainder of this paper. Assuming that the middle barrier
gate determining J has no effective capacitive coupling due
to application of improved virtual gates [33–35] and therefore
does not affect the neighboring qubits, the remaining effect
contributing to crosstalk is a resulting driving field at the
neighboring qubit 3. This turns out to be the same effect as for
single-qubit gates with different driving frequency, ωCNOT =
(Bz,1 + Bz,2 + J − √

(Bz,2 − Bz,1)2 + J2)/2, and thus differ-
ent off-resonant Rabi-oscillations due to the detuning, δωz =
Bz,3 − ωCNOT. Calculating the fidelity depending on the result-
ing driving field By1,3 at neighboring qubit 3, the magnetic
field gradient 	Bz indeed shows a similar behavior to the case
of single-qubit gate crosstalk (Fig. 2). Since we operate in
the J � 	Bz regime, varying the exchange interaction J only
leads to small-amplitude oscillations of the fidelity.

IV. SCHEMES TO AVOID CROSSTALK

Now that crosstalk of single-qubit and two-qubit gates can
be quantified, we suggest schemes minimizing these effects
to reduce errors when scaling up qubit architectures beyond
existing dynamical decoupling protocols [36,37].

Off-resonant Rabi oscillations caused by driving a neigh-
boring qubit to perform Y or CNOT gates are combined
rotations around the y and z axes, as shown in the Bloch
sphere representation in Fig. 2(a). Since z rotations can be
canceled easily via software, we can find a subsequent rotation
to minimize crosstalk and thus to maximize the fidelity. For
the Y gate, fidelities are compared to those after following z
rotations as in Fig. 2(b), and indeed, this results in a better
performance. Similarly, fidelity improving z rotations can also
be found for two-qubit gates such as the CNOT.

In analogy to virtual gates for dc voltages defined by capac-
itance matrices [38,39], one could think of a similar approach
for an ac drive, where neighboring gates would have opposite
driving amplitudes but the same frequency. This would cancel
out driving amplitudes on neighboring qubits and so would
avoid crosstalk effects. However, the ac virtual gate strat-
egy requires high-precision control in experiments and could
lead to further noise through fluctuating magnetic driving
amplitudes.

A different approach, which can also be relevant for sys-
tems driving qubits with a global stripline as in [20] and [21],
is the synchronization of Rabi frequencies, similar to the one
in Eq. (4) of Ref. [16]. We require that during the driving time

τ to perform spin rotations, the neighboring spin shall do only
full 2π rotations,

�̃τ = 2πk, k ∈ Z, (5)

with the detuned Rabi frequency �̃. Further defining

α = BNN

Bdrive
, (6)

as the ratio between the induced driving amplitude BNN at the
nearest-neighbor qubit 2 (3) and the actual driving strength
Bdrive on qubit 1 (1 and 2), a condition for Bdrive can be
expressed in terms of α.

A. Synchronization for the Y gate

In the case of the Y gate where Bdrive = By1,1 and BNN =
By1,2 we obtain �̃ = �̃2 = √

(By1,2/2)2 + (	Bz )2 for the off-
resonant Rabi frequency of qubit 2. Since the time to perform
a π rotation on qubit 1 is τY = π (2m + 1)/�1 where m ∈ Z
with resonant Rabi frequency �1 = By1,1/2, we obtain

By1,1 = 2	Bz√
4k2

(2m+1)2 − α2
, (7)

as the synchronization condition for integers k and m. For
α = 0, the remaining oscillation is around the z axis and can
be neglected; for 0 < α < 1, the fidelity reaches a maximum
when condition (7) is fulfilled. In Fig. 2(b), for α = 0.4, the
fidelity is plotted in dependence on By1,1. Repeated fidelity
maxima occur when the synchronization condition (7) is satis-
fied. The red line of Fig. 2(b) contains a subsequent z rotation,
which at the maxima in fact leads to fidelities of 1, and thus to
the complete absence of crosstalk effects.

So far, we only considered one neighboring qubit next to
the operation qubit. However, in quantum dot arrays, each
qubit has multiple neighbors, e.g., two neighbors in a linear
array. For the Y gate, we now consider two neighboring qubits
2 and 3, with crosstalk amplitudes By1,2 = αBy1,1 and By1,3 =
α̃By1,1, respectively. Assuming the same gradient in the z
direction, for each neighbor |Bz,3 − Bz,1| = |Bz,2 − Bz,1| =
	Bz, condition (7) must be fulfilled for each neighbor with
α or α̃ and integers k and l , where l replaces k in condition (7)
for qubit 3. Since both conditions need to be simultaneously
satisfied, this leads to restricted solutions for α̃ depending on
α, k, l , and m. To showcase some configurations for which
such a double synchronization is possible, we choose α = 0.4
and k = 1 and represent solutions for α̃ depending on l for
several values m in Fig. 3 by dots. Besides trivial solutions, we
find only discrete values for 0 < α̃ < 1. Additionally, varying
k allows for further discrete values for α̃. As a consequence,
this means that if hardware can be implemented precisely
enough to determine the capacitive couplings α and α̃, such
that they match both synchronization conditions, crosstalk on
both neighbors can be completely prevented. Alternatively,
one could adapt this condition to synchronize next-nearest-
neighbor qubits within a quantum dot array by modifying α

and α̃ and the gradient field, respectively. Note that higher
m values have a direct impact on the gate time due to the
τY ∝ 2m + 1 scaling of a π pulse.
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FIG. 3. Solutions α̃ for combinations of l and m matching the
synchronization condition (7) of a Y gate for two nearest-neighbor
qubits with k = 1 and α = 0.4.

In general, each qubit needs to be individually character-
ized and differs from others due to fabrication. Therefore, the
above assumption for equal z-gradient fields must be adapted.
Typically, α and α̃ cannot be chosen but are predetermined
by the system and can be obtained, e.g., by measuring fre-
quencies of off-resonant Rabi oscillations. Although a general
exact double synchronization for arbitrary α and α̃ is not
possible, crosstalk reduction can still be realized by choosing
a configuration of k, l , and m, such that the synchronization
condition is nearly fulfilled.

B. Synchronization for the CNOT gate

To perform a high-fidelity CNOT gate on qubits 1 and 2,
the synchronization of Rabi frequencies in Eq. (4) is advanta-
geous. Similar to previous double synchronization, we would
like to find solutions which additionally satisfy the crosstalk
cancellation condition (5). As shown in Ref. [16], for equal
driving fields By1,1 = By,1,2, the CNOT synchronization yields

By1,1 = ± 2J√
4n2

(2m+1)2

(
1 + J

2	Bz

)2 − (
1 − J

2	Bz

)2
, (8)

and thus offers J , n, and m as free parameters, noting that
J � 	Bz. In condition (5), we replace the off-resonant
Rabi frequency �̃ with �̃3 = √

(By1,3/2)2 + (Bz,3 − ωCNOT)2

and the driving time with τCNOT = |2π (2m + 1)/{By1,1[1 +
J/(2	Bz )]}|, and obtain the condition

(2m + 1)
√(By1,3

2

)2 + (Bz,3 − ωCNOT)2

By1,1
(
1 + J

2	Bz

) = k, (9)

for arbitrary k ∈ Z. This leads to solutions for J depending on
k, n, m and α = By1,3/By1,1. To assure that J � 	Bz holds
and the assumptions made for the CNOT gate are valid, we
only consider solutions with |J| � (2π ) 20 MHz. We find that
real-valued solutions only exist for m = 0 or m = −1 and we
choose m = 0 from now onward.

In Fig. 4, our results for J , By1,1, and τCNOT are shown
for various values of n and for k = −50, −100, and −500
assuming α = 0.1. The general trend in the plotted region is

(a) (b) (c)

FIG. 4. Symmetric solutions for exchange coupling J , mag-
netic driving amplitude By1,1, and driving time τCNOT depending
on n for k = −50, −100, and −500 to simultaneously fulfill
the CNOT and crosstalk synchronization conditions. Here, Bz,1 =
(2π ) 18.493 GHz, 	Bz = (2π ) 0.2 GHz, and α = 0.1.

a linearly increasing positive value for J when n increases.
Furthermore, when choosing higher k, more solutions emerge
in the (2π )20 MHz regime, and hence we obtain a decreasing
exchange interaction for an increasing absolute integer of k.
On the other hand, when n or k increase, the absolute value of
By1,1 decreases. For larger k, the slope and thus the impact of
n is reduced. As a consequence of large driving amplitudes,
due to τCNOT ∝ |1/By1,1| longer gate times are required, which
is why the choice of small n and k seems advantageous for our
purpose. Nevertheless, the choice of k dominates the driving
time for large integers k, which is why n is negligible for
τCNOT. Moreover, better validity of the approximation using
small J compared to the magnetic field gradient is possible
at the cost of a longer gate time. Here it also turns out that
a larger ratio between the induced and driving field does not
increase J significantly. Although α determines the strength of
crosstalk, it only slightly changes the conditioned values for
synchronization due to high k values.

To provide an example, for the measured resonance fre-
quencies Bz,1 = (2π ) 18.493 GHz, Bz,2 = (2π ) 18.693 GHz,
Bz,3 = (2π ) 18.893 GHz, and α = 0.1, we propose to set
k = 50, m = 0, n = 1, and thus choose an exchange cou-
pling J = (2π ) 7.0 MHz and driving strength By1,1 = By1,2 =
(2π ) 7.8 MHz, which lead to a driving time of approximately
126 ns, to fulfill both CNOT and crosstalk synchronization
conditions, and hence avoid crosstalk on nearest neighbors.
The precision of these values is chosen sufficiently high such
as to allow for a infidelity below 10−6.

V. SIMULTANEOUSLY DRIVEN SINGLE-QUBIT GATES

In quantum algorithms, single-qubit gates are usually ap-
plied simultaneously due to the limited coherence times
of qubits. Motivated by recent crosstalk measurements in
Refs. [40] and [7,19], we further consider simultaneously
driven Y gates on each of the two neighboring qubits
1 and 2, and investigate crosstalk effects. The second
driving strength enters the Hamiltonian via the magnetic
field in the y direction, which thus becomes By,i(t ) =
By0,i + By1,i cos(ω1t + θ2) + By2,i cos(ω2t + θ2). Here we as-
sume a symmetric crosstalk, i.e., By1,2 = αBy1,1 and By2,1 =
αBy2,2. In the rotating frame defined by the transformation
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FIG. 5. Single-qubit fidelities F1, F2 of qubits 1 (blue) and 2
(yellow), and two-qubit fidelity Ftot (red) for simultaneous Y gates
on qubits 1 and 2 depending on By2,2, while By1,1 fulfills (m1 +
1/2)Tq1 = 2πk/	Bz. F1 shows a maximum which is close to a peak
of F2 at By2,2 values fulfilling (2 + 1/2)Tq2 = 2πk2/	Bz, and thus
Ftot becomes maximal.

R̃ = exp[−i(ω1S1 + ω2S2)t], where ω1 and ω2 match the res-
onance frequencies of qubits 1 and 2, the RWA is invalid
for close off-resonant Rabi oscillations with large driving
amplitudes, By2,1 and By1,2. In this case, time-dependent terms
remain and lead to the 2π/	Bz periodic Hamiltonian,

H̃ = 1

2

⎛
⎝ By2,1 sin(	Bzt )

By1,1 + By2,1 cos(	Bzt )
0

⎞
⎠ · S1

+ 1

2

⎛
⎝ By1,2 sin(	Bzt )

By2,2 + By1,2 cos(	Bzt )
0

⎞
⎠ · S2. (10)

An approximated description of the time evolution is given
by the FME with up to second-order coefficients showing a
periodicity with periods Tqβ given by∣∣∣∣∣∣

16π	Bz√
4Byβ,βB3

yβ̄,β
− 4B2

yβ,βB2
yβ̄,β

− 16B2
yβ,β	B2

z − B4
yβ̄,β

∣∣∣∣∣∣,
(11)

where β = 1, 2 denotes the qubit number and 1̄ = 2 and
2̄ = 1. During the gate time τY, both fields and their induced
crosstalk fields on the neighbor are present. Choosing B1,1

such that a π rotation of qubit 1 is fulfilled, i.e., τY = (m1 +
1/2)Tq1 with integer m1 ∈ Z, the single-qubit fidelity of qubit
1 reaches a maximum when additionally τY = 2πk/	Bz with
integer k ∈ Z is fulfilled. Since τY grows linearly but fideli-
ties increase with k, we choose k = 20 which, for 	Bz =
(2π ) 0.2 GHz, leads to a gate time of 100 ns, and set m1 = 0
from now on. Varying By2,1 shows a second fidelity maximum
besides the trivial one for qubit 1 as in Fig. 5 (blue), which
occurs if By1,1 becomes maximal within both conditions for
τY. Advantageously, for α = 0.4, this maximum appears close
to By2,2 fulfilling τY = (m2 + 1/2)Tq2 with m2 = 2, which is
given at the maxima of the qubit 2 fidelity (yellow). Also, the
two-qubit fidelity in Fig. 5 (red) indeed becomes maximum
at this point. Due to the assumption of symmetric crosstalk,
the same behavior is obtained when swapping qubits 1 and
2. For arbitrary α, a combination of m1, m2, and k can be
found to bring the maxima of both single-qubit fidelities
close together and thus nearly fulfill all of the above con-

ditions for the magnetic fields and driving time. For Bz =
(2π ) 18.493 GHz, 	Bz = (2π ) 0.2 GHz, α = 0.4, m1 = 0,
and k = 20, we find 1 − F1 = 3.54 × 10−12 and 1 − F2 =
6.14 × 10−5 for the single-qubit infidelities of qubits 1 and 2,
and 1 − F = 7.37 × 10−5 for the two-qubit infidelity where
By1,1 = (2π ) 10 MHz and By2,2 = (2π ) 50 MHz. Subsequent
single-qubit z rotations or continuing driving one of the qubits
does not improve the fidelity. Hence, we obtain an unavoid-
able crosstalk effect for simultaneously driven spin qubits.
However, to further suppress this effect in linear spin qubit
chains, we propose a three-step operation to perform single-
qubit operations simultaneously. In each step, only every third
qubit is acted on at the same time, such that after three steps,
each qubit has been active once. For each step, the driving
strength can be chosen such that one neighbor qubit is syn-
chronized by the condition (5) and the other neighbor is nearly
synchronized, as discussed in Sec. IV A. In this way, crosstalk
errors become minimal and the time for simultaneously per-
forming single-qubit rotations scales with a fixed factor of 3.

VI. CHARGE NOISE ANALYSIS

Fluctuations of electric field amplitudes in silicon spin
qubit devices represent a great challenge for coherence times
and unitarity of control sequences [41]. Charge noise couples
to spins via spin-orbit coupling, magnetic field gradients, and
exchange coupling, which determine detuning, and thus Rabi
frequencies in a CNOT gate. Since the impact of charge noise
via EDSR is rather small compared to the exchange coupling
[6], usually fluctuations δJ of J are considered. This dominant
charge noise contribution does not appear for single-qubit
rotations and only affects the CNOT synchronization in Eq. (4),
and thus the CNOT gate fidelity, which was already discussed
in Ref. [16]. The crosstalk synchronization condition (5) for a
neighboring qubit depends on its off-resonant Rabi frequency
and driving time, and hence driving field and detuning. Since
the neighboring qubit does not interact with other qubits, both
driving and detuning are independent of J fluctuations, and
so the synchronization to avoid crosstalk is, to a large extent,
unaffected by charge noise.

Here, we consider fluctuations of driving amplitudes due
to charge noise during EDSR, where the impact on crosstalk
synchronization is no longer negligible. Assuming a pre-
cise driving time and nonfluctuating driving frequencies,
we consider the diagonal and off-diagonal time evolu-
tion terms Udiag = cos(�̃NNt/2) ∓ i(δωz/�̃NN) sin(�̃NNt/2)
and Uoff-diag = ±(�NN/�̃NN) sin(�̃NNt/2) of the neighboring
qubit describing Rabi oscillation, and calculate the first-order
correction in Appendix B, which, for the synchronization
condition (5), holds,

Udiag = 1 + i

∣∣∣∣π (2m + 1)α

4δωz

(
1 − (2m + 1)2α2

4k2

)∣∣∣∣δB, (12)

Uoff-diag =
∣∣∣∣∣ (2m + 1)3πα2

16k2δωz

√
4k2

(2m + 1)2α2
− 1

∣∣∣∣∣δB, (13)

where δB denotes the fluctuation in the effective magnetic
field caused by charge noise.

Accordingly, Rabi oscillations are sensitive to first-order
fluctuations of BNN, which arise, e.g., through charge
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FIG. 6. Total memory infidelity in the presence of crosstalk with
first-order noise correction in the Hamiltonian of neighboring qubit
2 for the Y gate as a function of the driving field strength By1,1

for three standard deviation values σB of the noise in the effective
magnetic field, where δωz = (2π ) 0.2 GHz and α = 0.4. Vertical
lines represent driving fields fulfilling the condition (5).

fluctuations in the EDSR driving field. Nevertheless, applying
the synchronization condition yields terms with (2m + 1)2/k
and (2m + 1)3/k2 dependence and thus makes it possible to
reduce first-order noise due to short driving times and high k
values. The major effect of noise is obtained for the imaginary
diagonal part and can be reduced by using short driving times
and larger detuning δωz. Furthermore, numerical evaluation
of our system with δωz = (2π ) 0.2 GHz and α = 0.4 shows
that zeros of the first-order noise contribution to the off-
diagonal terms are close to the synchronization condition (5)
for the Y gate. Since diagonal relative noise contributions are
smaller than those for the off-diagonal terms, noise becomes
minimal at these points. In Fig. 6, the total infidelity of first-
order corrections in the Hamiltonian (By1,2 → By1,2 + δB) for
a zero-mean Gaussian error with standard deviations σB of
0 MHz, (2π ) 10 MHz, and (2π ) 15 MHz is shown, where one
indeed finds noise to be minimal close to magnetic driving
fields By1,1 fulfilling the condition (5). Similar behavior is
obtained for the CNOT gate implementation. Consequently, we
find the crosstalk synchronization to be robust under charge
noise.
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FIG. 7. Impact of the first Floquet-Magnus correction on the
neighbor qubit fidelity for increasing By0,2 when performing a Y gate.

(a)

(b)

(c)

FIG. 8. First-order noise correction to (a) real and (b) imaginary
diagonal and (c) off-diagonal Rabi terms of the neighboring qubit for
the Y gate with δωz = 	Bz = (2π ) 0.2 GHz and α = 0.4, where ver-
tical lines mark By1,1 values matching the synchronization condition.

Advantageous design enables qubits to be only higher-
order sensitive to charge noise by operating at the sweet spot
[10–12], which mostly reduces the above-discussed effects.
The main reduction in fidelity for the CNOT gate operation
caused by δJ can be further decreased by applying advanced
pulse shaping [42] or dynamical decoupling sequences [37].

VII. CONCLUSIONS

In this paper, we have analyzed the effect of crosstalk of
single-qubit and two-qubit gates on spin qubits and its impact
on the fidelity starting from a simple Heisenberg model. We
clarified the validity of the RWA in our system and are able to
determine a fidelity dependence for magnetic field gradients
in the y direction which can invalidate the RWA. Here we
explicitly considered rotations around the y axis, which to-
gether with frame rotations around the z axis enable arbitrary
single-qubit operations. Since dc driven two-qubit gates as
the CPHASE and

√
SWAP only require a square pulse, their

crosstalk effects can mostly be avoided by virtual gates. Here
we consider a CNOT as a two-qubit gate, which is operated
in the J � 	Bz regime and driven with an ac pulse. We
showed that the underlying effect for crosstalk is the same for
single-qubit and ac driven two-qubit gates, namely, a residual
driving field at neighboring qubits leading to off-resonant
Rabi oscillations.

Moreover, we considered techniques to minimize crosstalk
besides existing dynamical decoupling schemes and sug-
gested a virtual gate realization for driving fields. We also
demonstrated how software implementations of subsequent
z rotations can significantly increase the fidelity. Then we
proposed a synchronization of Rabi frequencies to avoid
crosstalk and gave synchronization conditions for the single-
qubit Y gate and the two-qubit CNOT gate. This idea is in
general applicable to any device suffering from crosstalk via
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off-resonant Rabi oscillations and only requires the knowl-
edge of the off-resonant Rabi frequencies and precise control
of driving strength and time. Furthermore, the synchronization
protocol can also be adapted to partial π rotations and thus
is compatible with spin echo pulsing leading to even higher
fidelities in experimental setups. We also showed that dou-
ble synchronization with two neighboring qubits is possible,
in principle, under some additional constraints and requires
precise hardware fabrication and knowledge to exactly de-
termine the capacitive coupling between driving gates. For
multiple neighbors of an operating qubit with arbitrary cou-
plings as in qubit arrays, an exact synchronization of one
qubit, e.g., the most affected one, is possible and approximate
synchronizations of the other neighbors can be found. For a
detailed solution for a given number of neighboring qubits,
further work is required and goes beyond the scope of this
paper. We gave realistic exchange interactions and driving
strengths to perform mostly crosstalk-free Y and CNOT gates
and thus suggested a robust high-fidelity gate implementation
for scaled-up systems containing multiple quantum dot spin
qubits. For simultaneously driven single-qubit rotations, we
found fidelity maximizing conditions for driving time and
strengths and suggested a three-step application of simulta-
neous gates to reduce and control crosstalk, and therefore
speed up and improve quantum algorithms on spin qubit
devices.
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APPENDIX A: FLOQUET-MAGNUS EXPANSION

To investigate the validity of the RWA, we plot the im-
pact of the first-order Floquet-Magnus correction [28–31]
on the fidelity depending on By0,2 of the neighbor qubit
2 when performing a Y gate on qubit 1 in Fig. 7,
with Bz,1 = (2π ) 18.483 GHz, 	Bz = (2π ) 0.2 GHz, By1,1 =
(2π ) 200 MHz, and By1,2 = 0.4 By1,1. Indeed, RWA shows to
be a valid approximation in our case and we can determine the
fidelity impairment for a given value of By0,2.

APPENDIX B: CHARGE NOISE ANALYSIS

For a charge noise analysis assuming fluctuations in the
EDSR driving fields By1,1 and By1,2, matrix elements of the
neighbor qubit Hamiltonian causing Rabi oscillations are
considered. First-order corrected diagonal and off-diagonal
elements are given by
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First-order corrections of the diagonal and off-diagonal
terms are shown in Fig. 8 for the Y gate, where for clarity
reasons noise amplitudes are multiplied with factors 108 and
107, respectively. Ideally, the absolute value of the real di-
agonal part should be 1, while the imaginary diagonal and
the off-diagonal parts should be zero, which is fulfilled for
the zeroth-order terms at synchronization. Apparently, the
first-order real diagonal part is canceled and the off-diagonal
part is almost zero when By1,1 fulfills the crosstalk synchro-
nization condition. The remaining imaginary diagonal noise
contribution relative to zeroth order is approximately one

magnitude smaller than the off-resonant contribution, which
is why the overall noise contribution is nearly minimal at
synchronization, as shown in the infidelity plot of Fig. 6,
where for first-order zero-mean Gaussian noise with σB of
0 MHz, (2π ) 10 MHz, and (2π ) 15 MHz, the total infidelity is
plotted. Similar behavior is obtained for the CNOT gate where
the first-order noise amplitude relative to the zeroth-order am-
plitude of the imaginary part is even smaller compared to the
off-diagonal term. For the values used and proposed in this pa-
per, crosstalk synchronization is hardly sensitive to first-order
noise via EDSR field fluctuations, and thus shows to be robust.
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