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Transition metal (TM) defects in silicon carbide have favorable spin coherence properties and are suitable as
quantum memory for quantum communication. To characterize TM defects as quantum spin-photon interfaces,
we model defects that have one active electron with spin 1/2 in the atomic D shell. The spin structure, as well
as the magnetic and optical resonance properties of the active electron, emerge from the interplay of the crystal
potential and spin-orbit coupling, and they are described by a general model derived using group theory. We find
that the spin-orbit coupling leads to additional allowed transitions and a modification of the g-tensor. To describe
the dependence of the Rabi frequency on the magnitude and direction of the static and driving fields, we derive
an effective Hamiltonian. This theoretical description can also be instrumental in performing and optimizing spin
control in TM defects.
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I. INTRODUCTION

To implement quantum communication, it is necessary to
transfer quantum information between stationary and mobile
carriers [1]. Photons are by far the most adequate choice as
the mobile carriers of quantum information. Fiber-optic cables
spread over the globe make use of the efficient long-range
transmission of light. The frequencies within the electromag-
netic spectrum that are transmitted efficiently by optical fibers
lie within the telecommunication bands. There is substantial
interest in developing quantum systems that can emit photons
within these frequency bands to harness the available infras-
tructure for quantum communication [2]. Transition metal
(TM) defects in silicon carbide (SiC) are promising candidates
as a platform in an industrially established material for emit-
ters in such a frequency range [3–5]. Particularly encouraging
are the observed long spin relaxation times T1 for molyb-
denum defects exceeding seconds [5], and inhomogeneous
dephasing times around T ∗

2 ≈ 0.3 μs [6].
The energy level structure of vanadium (V) and molyb-

denum (Mo) defects in SiC as well as their ground-state
spin properties without sublevel structure are already well
understood [3–10]. However, in order to fully understand the
selection rules, the allowed and forbidden transitions, and the
Rabi frequencies for arbitrary orientations of the static and os-
cillatory (electric or magnetic) fields, more details of the level
structure are required. Inspired by studies of the nitrogen va-
cancy center in diamond [11] employing group theory [12–16]
that shares the symmetry with the TM defects in SiC studied
in this article, we also employ group-theoretical methods to
derive a Hamiltonian for an active electron localized in a d or-
bital of the TM defect (V or Mo) that possesses C3v symmetry
imposed by the crystal field (Fig. 1). We analytically compute
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the defect energy levels as given by the eigenvalues of this
Hamiltonian in the absence of external fields.

In the presence of a nonzero static external (magnetic or
electric) field, the symmetry of the system can be reduced, and
therefore previously used naive group theoretical arguments,
e.g., selection rules based on the symmetry, are no longer
applicable. To overcome this obstacle, we use a Schrieffer-
Wolff transformation to derive an effective Hamiltonian that
is compatible with ground-state Zeeman Hamiltonians de-
rived previously [9] but has the benefit that it directly links
the effective g-factors to the spin-orbit coupling. This proce-
dure also shows that some matrix elements inside an orbital
doublet that would not vanish in the most general case
do vanish because the states originate from an atomic d
orbital.

For static magnetic fields along the high symmetry axis of
the crystal, we derive selection rules within first- and second-
order perturbation theory in the spin-orbit interaction, making
it possible to relate the magnitude of various transitions based
on a small set of system properties. Furthermore, the effective
Hamiltonian describes how a static magnetic field breaking
the C3v point symmetry mixes states of different irreducible
representations (irreps) and thus changes the selection rules.
To understand magnetic and optical resonance in TM defects
in more detail, we study the dependence of the Rabi frequency
on the magnetic field direction, and we provide examples
where otherwise forbidden transitions are allowed for static
magnetic fields that break the point symmetry.

The remainder of this paper is structured as follows: In
Sec. II we introduce the Hamiltonian describing the system.
In Sec. III we treat the model where we first show that the
reduced problem can be solved analytically in the absence of
an external field, and then (Sec. III A) we use the Schrieffer-
Wolff transformation to study the influence of external fields.
In Sec. III B we combine these insights and present the selec-
tion rules as well as the Rabi frequencies for the various spin
transitions in the TM defect. We conclude our work in Sec. IV.
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FIG. 1. Lattice structure of SiC. (a) Schematic of one lattice site
occupied by Si (purple) with the bonding C atoms (white). These
nearest neighbors fulfill the symmetry Td of the regular tetrahedron.
Typically, the substitutional TM atom occupies a Si site such as the
one shown in purple. (b) The three possible layers (A, B, C) are
shown viewed from the top, where balls of one color denote lattice
sites in the same layer. The SiC lattice can be built up by stacking
tetrahedrally bonded Si-C bilayers, where each layer can only be
followed by one of the other two types. (Quasi)hexagonal sites lie
in a layer surrounded by layers of the same type (e.g., B in ABA),
while (quasi)cubic sites are surrounded by different layers (e.g., B in
ABC). SiC polytypes other than cubic 3C-SiC break the Td symmetry.

II. MODEL

We consider spin-1/2 defects in SiC where neutral V0 or
positively charged Mo+ substitute for a silicon atom [10],
resulting in one active electron in a d1 atomic orbital. These
defects are sometimes referred to as V4+ and Mo5+ in the
literature [4,6,9]. Our theory is based on the d1 character of the
electronic state and the C3v point symmetry of the surrounding
crystal. Since TM defects in SiC are not the only systems that
fulfill these properties, the theory is also applicable to other
systems, e.g., copper impurities in ZnO [17].

The full model Hamiltonian we consider takes the
form [18]

H = HTM + Vcr + Hso + Hhf + Hz + Vel. (1)

The dominating part is the atomic Hamiltonian HTM =
p2/(2me) + VTM, where �p denotes the momentum, me is the
mass of the active electron, and the coupling of the Coulomb
potential of the TM atom to the electron charge −e is given
by VTM. This potential only depends on the distance r = |�r|
between the electron and the defect placed at the origin, lo-
calizes the active electron at the defect site, and separates the
energy of the atomic D shell from the remaining spectrum.
The Coulomb potentials of the crystal atoms couple to the
charge of the active electron, resulting in the crystal potential
Vcr that breaks the spherical symmetry of the defect atom and
reduces it to the C3v point group.

An electron in a d-orbital state has nonzero angular mo-
mentum l = 2 inducing a magnetic field in the electron rest
frame. This relativistic effect is taken into account in the
spin-orbit coupling Hamiltonian [18,19]

Hso = h̄

2m2
ec2

{∇[VTM + Vcr] × �p} · �S, (2)

with the electron spin vector operator �S = �σ/2 in units of
the reduced Planck constant h̄ given by half the Pauli vec-
tor �σ , and the speed of light in vacuum c. Considering that
the gradient of the Coulomb potentials ∇[VTM + Vcr] trans-
forms like the vector �r, the complete orbital part transforms
like the orbital angular momentum operator �L = �r × �p/h̄ (in
units of h̄) [18]. For the free ion, where Vcr = 0, the intact
spherical symmetry leads to Hso = λ0 �L · �S, with the free ion
coupling constant λ0 = μ0Zμ2

B/(2πr3) expressed via the vac-
uum permeability μ0, the atomic number Z , and the Bohr
magneton μB and depending on the electronic configuration
via 1/r3.

The hyperfine Hamiltonian Hhf models the interaction of
the active electron spin with nearby nuclear spins [20]. For
an electron localized in an atomic d orbital at the defect site,
we expect the interaction with the nuclear spin of the defect
site to be the dominating contribution. The most common V
isotope is 51V with an abundance larger than 99% and nuclear
spin 7/2, while Mo only has approximately 25% combined
natural abundance for isotopes 95Mo and 97Mo with nuclear
spin 5/2, and the remaining naturally occurring isotopes have
nuclear spin zero [21,22]. Measurement values for V show
that the hyperfine splitting of the ground state is at least two
orders of magnitude smaller than the spin-orbit splitting, but
the difference can be much larger depending on the defect
configuration [4]. Compared to V, Mo has the larger atomic
number resulting in a larger spin-orbit coupling constant [23].
Furthermore, the isotopes with nonzero nuclear spin of Mo
have a smaller |μN gN | compared to the relevant isotope of V
[24]. Therefore, we expect the ratio of the hyperfine and the
spin-orbit coupling strength for V to give an upper bound for
the two TM atoms.

The Zeeman Hamiltonian describes the coupling of the
electron spin �S, electron angular momentum �L, and nuclear
spin �I to a uniform external magnetic field �B. This term is
given by

Hz = μB(gs �B · �S + �B · �L) − μN gN �B · �I. (3)

Again using the experimental values of gNμN for V [4] we
find gNμN/μB ≈ 10−4. From that we conclude that Hz is
dominated by the coupling of the magnetic field to the electron
spin and angular momentum.

The active electron can also couple to external electric
fields, resulting in the potential Vel. Assuming that the elec-
tric field is uniform over the scale of the defect, the term is
given by

Vel = e �E · �r, (4)

where �E is the external electric field.
Using these considerations, we order the magnitudes of the

different contributions

HTM � Vcr � Hso � Hhf . (5)

In the following, we will concentrate on the case in which we
can neglect the hyperfine interaction, given by static magnetic
fields | �B| � Azz/μB ∼ 10 mT, where Azz is a hyperfine tensor
component for a V defect [4]. For electric fields well below
the breakdown field strength of SiC | �E | � 3 MV/cm [25]
we estimate Hso � Vel, and for magnetic fields smaller than
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Bso = λ0/μB ≈ 531 T we have Hso � Hz. The approximate
values are given for the free ion value of the spin-orbit cou-
pling constant λ0 for V [9] and therefore give the lower bound
for the two TMs.

A. Symmetry

SiC consists of two constituents, silicon (Si) and carbon
(C). Each atom of the lattice is tetragonally bound to four
atoms of the other constituent, giving rise to the tetragonal
point symmetry Td of one crystal site with its nearest neigh-
bors; see Fig. 1(a).

To take the remaining atoms into account, it is necessary to
consider the crystal structure of SiC, which can be described
in terms of polytypism [26]. In the following, we describe the
crystal structure by the stacking order of tetrahedrally bonded
Si-C bilayers, and we refer to the stacking axis as the crystal
axis. Due to the tetrahedral bonding, there are only three
inequivalent types of layers, distinguished by the positions of
the Si atoms (lattice sites) in the stacking plane [Fig. 1(b)]. In
particular, layers of the same type cannot be directly on top
of each other due to the bonding of the atoms in the crystal
structure, leaving only two possibilities to stack three layers.

Labeling the inequivalent layers A, B, and C, the first
possible stacking has the form ABC, where sites in the B
layer have a zinc-blende bonding along the crystal axis and
are called (quasi)cubic sites. The zinc-blende bonding is
compatible with the Td symmetry of the nearest neighbors.
The other possible stacking has the form ABA, where the
bonding along the crystal axis is given by wurtzite bonding,
and sites in the B layer are called (quasi)hexagonal. Hexag-
onal layers reduce the symmetry of point defects from Td

to C3v .
The various polytypes of SiC are combinations of hexago-

nal and cubic layers. All polytypes apart from cubic 3C-SiC
have at least one hexagonal layer, and therefore defect sites
in these crystals only fulfill C3v symmetry, where the high
symmetry axis coincides with the crystal axis. In addition
to these symmetries, in the absence of a magnetic field, the
system is also invariant under time inversion.

We now summarize the energy level structure that fol-
lows directly from group theory for a d1-orbital state
when the spherical symmetry is reduced to Td and then
to C3v , including spin-orbit coupling [3–10,17]; see Fig. 2.
A d orbital corresponds to the �l=2 irrep of the full ro-
tation group. In the Td group, the �l=2 representation is
composed of the three-dimensional irrep T1 and the two-
dimensional irrep E , hence the d orbital is split into a
doublet and a triplet in a Td symmetric potential. While the
doublet does not split further in C3v , the triplet T1 splits
into another doublet E and a singlet corresponding to the
irrep A1.

The spin-orbit coupling renders the orbital singlet of C3v

into a Kramers doublet (KD), a degenerate pair of states that
are connected by time inversion, transforming according to the
spinor representation �4. The doublets of C3v split into two
KDs corresponding to the irrep �4 and the combined irreps
�5/6 = �5 ⊕ �6, respectively. The same final structure arises
when first considering the spin-orbit coupling and then the
symmetry reduction to C3v . Time-reversal symmetry protects

2D

Td

2T2

2E

C3v so

2A1 Γ7

2E Γ8

2E Γ8

so C3v

|3, Γ4, σ

|2, Γ4, σ

2, Γ5/6, σ
Δ2

|1, Γ4, σ

1, Γ5/6, σ
Δ1

FIG. 2. The energy levels of a d1 defect in SiC. The spherical
symmetry of the defect is reduced to the Td point symmetry by its
nearest neighbors. This symmetry is further reduced by atoms farther
away to C3v in SiC polytypes apart from 3C-SiC. The spin-orbit
coupling splits the levels further, producing the fine structure given
by five Kramers doublets. We show the spin-orbit splittings of the
orbital doublets in blue, which to second order can be found in
Eq. (33). If one considers the case in which the spin-orbit splitting
is larger than the splitting due to the symmetry reduction to C3v ,
we obtain the same diagram but with A1 → �7, E → �8, which are
irreps of the Td double group of dimensions 2 and 4, respectively.

the states of the same KD from being coupled to each other by
operators that also fulfill time-reversal symmetry [18], such as
the position �r and thus Vel, as well as even orders of �L, �S, and
�p (combined).

B. C3v Symmetric Hamiltonian

To derive a general Hamiltonian for one active electron in
the d-orbital subspace, we use the basis

|m〉|σ 〉 = |l = 2, m〉|σ 〉, (6)

with the spherical harmonics |l = 2, m〉 (m = −2,−1,

0, 1, 2) and the spinor |σ 〉 (σ = ↑,↓) for the z-axis parallel
to the crystal axis. The full electronic wave function |�m〉
in addition contains the radial part according to the main
quantum number n = 3 (V) or n = 4 (Mo). Due to effects such
as covalency and the Jahn-Teller effect, the states |�m〉 can
have contributions from other orbital states [10,27,28]. These
effects are taken into account by a proportionality constant
that describes the ratio between the effective matrix element
〈m|O|m′〉 and the full matrix element 〈�m|O|�m′ 〉. A frame-
work to derive operators that can take this into account while
having the appropriate transformation properties is given by
the Wigner-Eckart theorem where the proportionality con-
stants correspond to so called reduced matrix elements [29].

The transformation properties of the basis states and opera-
tors as well as the implications of these for the Wigner-Eckart
theorem are given in Appendixes A–D. The resulting Hamil-
tonian is described in the following and generalizes previously
used Hamiltonians derived by ligand or crystal-field theory
[9,17].
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TABLE I. The l-factors introduced in the main text, corre-
sponding to the nonzero matrix elements of the angular momentum
operators Lk in the crystal eigenbasis.

i l⊥,i2 l⊥,i3 l‖,i1 l‖,i2

1 1
√

6
2 cos(φ) 1

2 [3 cos(2φ) − 1] − 3
2 sin(2φ)

2 0 −
√

6
2 sin(φ) 0 − 1

2 [3 cos(2φ) + 1]

1. Crystal eigenstates

The purely orbital Hamiltonian Ho = HTM + Vcr, which
transforms according to the irrep A1 of C3v and is time-reversal
symmetric, can be written as

Ho = ε3|0〉〈0| +
∑
i=1,2

εi(|+i〉〈+i| + |−i〉〈−i|) (7)

inside the subspace of the d orbitals. The orbital doublet states
are given by

|±1〉 = cos(φ)|±1〉 ∓ sin(φ)|∓2〉,
(8)

|±2〉 = − sin(φ)|±1〉 ∓ cos(φ)|∓2〉,
where the mixing angle φ describes the admixture of states
that transform equally under C3v . The states |±i〉 transform
the same as |±1〉 under the symmetry operations of C3v and
time inversion Tinv|±i〉 = −|∓i〉.

2. Spin-orbit coupling and Zeeman term

The spin-orbit (Zeeman) Hamiltonian transforms like the
scalar product of the angular momentum operator with
the spin operator �L · �S (magnetic field �L · �B). This implies that
the spin-orbit Hamiltonian is time-reversal symmetric, while
the Zeeman Hamiltonian is not. Using projection operators on
the eigenspaces of Ho,

Pi = |+i〉〈+i| + |−i〉〈−i|, P3 = |0〉〈0| (9)

for i = 1, 2, we can write the spin-orbit Hamiltonian as

PiHsoPj = �S · 	̃i j · Pi �LPj, (10)

where now i = 1, 2, 3 and 	̃i j = 	̃ ji = diag(λ̃⊥,i j,

λ̃⊥,i j, λ̃‖,i j ). Analogously, the Zeeman term is

PiHzPj = δi jμBgs �B · �S + μB �B · R̃i j · Pi �LPj, (11)

with R̃i j = R̃ ji = diag(r̃⊥,i j, r̃⊥,i j, r̃‖,i j ). The tensors R̃ and
	̃ take the anisotropy of the reduction factors for the spin-
orbit coupling λ̃k,i j/λ0 and the orbital Zeeman term r̃k,i j into
account.

In the employed basis [Eq. (8)], the nonzero matrix
elements of the orbital angular momentum operators Lk

are given by l‖,i j = ±〈±i|Lz|± j〉, l⊥,12 = ±〈∓2|Lx|±1〉 =
i〈∓2|Ly|±1〉, l⊥,i3 = 〈±i|Lx|0〉 = ±i〈±i|Ly|0〉, with i, j =
1, 2. Since �L is Hermitian, lk,i j = lk, ji and the unique matrix
elements in terms of the orbital mixing angle φ are given in
Table I. From now on we will use the combined parameters
λk,i j = lk,i j λ̃k,i j and rk,i j = lk,i j r̃k,i j .

3. External electric field

The coupling to external electric fields has the form shown
in Eq. (4) and is time-reversal symmetric for a static field.
Due to the shared symmetry of x, y and −Ly, Lx, we can use
the orbital angular momentum operators to express

PiVelPj = (−1)�(i− j)iẼ⊥,i jPi(EyLx − ExLy)Pj

+ E‖,i jEzPi

(
|0〉〈0| +

∑
σ=±

|σi〉〈σ j |
)

Pj (12)

between the orbital spaces or inside the orbital singlet (i.e.,
for i, j = 1, 2, 3 with i �= j or i = j = 3). Here �(x) is the
Heaviside function, which is 1 for positive x and 0 otherwise.
Due to the different properties under time inversion, the matrix
elements of Lx and Ly within an orbital doublet vanish, while
x and y can be nonzero, such that the coupling to electric fields
inside the orbital doublets (i = 1, 2) takes the form

PiVelPi = E‖,iiEzI + E⊥,ii(Exσx − Eyσy), (13)

where I is the identity matrix, and σx and σy are the x and y
Pauli matrices acting between |±i〉. In analogy to the Zeeman
and spin-orbit terms, we combine E⊥,i j = Ẽ⊥,i j l⊥,i j and the
factors Ek,i j = Ek, ji are symmetric. The expressions for the en-
ergies and Rabi frequencies in the following will only depend
on the parameters εi, λk,i j , rk,i j , and Ek,i j . Using C3v ⊂ Td and
the angle φ, it is possible to restrict parts of the Hamiltonian
to intact Td symmetry; see Appendix E for more details.

III. RESULTS

In the following, we will study how the spin-orbit coupling
influences the defect spin system, and as such the interaction
with external fields. Comparing Eqs. (12) and (11), we note
that the orbital part of the Zeeman Hamiltonian Hz has a form
that is similar to the coupling to external electric fields Vel

between different orbital spaces. As the Zeeman term addi-
tionally includes pure spin transitions, we will concentrate on
this term in the following, calculations for Vel are analogous,
and corresponding results will be summarized further below.

The Hamiltonian Ho + Hso can be block-diagonalized into
two Hermitian 2 × 2 blocks and two real and symmetric 3 × 3
blocks. The blocks of the same size are related to each other
by time-reversal symmetry. This implies that there are at
most five doubly degenerate eigenvalues, corresponding to the
KDs. The eigenstates of the 2 × 2 (3 × 3) blocks transform
according to �5/6 (�4). The resulting eigenvalues are listed in
Appendix G.

A. Perturbation theory

While the aforementioned analytic solution holds for C3v

symmetric defects as well as when the Td symmetry is intact,
for the perturbation theory we consider only C3v symmetry.
This still covers most defects, as well as the energies and states
of the Td doublet E . Starting from the atomic energy levels, the
largest contribution to the energy splitting is due to the crystal
potential, and the spin-orbit coupling is small compared to
the resulting level spacings, λk,i j � εi − ε j for i �= j. Experi-
ments and ab initio calculations [9,10] show that the reduction
factor of the spin-orbit coupling λk,i j/λ0 and the orbital
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reduction of the Zeeman term rk′,i j share the same order of
magnitude, and hence | �B| � Bso implies μBrk′,i j | �B| � λk,i j .
We use a Schrieffer-Wolff transformation [30] treating the
off-diagonal elements of Hso as the perturbation,

H0 = Ho +
∑

i

PiHsoPi, V =
∑
i �= j

PiHsoPj (14)

such that we find the effective Hamiltonian

Heff =
∑

i

Pie
SHe−SPi

≈
∑

i

Pi

(
H0 + 1

2
[S,V ] + Hz + [S, Hz]

)
Pi (15)

for [H0, S] = V + O[λk,i jλk′,i j′/(εi − ε j )] and we enforce the
additional constraint for Pi[S, Hz]Pi to be diagonal for �B ‖ �ez.

These conditions ensure that Heff lies inside the projected
spaces up to second order in the spin-orbit coupling, i.e.,
λ2

k,i j/(εi − ε j ), and it is diagonal for �B ‖ �ez. Therefore, the
diagonal elements correspond to the second-order eigenvalues
for a magnetic field parallel to the crystal axis, given by

E (2)
i,�5/6,σ

E (2)
i,�4,σ

}
= εi ± 1

2
λ‖,ii + (−1)iλ2

‖12

4(ε2 − ε1)

+
⎧⎨⎩− (−1)iλ2

⊥12
2(ε2−ε1 ) + μB

σ
2 Bzgi,�5/6,‖,

− 1
2

λ2
⊥,i3

ε3−εi
+ μB

σ
2 Bzgi,�4,‖,

(16)

E (2)
3,�4,σ

= ε3 + λ2
⊥,13

ε3 − ε1
+ λ2

⊥,23

ε3 − ε2
+ σ

gs

2
μBBz. (17)

The corresponding first-order eigenstates are given by the
columns of 1 − S,

|i, �5/6, σ 〉(1) = |σi〉|σ 〉+σ
2λ⊥,12r‖,12

(ε2 − ε1)(gs+2r‖,ii )
|−σi〉|−σ 〉

− (−1)iλ‖,12

2(ε2 − ε1)
|σ3−i〉|σ 〉− σλ⊥,12

ε2 − ε1
|−σ3−i〉|−σ 〉,

(18)

|i, �4, σ 〉(1) = |−σi〉|σ 〉 − (−1)iλ‖,12

2(ε2 − ε1)
|−σ3−i〉|σ 〉

− σλ⊥,i3

ε3 − εi
|0〉|−σ 〉 for i = 1, 2, and (19)

|3, �4, σ 〉(1) = |0〉|σ 〉+ σλ⊥,13

ε3 − ε1
|σ1〉|−σ 〉+ σλ⊥,23

ε3− ε2
|σ2〉|−σ 〉,

(20)

with i = 1, 2, the parallel g-tensor components

gi,�5/6,‖
gi,�4,‖

}
= gs ± 2r‖,ii + (−1)i2

λ‖,12r‖,12

ε2 − ε1
, (21)

and where we use σ inside (outside) the spin ket to represent
↑ (+) and ↓ (−). The first terms on the right-hand side of
the states Eqs. (18)–(20) are the reordered unperturbed states
|i, �γ , σ 〉(0). Without loss of generality, due to the symmetry
of the Hamiltonian, we choose the coordinate system such
that �B lies in the x, z-plane. Without an external magnetic
field, these states approximate the zero-field analytic solutions

and share their most important features. At finite magnetic
fields, Eqs. (15) and (18)–(20) provide a simpler description
compared to an analytic solution.

For the approximate matrix elements of an operator O, we
introduce the notation

〈i, �γ , σ |O| j, �γ , σ 〉eff ≡ (0)〈i, �γ , σ |Oeff | j, �γ , σ 〉(0),

(22)

where Oeff = O + [O, S]. Because the operators Oeff are of
combined second order in the matrix elements of O and Hso

and in analogy to Heff being second order in the spin-orbit
coupling, we will refer to them as the second-order matrix
elements. Furthermore, we will refer to the elements of O
(between eigenstates of H0) as first-order matrix elements.

As a static magnetic field along the crystal axis only breaks
time-reversal symmetry but not the C3v point symmetry, it
can only mix states transforming according to the same irrep
and lift the degeneracy of the KDs. For Bx �= 0 the effective
Hamiltonians of the orbital doublets and the singlet are not
diagonal. The matrix elements inside the KDs are given by
〈i, �k, σ |H |i, �k, σ 〉eff = E (2)

i,�k ,σ
and

〈i, �4, σ |H |i, �4,−σ 〉eff = μBgi,⊥Bx/2, (23)

where we define the perpendicular g-factors

gi,⊥ =
{

gs + 4λ⊥,13r⊥,13

ε3−ε1
+ 4λ⊥,23r⊥23

ε3−ε2
for i = 3,

− 4λ⊥,i3r⊥,i3

ε3−εi
for i = 1, 2.

(24)

We see that only the singlet KD has a nonsuppressed effective
perpendicular g-factor. Agreeing with pure group theoretical
considerations, we find that the perpendicular g-factors for the
�5/6 KDs are zero.

The matrix elements mixing the KDs inside an orbital
doublet are given by

〈i, �5/6, σ |H |i, �4, σ 〉eff = σμBgi,cBx/2, (25)

〈i, �5/6, σ |H |i, �4,−σ 〉eff = μBgi, f Bx/2, (26)

with the spin-conserving (c) and flipping ( f ) mixing g-factors

gi,c =2λ‖,12r⊥,12

ε2 − ε1
+ λ⊥,12r‖,12

ε2 − ε1

2gs

gs + 2r‖,ii
, (27)

gi, f = gs + (−1)i2

(
λ⊥,12r⊥,12

ε2 − ε1
+ λ⊥,i3r⊥,i3

ε3 − εi

)
. (28)

The only off-diagonal g-factors that do not vanish with-
out spin-orbit coupling are gi, f with i = 1, 2 and g4,⊥. The
g-factors as expressed above and evaluated for V in the α-
configuration of 6H-SiC are within the margins of error for
previously experimentally determined values [9] when using
the provided reduction factors according to parameters used
in [9] (see Appendix F). The maximal deviation for values
that were assumed to be 0 (gi,⊥ and gi,c for i = 1, 2) is ap-
proximately 0.08. Previous derivations of the g-factors (see
Appendix A of Ref. [9]) for a pair of �4 and �5/6 states
do not take the interaction with the remaining levels into
account. The effective Hamiltonian (15) connects the previous
Hamiltonians to the Hamiltonian for the whole d orbital.

For intact Td symmetry, the approximation still holds for
i = 1 despite the restrictions of the parameters (Appendix E),
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FIG. 3. Comparison of numerically calculated level structure (faded solid) to the approximate levels calculated perturbatively in Eq. (34)
(dashed) for V in the α-configuration of 6H -SiC according to parameters used in [9] (see Appendix F). In (a) [(b)] the dependence for a
magnetic field purely in the z [x] -direction is shown. The dependence on the direction for a fixed magnetic field strength is depicted in (c).
We choose the energy scale such that the ground-state spin-orbit energy E1,+,↓ = 0 in the absence of a magnetic field ( �B = 0). We observe a
predominantly linear dependence of the energies on the z-component of the field as well as the higher-order correction due to the x-component.

in particular ε2 = ε3. We find that the four pseudospin levels
not only have the same zero-field energy (see Fig. 2) but share
g1,�5/6,‖ = g1,�4,‖. This implies that for pure Td symmetry,
the effective spin levels have a nonsuppressed perpendicular
g-factor and are up to second-order doubly degenerate. This
underlines that the spin-orbit splitting of the i = 1 doublet
and the vanishing perpendicular g-factor are due to the com-
bination of C3v symmetric crystal potential and the spin-orbit
interaction.

The dominating effect of a static magnetic field in an arbi-
trary direction can be taken into account by diagonalizing the
first-order terms, i.e., the terms proportional to gs. This leads
to the pseudospin states (PSSs),

|i,+, σ 〉 = cos θi,σ |i, �5/6, σ 〉 + sin θi,σ |i, �4,−σ 〉, (29)

|i,−, σ 〉 = sin θi,−σ |i, �5/6,−σ 〉− cos θi,−σ |i, �4, σ 〉, (30)

|3, σ 〉 = cos θ3|3, �4, σ 〉z + σ sin θ3|2, �4,−σ 〉, (31)

with i = 1, 2, and mixing angles given by

tan 2θi,σ = μBgsBx

�i + μBgsσBz
, tan 2θ3 = Bx

Bz
(32)

in terms of the second-order spin-orbit energy splittings

�i = λ‖,ii + λ2
⊥,i3

ε3 − εi
+ (−1)iλ2

⊥12

ε2 − ε1
, (33)

which is given by the energy difference Ei,�5/6,σ − Ei,�4,σ for
�B = 0 and is indicated in Fig. 2. The PSSs are not related by
time-reversal symmetry, and they can therefore be coupled by
electric fields.

Neglecting [S, Hz], i.e., terms proportional to rk′,i j′λk,i j/

(εi − ε j ), the diagonal entries in the basis consisting of the
PSSs correspond to approximate eigenvalues

E (2)
i,±,σ = (0)〈i,±, σ |Heff |i,±, σ 〉(0)

= εi − λ2
‖12 + 2λ2

⊥12

4(ε2 − ε1)
− λ2

⊥,i3

2ε3 − 2ε1
± σBzμBr‖,ii ± sgn(�i + μBgsσBz )

2

√
[�i + μBgsσBz]2 + (μBgsBx )2, (34)

E (2)
3,σ = (0)〈3, σ |Heff |3, σ 〉(0) = ε3 + λ2

⊥,13

ε3 − ε1
+ λ2

⊥,23

ε3 − ε2
+ σ

gs

2
μB

√
B2

z + B2
x , (35)

as shown in Fig. 3. The states are labeled according to the
crystal-field eigenspace i and the spin-orbit splitting ± such
that for Bx = 0, “+” (“−”) coincides with the states trans-
forming according to �5/6 (�4). These labels are independent
of the level ordering, reflecting that the level ordering depends
on the precise configuration of the defect, i.e., the free and a
priori unknown parameters of our model. The results in the

following do not depend on the level order. Lastly, σ labels
the effective spin.

The approximate eigenvalues E (2)
i,±,σ already yield good

results for the energies for V in the α-configuration of 6H-SiC
compared to the numerical model by Kaufmann et al. [9]; see
Fig. 3. For a magnetic field in the z direction, all the states
split linearly [Fig. 3(a)]. For magnetic fields along the x-axis,
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〉
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|i,Γ5/6, ↑〉

|i,Γ5/6, ↓〉

|i′, Γ4, ↑〉

|i′, Γ4, ↓〉
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Bac,⊥, Eac,⊥
Bz
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Eac,⊥
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FIG. 4. Nonzero matrix elements of the driving Hamiltonian Hd between KD states for �B0 ‖ �ez taking (a) only reordering of the states
due to spin-orbit coupling (0)〈i, �γ , σ |Hd |i, �γ ′ , σ ′〉(0) (first order in Hd ) and (b) the correction of the states due to the spin-orbit coupling
〈i, �γ , σ |Hd |i, �γ ′ , σ ′〉eff (mixed second order in Hd and Hso) into account. In (c) the mixed second-order matrix elements inside the KDs are
depicted with the splitting due to the static magnetic field along the crystal axis (green) that varies due to Bac,z. Dashed lines connect states of
the same spin |i, �γ , σ 〉 ↔ | j, �γ ′ , σ 〉, dotted lines states of inverted spin |i, �γ , σ 〉 ↔ | j, �γ ′ ,−σ 〉, and solid lines show that both channels
are possible. The color indicates which field component gives rise to the transition (see the legend), where ⊥ corresponds to a field in the
x, y-plane. The red line connecting inverted spin states of the different irreps of the same orbital doublet corresponds to a pure spin transition,
therefore in the first order it can only be driven by a magnetic field. In contrast, the corresponding spin-conserving transition can be driven
only by an electric field in the first order.

only the i = 3 level splits linearly while the remaining PSSs
stay degenerate in the first order. The KDs of one orbital
doublet are pushed further apart with increasing magnetic
field in the x-direction [Fig. 3(b)]. For a small fixed magnetic
field strength, we see an approximate linear dependence of
the splitting of the KD as a function of the z-projection of
the magnetic field for the states of the orbital doublets, and
for the singlet PSS the dependence is approximately constant
[Fig. 3(c)].

If we consider Vel instead of Hz, the biggest difference is
that we do not have the pure spin matrix elements (∝gs) but
instead we have an allowed spin-conserving coupling between
the KDs in the same orbital doublet. Furthermore, the KDs
stay degenerate because Vel does not break the time-reversal
symmetry for static electric fields. The Ez field action inside
the projected spaces is given by

〈i, �5/6, σ |Vel|i, �5/6, σ 〉
〈i, �4, σ |Vel|i, �4, σ 〉

}
=
[
E‖,ii ± (−1)i E‖,12λ‖,12

ε2 − ε1

]
Ez

(36)

for i = 1, 2 and 〈3, �4, σ |Vel|3, �4, σ 〉 = E‖,33Ez.

B. Magnetic (and optical) resonance properties

As an electrical field cannot lift the degeneracy of a KD, we
will consider the case in which we apply a static magnetic field
�B0 that splits the KD and a periodical (electric or magnetic
field) driving, i.e., of the form �Bac sin(ωt ) or �Eac sin(ωt ). The
driving field gives rise to an additional part of the Hamiltonian
Hd = O sin(ωt ), where O denotes either Hz with the driving
magnetic field amplitude �B = �Bac or the electric driving term
Vel with �E = �Eac. As before, we will discuss the magnetic
field case in detail and summarize the main differences for
the electric field.

For simplicity, we define

��� ′ = 1

2h̄
|〈�|Hd |� ′〉|. (37)

For �,� ′ eigenstates of Ho + Hso + Hz| �B=�B0
and � �= � ′,

��� ′ is the resonant Rabi frequency. We approximate ��� ′ ≈
�eff

�� ′ = |〈�|Hd |� ′〉eff |/2h̄, using the notation of Eq. (22) but
where � and � ′ are eigenstates of Heff , thereby taking state
mixing due to field components perpendicular to the crystal
axis into account.

∣∣1,Γ
5
/
6 ,↓ 〉

∣∣1
,Γ

5
/
6 ,↑ 〉

|1
,Γ

4 ,↓〉
|1,Γ

4 ,↑〉
|2,Γ

4 ,↓〉
|2

,Γ
4 ,↑〉

∣∣2
,Γ

5
/
6 ,↓ 〉

∣∣2
,Γ

5
/
6 ,↑ 〉

|3,Γ
4 ,↓〉

|3
,Γ

4 ,↑〉

〈
1, Γ5/6, ↓

∣
∣

〈
1, Γ5/6, ↑

∣
∣

〈1, Γ4, ↓|
〈1, Γ4, ↑|
〈2, Γ4, ↓|
〈2, Γ4, ↑|〈

2, Γ5/6, ↓
∣∣

〈
2, Γ5/6, ↑

∣
∣

〈3, Γ4, ↓|
〈3, Γ4, ↑|

0

5

10

15

20 Ω
e
ff

Ψ
Ψ

′ /|B
a
c |

(G
H

z/T
)

0 100
3

9

∣∣∣∣ ∣∣∣∣1,Γ
5
/
6 ,↓ 〉

∣∣∣∣ ∣∣∣∣1,Γ
5
/
6 ,↑ 〉

|||||||1
,Γ

4 ,↓〉
|||||||1,Γ

4 ,↑〉
|||||||2,Γ

4 ,↓〉
|||||||2

,Γ
4 ,↑〉

∣∣∣∣ ∣∣∣∣2
,Γ

5
/
6 ,↓ 〉

∣∣∣∣ ∣∣∣∣2,Γ
5
/
6 ,↑ 〉

|||||||3,Γ
4 ,↓〉

|||||||3
,Γ

4 ,↑〉

〈
1, Γ5/6, ↓

∣
∣
∣∣

〈
1, Γ5/6, ↑

∣
∣
∣∣

〈1, Γ4, ↓|
〈1, Γ4, ↑|
〈2, Γ4, ↓|
〈2, Γ4, ↑|〈

2, Γ5/6, ↓
∣∣∣∣

〈
2, Γ5/6, ↑

∣
∣
∣∣

〈3, Γ4, ↓|
〈3, Γ4, ↑|

0

5

10

15

20 Ω
e
ff

Ψ
Ψ

′ /|B
a
c |

(G
H

z/T
)

000 10010010000
333

9999

�Bac ‖ �ez

�Bac ⊥ �ez

FIG. 5. Rabi frequencies on resonance in second order (off-
diagonal matrix elements) and energy level oscillation amplitudes
(diagonal) �eff

�� ′/|Bac| according to Eq. (37). Parameters are chosen
for V in the α-configuration of 6H -SiC according to parameters used
in [9] (see Appendix F) and a magnetic driving field. The static
magnetic field B0�ez is parallel to the crystal axis and the oscillatory
magnetic field perpendicular (bottom left half) or parallel (top right
half). The x- and y-axes, respectively, label the states � and � ′. The
inset depicts the relative error in units of 10−3 according to Eq. (38)
as a function of B0 (x-axis) for �Bac ‖ �ex (solid blue line) and �Bac ‖ �ez

(orange dotted line). We plot matrix elements that identically vanish
in white.
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FIG. 6. Resonant Rabi frequency �GS/|Bac| (MHz/T) between the ground-state pseudospin states as a function of the static and ac magnetic
field direction for parameters according to V in the α-configuration of 6H -SiC according to parameters used in [9] (see Appendix F) and
a static magnetic field strength B0 = 3 T. In (a) the ac field lies in the x, y-plane and in (b) it lies in the x, z-plane. The yellow area in
the bottom right of (b) corresponds to values �31 MHz/T. The approximate Rabi frequency �eff

GS agrees quantitatively up to a systematic
deviation of approximately +15% apart from the regions where �GS/|Bac| < 1 MHz/T, where the absolute error is smaller than 0.2 MHz/T
and for the static field direction between 1/4 and 1/2 as well as the ac-field mainly along the y-axis, where the error can reach 1.5 MHz for
�GS/|Bac| < 2 MHz/T.

1. Static magnetic field along the crystal axis

We consider a static field aligned with the crystal axis �B0 ‖
�ez; in this case, we can without loss of generality consider
the oscillatory field to lie in the x, z-plane. Also, time-reversal
symmetry is broken by �B0 while the point symmetry of the
defect stays intact, implying that the PSSs coincide with the
KDs and the second order �eff is independent of | �B0|.

The matrix elements of Hd for a static magnetic field along
the z-axis depend only on the field component parallel or
perpendicular to the crystal axis (but not both). The result-
ing structure within first order is sketched in Fig. 4(a). We
start by only taking the first-order effect of the spin-orbit
coupling into account, i.e., the reordering of the unperturbed
states. This corresponds to evaluating the matrix elements
(0)〈i, �γ , σ |Hd | j, �γ ′ , σ ′〉(0). The only nonzero matrix ele-
ments proportional to the (electric or magnetic) field parallel
to the crystal axis are between states of the same irrep with
the same spin (γ = γ ′ and σ = σ ′). All other nonzero matrix
elements are proportional to perpendicular field components.
Inside the orbital doublets (i = j), the elements connecting in-
verted spins (σ = −σ ′) of different irreps (γ �= γ ′) are linked
by perpendicular magnetic fields, while electric fields can
drive the spin-conserving (σ = σ ′) transition. Driving with a
transverse field couples states with the same spin (σ = σ ′)
of different irreps (γ �= γ ′) from different orbital doublets
(i �= j) as well as states with the same spin between the singlet
�4 and all other irreps. Inside KDs, the only first-order non-
diagonal matrix element is between the |3, �4, σ 〉 states and
proportional to Bac,x; electric fields cannot drive transitions
inside KDs.

The mixing of the states due to the spin-orbit coupling
[see Eqs. (18) and (19) for the perturbative eigenstates] allows

additional transitions. The allowed transitions within second-
order perturbation theory are shown in Fig. 4(b). Summarizing
the spin-orbit coupling mixes all the �5/6 (spin) states with
each other while �4 states of the orbital doublets with the same
spin are mixed with each other and with states of the singlet of
inverted spin. This leads to all first-order allowed transitions
between a basis state of the �5/6 irrep being allowed conserv-
ing and flipping the spin in the second order. Additionally, to
the first-order transitions, transitions between states that both
transform like basis states of �4 spin flipping transitions are
allowed inside the KDs for Bac,x and between the states of
the orbital doublets for Bac,x and Eac,x in the second order.
Between the singlet and the orbital doublet states transforming
according to �4, inverted spin states couple proportional to
Bac,z and Eac,z in the second order. The structure given by
the second order coincides with the structure for the analytic
spin-orbit eigenstates. The matrix elements �eff

�� ′/|Bac| for V
in the α-configuration of 6H-SiC are depicted in Fig. 5. The
maximum relative error of the ��� ′ as a function of B0�ez and
�Bac is given by

max
�

(∣∣�eff
�� − ���

∣∣)/max
�

(���), (38)

where � is an arbitrary wave function. The error is smaller
than 1% for arbitrary driving magnetic field strength for V in
the α-configuration of 6H-SiC according to parameters used
in [9] (see Appendix F) for static magnetic field strength B0 <

100 T, as can be seen in the inset of Fig. 5.
Considering that at least for V in the α-configuration of

6H-SiC the leading order is much larger than the following
orders, it is hard to drive a transition that is suppressed in the
leading order. For example, if the Zeeman splitting is much
smaller than the crystal splitting, it is difficult to drive the
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transition |1, �5/6,↓〉 ↔ |2, �4,↑〉 because instead one would
drive the transition ↔ |2, �4,↓〉 off-resonantly. This explains
the missing measurement points in Figs. 6 and 7 in the paper
by Kaufman et al. [9] along the α-lines.

2. Static magnetic field in an arbitrary direction

For B0,x �= 0 the point symmetry and time-reversal sym-
metry are broken by the static magnetic field. This is already
manifested in the first-order effect of a static magnetic field
in the x-direction, the mixing of states of inverted spin and
different irreps inside the orbital doublets; see Eqs. (29)–(31).

We first discuss the special case B0,z = 0 where the PSSs
fulfill E (2)

i,±,σ = E (2)
i,±,−σ (i = 1, 2); see Eq. (34). When con-

sidering the states (not the energies) this makes the small
second-order contribution between the approximately degen-
erate PSSs very relevant, leading to states that diagonalize the
coupling of the driving magnetic field in the x-direction inside
the PSS doublet. Therefore, driving with an oscillatory mag-
netic field in the x-direction will be suppressed, while driving
using a magnetic field in the y- or z-direction is possible.
This underlines that in the case of a static field not aligned
with the crystal axis, the effective driving Hamiltonian can be
anisotropic in all oscillatory field components. Furthermore,
the mixing of states makes several transitions possible, e.g.,
the |1,+,↓〉 ↔ |1,+,↑〉 transition for Bac,y, Eac,x, and Eac,y.

Now we consider a magnetic field along an arbitrary direc-
tion on the x, z-plane. As an example, we discuss the transition
within the PSS doublet |1,+, σ 〉, which constitutes the GS for
some Mo and V defect configurations [3–7,9,10]. Group the-
oretical selection rules imply that the transition inside the KD
cannot be driven for �B0 ‖ �ez [5]. However, due to the mixing
of the KDs for �B0 ∦ �ez, the transition becomes possible.

In Fig. 6 we show the Rabi frequency �GS = �|1,+,↓〉,|1,+,↑〉
as a function of the directions of the static and alternating
magnetic fields. There is a maximum value for the transition
for B0,z �= 0 along the line where �Bac ‖ �ex. Using a static mag-
netic field corresponding to this maximum ensures a splitting
of the energies of the PSSs while at the same time making it
possible to drive the transition with a magnetic field along the
x-axis.

Analogously, the mixing of the states due to a static mag-
netic field perpendicular to the crystal axis can make other
transitions (including between different PSSs of different
crystal eigenspaces) possible for magnetic as well as electric
driving fields. To understand the mixing quantitatively and
to maximize the resonant Rabi frequency, one can use the
effective Hamiltonian (15).

IV. CONCLUSIONS

We have introduced a framework that describes how the
interplay of the reduced symmetry of a defect implanted in
a solid and spin-orbit coupling give rise to a nontrivial spin
structure with the direct application to a spin-1/2 defect in
SiC. We derived analytic energy levels in the absence of
external magnetic fields, and we used perturbation theory to
obtain effective Hamiltonians inside the crystal eigenspaces
that are directly related to the Hamiltonian of the full orbital
subspace.

This effective Hamiltonian directly links the anisotropy of
the g-tensor of the KDs to the interplay of C3v symmetry
and the spin-orbit coupling, and it can be used to explain
the expected magnetic and optical resonance properties of
the system for static magnetic fields in an arbitrary direction.
We were able to show how transitions that are forbidden for
intact C3v symmetry can be accessed by applying a static
field perpendicular to the crystal axis. This does not conflict
with previous selection rules, as external fields not aligned
with the crystal axis break the C3v point symmetry of the
defect. We expect the employed theory to be useful to study
allowed transitions for optical and microwave control, as well
as relaxation and coherence times, and to optimize static fields
to achieve desired forms of the driving Hamiltonian. Looking
forward, the derived Schrieffer-Wolff transformation can be
used to construct effective hyperfine Hamiltonians for the
defect states originating from the atomic d-orbital.

To obtain more quantitative information on the properties
of the defects at various crystal sites, it would be of great
interest to compute complete sets of reduction factors for
different defect configurations. Furthermore, reduction factors
for Vel and Hhf would make it possible to study the effect of
these using the employed framework in more detail and lead
to more precise predictions.
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APPENDIX A: SYMMETRY GROUPS OF THE DEFECT

Choosing the z-direction parallel to the crystal axis and
using the vectors �ai to the nearest-neighboring atoms of the
defect atom (see Fig. 1), the symmetry operations that leave
the defect site invariant are the identity E , the rotations R±
around �ez by ±2π/3, and reflections σi on planes spanned
by �a4 and �ai, i = 1, 2, 3. These symmetry operations are the
elements of the C3v point group [31]. This leads to the irreps
of C3v given by two one-dimensional irreps A1 and A2 and one
two-dimensional irrep E [32]. The double group C3v addition-
ally has the two-dimensional spinor representation �4 and the
two one-dimensional irreducible representations �5 and �6.

If we only consider the nearest-neighboring atoms, we
have the symmetries given above as well as reflections on
the planes spanned by �ai and �a j , rotations by ±2π/3 around
�ai, rotations by 2π/2 around �ai + �a4, and improper rotations
by 2π/4 around �ai + �a4, where i �= j = 1, 2, 3. These oper-
ations are the elements of the Td point group [31]. Td has
two one-dimensional, one two-dimensional, and two three-
dimensional irreps [32]. The double group Td additionally has
two two-dimensional and one four-dimensional irrep.

APPENDIX B: TRANSFORMATIONS OF STATES
AND OPERATORS

The representation of the rotation about an axis �n
with rotation angle α on angular momentum eigenstates is
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TABLE II. Representation (matrices) of the symmetry operations of the C3v group for its irreps. The representation for E is given for the
basis states |±1〉, and we use ε = e−i2π/3.

irrep E R+ R− σ1 σ2 σ3

A1 1 1 1 1 1 1
A2 1 1 1 −1 −1 −1

E 1

(
ε 0
0 ε∗

) (∗ε 0
0 ε

)
−
(

0 1
1 0

)
−
(

0 ε∗

ε 0

)
−
(

0 ε

ε∗ 0

)

given by

R(α, �n)|l, m〉 = e−iα�n·�L|l, m〉 (B1)

and inversion is given by

P|l, m〉 = (−1)l |l, m〉. (B2)

With these considerations, we can calculate the representa-
tion matrices of the C3v symmetry operators for the |m〉 =
|l = 2, m〉 [see Eq. (6)] angular momentum states (a basis
for the reducible representation �l=2 of C3v). The resulting
representations for the irreps are shown in Table II.

We find |0〉 is a basis for irrep A1. The operators Ho, z,
and pz all transform according to the irrep A1. The pairs of
states (|1〉, |−1〉) and (−|−2〉, |2〉) are bases for the irrep E .
The spherical components of the angular momentum operator
(L+1, L−1) transform according to the irrep E in the same
way as the basis (|1〉, |−1〉), and they are given by L±1 =
−i(Lx ± iLy)/

√
2 = −iL±/

√
2. The coordinate components

x, y also transform like −Ly, Lx according to the irrep E . The
z-component of the angular momentum operator Lz trans-
forms according to the irrep A2. Representation matrices for
Td symmetry operations can be calculated analogously, but in
this case the spherical harmonics cannot be assigned directly
to irreps.

APPENDIX C: CLEBSCH-GORDAN COEFFICIENTS AND
THE WIGNER-ECKART THEOREM

The Clebsch-Gordan coefficients link tensor-product states
to basis states of an irrep [29]

∣∣ξ r,α
l

〉 = dp∑
j=1

dq∑
k=1

(
p q
j k

∣∣∣∣∣r α

l

)∣∣φp
j

〉⊗ ∣∣ψq
k

〉
, (C1)

where the state |ψq
k 〉 (|φp

j 〉, |ξ r,α
l 〉) transforms according to row

k ( j, l ) of irrep �q (�p, �r ). The irrep �r is contained nr
pq

times in the product representation �p ⊗ �q, and α runs from
1 to nr

pq. Using the transformation matrices, we can also cal-
culate the Clebsch-Gordan coefficients for C3v; see Table III.
Equivalent coefficients for other bases of E are found in [16].

To use the symmetry properties to derive the general form
of the Hamiltonian, we use the Wigner-Eckart theorem [29]

〈
ψ r

l

∣∣Qq
k

∣∣φp
j

〉 = nr
pq∑

α=1

(
p q
j k

∣∣∣∣∣r α

l

)∗
〈r||Qq||p〉α, (C2)

where Qq
k is an operator transforming like a k basis vector

of irrep �q, 〈r||Qq||p〉α are reduced matrix elements, and
the Clebsch-Gordan coefficients are complex-conjugated. In

this article, we treat the reduced matrix elements as indepen-
dent parameters that are given by experiments or ab initio
calculations.

APPENDIX D: DEFECT HAMILTONIAN AND CRYSTAL
POTENTIAL

The TM defect and crystal potentials only act on the orbital
part of the wave function and transform according to the
irreducible representation A1 of C3v . Furthermore, using time-
reversal symmetry as well as hermiticity of the Hamiltonian
combining the defect atomic Hamiltonian with the crystal
potential, we find

Ho = HTM + Vcr = 〈A1‖Ho‖A1〉|0〉〈0|
+ 〈E‖Ho‖E〉3(|−2〉〈+1| − |2〉〈−1| + H.c.)

+
∑
i=1,2

〈E‖Ho‖E〉i(|+i〉〈+i| + |−i〉〈−i|), (D1)

where all reduced matrix elements correspond to real param-
eters. We introduce the definitions

〈A1||Ho||A1〉 = ε3, (D2)

〈E ||Ho||E〉1 = ε3 − 2�c/3 + K ′/2, (D3)

〈E ||Ho||E〉2 = ε3 − �c/3 + K ′/2 − K, and (D4)

〈E ||Ho||E〉3 =
√

2�c/3, (D5)

where the reduced matrix elements are introduced in Eq. (C2).
Here ε3 and �c parametrize the part of the crystal Hamiltonian
that fulfills the symmetry operations of Td and includes the
off-diagonal elements in this basis. Nonzero K and K ′ reduce
the Td symmetry to C3v . In terms of these parameters, the

TABLE III. Clebsch-Gordan coefficients for C3v symmetry. Here
± correspond to basis states of E transforming like |±1〉.
(

�i A1

k 1

∣∣∣∣∣� j

m

)
=
(

A1 �i

1 k

∣∣∣∣∣� j

m

)
= δi jδkm

(
E E
± ∓

∣∣∣∣∣A1

1

)
= 1√

2(
A2 A2

1 1

∣∣∣∣∣A1

1

)
= 1

(
E E
± ∓

∣∣∣∣∣A2

1

)
= ± 1√

2(
E A2

± 1

∣∣∣∣∣E±
)

=
(

A2 E
1 ±

∣∣∣∣∣E±
)

= ±1

(
E E
± ±

∣∣∣∣∣E∓
)

= ∓1
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eigenvalues in Eq. (7) are

εi − ε3 = �c

2

⎡⎣ (−1)i

3
sgn

(
1 − 3K

�c

)√
8 +
(

1 − 3K

�c

)2

−1 − K

�c
+ K ′

�c

⎤⎦, (D6)

and the mixing angle, as used in Eq. (8), is

φ = 1

2
arctan

(
2
√

2

1 − 3K/�c

)
. (D7)

APPENDIX E: BASIS CHANGE FROM Td to C3v

Considering that the nearest-neighboring atoms of the TM
defect respect Td symmetry, it may be justified to only take the
leading order of the symmetry reduction into account, e.g.,
by assuming that only Ho reduces the Td to C3v symmetry.
With this assumption, one can use the fact that intact Td

symmetry has fewer independent parameters compared to C3v .
The reduction factors introduced in the main text are further
restricted for intact Td symmetry, as they need to fulfill pk,11 =
0, pk,i2 = pk,i3, and p̃k,i j = p̃k′,i j independently of the direc-
tion k for p = λ, r, E . For the crystal potential parameters, this
implies φTd = atan(2

√
2)/2 = atan(1/

√
2) and ε2 = ε3.

The basis states of a crystal potential that leaves Td sym-
metry intact and one that reduces it to C3v are related by

|±1〉 = cos
(
φTd − φ

)|±̃1〉 − sin (φTd − φ)|±̃2〉, (E1)

|±2〉 = sin
(
φTd − φ

)|±̃1〉 + cos (φTd − φcr )|±̃2〉, (E2)

|0〉 = |̃0〉, (E3)

where we denote the eigenstates for the Td symmetric crystal
potential by |±̃i〉, |0̃〉. Using this transformation, orbital op-
erators transforming according to Td symmetry can be easily
transformed to the C3v basis using the mixing angle φ.

APPENDIX F: PARAMETERS FOR V IN THE
α-CONFIGURATION OF 6H-SiC

The necessary parameters for the model for vanadium (V)
in the α-configuration of 6H-SiC were taken from fits to
experimental data by Kaufmann et al. [9]. While this has
no implications for the employed theory, we mention that
Kaufmann et al. assumed that the α-configuration of 6H-SiC
corresponds to a defect in a quasihexagonal layer, while recent
ab initio calculations [10] suggest that it corresponds to a
defect in one of the quasicubic layers. The parameters used
in this article are

ε3 = 1018.47 meV, �c = 973.15 meV, (F1)

K = 93.36 meV, K ′ = −24.30 meV. (F2)

Using Eq. (D6) and shifting the energy scale such that ε1 = 0
leads to the remaining parameters of Eqs. (7) and (8), φ ≈
0.662 and ε2 ≈ 946.14 meV. The orbital operators in Hz and
Hso can be calculated as explained in Appendix E from the Td

symmetric factors

r̃12 = 0.18, r̃22 = 0.75, (F3)

λ̃12 = 1.77 meV, λ̃22 = 16.29 meV. (F4)

Furthermore, the free ion value of the spin-orbit coupling
strength for V is given by λ0 = 30.75 meV in the same paper.
Finally, we use gs = 2.

APPENDIX G: BLOCK DIAGONAL BASIS AND ANALYTIC SPIN-ORBIT STATES

The Hamiltonian Ho + Hso is block diagonal in the following basis. The first block is defined in the subspace spanned by the
basis states

1√
2

(i|+1〉|↑〉 + |−1〉|↓〉),
1√
2

(i|+2〉|↑〉 + |−2〉|↓〉), (G1)

which are related by time-inversion to the second blocks basis states

−1√
2

(i|+1〉|↑〉 − |−1〉|↓〉),
−1√

2
(i|+2〉|↑〉 − |−2〉|↓〉). (G2)

Again, the third blocks basis states

|+1〉|↓〉, |0〉|↑〉, |+2〉|↓〉 (G3)

are related to the fourth blocks basis states

−i|−1〉|↑〉, −i|0〉|↓〉, −i|−2〉|↑〉 (G4)

by time inversion. Because the maximal block size is 3 × 3 and the blocks of this size are real and symmetric, it is possible to
diagonalize the matrices analytically. The eigenvalues are

Ei,�5/6 =1

2

(
ε1 + λ‖11

2
+ ε2 + λ‖22

2

)
+ (−1)i 1

2

(
ε2 + λ‖22

2
− ε1 − λ‖11

2

)√√√√ λ2
‖12 + 4λ2

⊥12(
ε2 + λ‖22

2 − ε1 − λ‖11

2

)2 + 1, (G5)
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Ei,�4 = b

3
+ 2
√

b2 − 3c cos

[
�

3
+ (δi1 − δi2)

2π

3

]
,

× with

⎧⎪⎪⎨⎪⎪⎩
b = ε0 + ε1 + ε2 − λ‖11

2 − λ‖22

2 , cos(�) = 2b3−9bc−27d

2
√

(b2−3c)3
,

c = ε0
(
ε1 + ε2 − λ‖11

2 − λ‖22

2

)− λ2
‖12

4 − λ2
⊥01 − λ2

⊥02 + (ε1 − λ‖11

2

)(
ε2 − λ‖22

2

)
,

d = ε0
[ λ2

‖12

4 − (ε1 − λ‖11

2

)(
ε2 − λ‖22

2

)]+ λ‖12λ⊥01λ⊥02 + λ2
⊥01

(
ε2 − λ‖22

2

)+ λ2
⊥02

(
ε1 − λ‖11

2

)
,

(G6)

where the labels are compatible with the perturbative solution. Since the 3 × 3 blocks are real, the transformation can be
expressed in terms of (three) Euler angles. The diagonalization of the 2 × 2 blocks can be expressed in terms of two angles.
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