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Hyperfine structure of transition metal defects in SiC
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Transition metal (TM) defects in silicon carbide (SiC) are a promising platform in quantum technology,
especially because some TM defects emit in one of the telecom bands. We develop a theory for the interaction of
an active electron in the D shell of a TM defect in SiC with the TM nuclear spin and derive the effective hyperfine
tensor within the Kramers doublets formed by the spin-orbit coupling. Based on our theory we discuss the
possibility to exchange the nuclear and electron states with potential applications for nuclear spin manipulation
and long-lived nuclear-spin based-quantum memories.
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I. INTRODUCTION

For several applications in quantum technology, such as
quantum networks, memories, emitters, and many more [1–4],
a quantum system needs to be coherently controlled and iso-
lated from unwanted noise at the same time. Hybrid quantum
systems [5–7], consisting of a part that can couple strongly
to external fields as well as a part that is better shielded
from its environment, are promising platforms to fulfill this
requirement. In these systems one can benefit from short gate
times of one quantum system as well as long coherence times
of the other. A much studied system of this type is the nitrogen
vacancy center in diamond with its neighboring nuclear spins
[8–16] (and Refs. [17,18] for reviews).

Transition metal (TM) defects in silicon carbide (SiC) con-
stitute a similar family of systems that have the benefit of
being based on a well established host material as well as
having accessible transitions in the telecommunication bands
[19–23]. Recent studies made the first steps towards control of
nuclear spins via transition metal defects in SiC [22]. While
these results are highly promising, a complete theoretical
framework is still needed. In this paper, we derive a model
of the hyperfine coupling based on the underlying symmetry
properties and relevant orbital configuration of the defect in
the crystal, explaining the experimental data and leading to
additional insights. In particular we derive a sensible form of
the interaction of the defect nuclear spin with the spin and
orbital angular momentum of the active electron as well as
their combined interaction with external fields.

The prime examples for TM defects in SiC are created
by neutral vanadium (V) and positively charged molybdenum
(Mo) atoms substituting a Si atom in 6H- or 4H-SiC [19–25].
These defects have one active electron in the atomic D shell
and are invariant under the transformations of the C3v point
group imposed by the crystal structure surrounding the defect,
leading to the electronic level structure shown in Fig. 1(a).
While the interaction with the nuclear spins of neighboring
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C and Si isotopes with nonzero nuclear spins is possible, the
presence of such nonzero spin isotopes as a nearest neighbor is
fairly improbable, because their natural abundances are about
1% for 13C (spin 1/2) and 5% for 29Si (spin 1/2) [26] and
the abundance can be further reduced by using isotopically
purified SiC [27,28]. Here, we therefore concentrate on the
interaction with the TM nuclear spin. The nuclear spin for
the most common V isotope is I = 7/2 (>99%) and I = 5/2
for about 25% of the stable Mo isotopes and I = 0 for the
remaining isotopes of Mo [26,29].

II. MODEL

In order to model the coupling between the electron and
nuclear spin in a TM defect in SiC, we start from the full
Hamiltonian

H = Hel + Hd + Hhf + Hq + Hz,nuc + Hd,nuc. (1)

The static electronic Hamiltonian Hel describes the elec-
tronic orbital and spin degrees of freedom including the
Zeeman term Hz for the interaction with a static magnetic
field. The electronic driving Hamiltonian Hd models the inter-
action of the electron with an oscillating (electric or magnetic)
field, e.g., for optical driving it is given by the electric dipole
coupling HE

d = e �E (t ) · �r. The remaining terms are the focus
of this work; they incorporate the nuclear spin of the TM and
its interaction with the electron as well as external fields.

We discussed the first two terms Hel + Hd and the selec-
tion rules between electronic states in detail in Ref. [30]; in
the following we give a summary of the relevant properties
with additional information in Appendix A. While the state
describing the active electron shows the transformation prop-
erties of a d orbital, due to effects such as the Jahn-Teller
effect and covalency [23,31,32], there can be an admixture
of other orbitals. The Wigner-Eckart theorem [13,33] enables
us to absorb these effects as well as the radial part of the
wave function in reduced matrix elements. Here, we treat
reduced matrix elements as parameters that can be obtained
experimentally or via ab initio calculations.

The structure of the electronic system is given by five
Kramers doublets (KD), pairs of states related by time-
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FIG. 1. Spin-orbit (a) and hyperfine (b) energy level structure
of the active electron bound to the transition metal (TM) defect.
The artistic illustration (c) shows the electron with spin-1/2 (yellow
arrow) occupying a D shell (green and violet) which is split by the C3v

symmetric crystal potential Vcr , arising from the surrounding crystal
atoms, into two orbital doublets E and an orbital singlet A1 (a).
The white balls correspond to the nearest-neighbor atoms obeying
Td symmetry which is further reduced to C3v by the atoms in the
outer coordination shells (not shown). The spin-orbit interaction Hso

further splits each of the orbital doublets into two Kramers doublets
(KDs), leading to the final spin-orbit structure given by five KDs.
These KDs are then further split into hyperfine levels, due to the
interaction with the TM nuclear spin [purple arrow in (c)], shown
in (b) for the KD in the red frame.

reversal symmetry [34], with distinct zero-field energies
Ej,�5/6 , Ei,�4 , where we label the orbital configuration with j =
1, 2 and i = 1, 2, 3 and the irreducible representation (irrep)
of C3v pertaining to the KD with �γ [30]. The time-reversal
symmetry protects KDs from coupling via operators that are
invariant under time reversal. But they can be split via a static
magnetic field �B due to the Zeeman term.

Matrix elements mixing the KDs with the same orbital ori-
gin due to a static magnetic field perpendicular to the crystal
axis are suppressed by the spin-orbit splitting

�so
j = Ej,�5/6 − Ej,�4 (2)

and therefore can be neglected for small fields | �B⊥| �
min j=1,2 |�so

j |/μBgs, with the Bohr magneton μB. Typically,
the crystal potential is sufficiently large to neglect the coupling
between states originating from different atomic orbitals due
to a static magnetic field.

In the following we neglect the mixing of the KDs due
to the static magnetic field, enabling the description of
the KDs as separate pseudospin systems, described by the
Hamiltonians

HKD
i,�γ

= Ei,�γ
+ μB

2
�Bgi,�γ �σi,�γ

, (3)

with the vector of Pauli operators �σi,�γ
acting between the KD

states |i, �γ ,↑〉 and |i, �γ ,↓〉 [see Eqs. (B13)–(B15)] and the
pseudospin g-tensor g. For all KDs gi,�γ

is diagonal: For the

�5/6 KDs only g‖
i,�5/6

	= 0; for the �4 KDs with j = 1, 2 one

finds [30] g‖
j,�4


 g⊥
j,�4

if the spin-orbit coupling strength is
much smaller than the crystal level spacing. Here we choose
the crystal axis parallel to the z axis, i.e., g‖

j,�γ
couples Bz to

σ z
i,�γ

. Using the projection onto the subspace of the KD Pi,�γ

we can combine these Hamiltonians to obtain the complete
effective electronic Hamiltonian H eff

el = ∑
i,�γ

Pi,�γ
HKD

i,�γ
Pi,�γ

.

Now we incorporate the interaction between the electron
and the nucleus in Eq. (1). We take the Fermi contact and
anisotropic hyperfine interaction, as well as the interaction
of the orbital angular momentum with the nuclear spin, into
account. The total hyperfine Hamiltonian [35–38] can be
written as

Hhf = HFC + Hahf + Horb

= {aFC �S + a[�S − 3(�er · �S) · �er − �L]} · �I, (4)

with the electron (nuclear) spin �S (�I) and orbital angu-
lar momentum �L in units of the reduced Planck con-
stant h̄, the electron direction operator �er = �r/ |�r|, and the
anisotropic hyperfine and Fermi contact coupling strengths
a = gsμBμ0gNμN/4πr3 and aFC = −2gsμBμ0gNμNδ(r)/3,
with the vacuum permeability μ0, the free electron and nu-
clear g factors gs = 2 and gN , and the nuclear magneton μN .
The anisotropic coupling strength depends on the electronic
state via 1/r3 while the Fermi contact interaction depends on
the spin polarization density at the position of the nucleus
denoted using the delta distribution δ(r). The active electron
is mainly localized in a D shell but core-shell polarization
can still lead to a relevant Fermi contact interaction, which is
known for TM complexes [39–42]. In a simplified manner one
might understand this as some form of mixing with s orbitals.

In addition to the dipolar interaction we also incorporate
the nuclear quadrupolar term [36–38]

Hq = eQ

6I (2I − 1)

∑
i, j=x,y,z

∂2V

∂i∂ j

[
3

2
(IiI j + I jIi ) − δi j �I2

]
, (5)

describing the coupling between the nucleus and the
(anisotropic) electric field gradient ∂2V /∂i∂ j at the origin,
due to the nuclear quadrupole moment Q. Assuming that
external fields do not vary on the scale of the nucleus and
considering that a potential with cubic symmetry does not
contribute to the quadrupole interaction, only the gradient of
the crystal potential that reduces Td symmetry to C3v and the
charge distribution of the orbital state of the active electron
contribute to this term.

The nuclear spin can couple to external magnetic fields
described by the nuclear Zeeman Hamiltonian

Hz,nuc = μN gN �I · �B, (6)

and the corresponding driving Hd,nuc term for oscillating mag-
netic fields. These terms are small in comparison to the KD
Zeeman part |μN gN | � g‖

i,�γ
μB [22,25,43] and diagonal for �B

parallel to the crystal axis.

III. RESULTS

We derive the minimal set of nonzero matrix elements of
(mixed) square components of �er found by expanding Eq. (4)
in the eigenbasis of the crystal potential using the Wigner-
Eckart theorem. Then we transform the resulting Hamiltonian
to the eigenbasis of the electronic Hamiltonian (for Bx = By =
0); the details of this are given in Appendix B. As we did
for the mixing due to external fields we neglect off-diagonal
blocks between different orbital configurations i due to the
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FIG. 2. Nonzero matrix elements of H eff
hf between states of two

KDs originating from the same orbital doublet. The black lines
correspond to the electronic pseudospin states becoming multiplets
when taking the nuclear spin into account. The matrix elements
between states of the same �4 KD are proportional to I± (red dotted
and green dashed arrows) while they are proportional to Iz (gray
dash-dotted arrow) between states of the �5/6 KDs. Inside the KDs
the (off-diagonal) hyperfine interaction competes with the Zeeman
splitting (brown). The matrix elements between states of the different
KDs of the same orbital doublet are proportional to I± and suppressed
by the spin-orbit splitting �so

j (blue).

crystal field splitting. We find for the effective hyperfine
Hamiltonians inside the KDs,

Hhf
j,�5/6

= 1

2

(
a‖

j,�5/6
σ z

j,�5/6
+ a⊥

j,�5/6
σ x

j,�5/6

)
Iz, (7)

Hhf
j,�4

= a‖
j,�4

2
σ z

j,�4
Iz + a⊥

j,�4

4
(σ+

j,�4
I+ + σ−

j,�4
I−), (8)

Hhf
3,�4

= a‖
3,�4

2
σ z

3,�4
Iz + a⊥

3,�4

4
(σ+

3,�4
I− + σ−

3,�4
I+), (9)

for j = 1, 2 and using the pseudospin σ±
i,�γ

= σ x
i,�γ

± iσ y
i,�γ

as well as nuclear I± = Ix ± iIy ladder operators. A sim-
ilar form of the hyperfine coupling tensors was found in
Ref. [44] for D3h only using the transformation properties
of the pseudospin. Here we begin at the orbital level to be
able to link the form of the hyperfine coupling to the or-
bital configuration of the KD. The block-diagonal part of the
total effective hyperfine Hamiltonian can thus be written as
Hhf,bd = ∑

i,�γ
Pi,�γ

Hhf
i,�γ

Pi,�γ
. The terms mixing the KDs of

the same orbital doublet are

Hhf,od =
∑
j,σ

(a j,cσ | j, �5/6, σ 〉 〈 j, �4, σ | Iσ

+ a j, f | j, �5/6, σ 〉 〈 j, �4,−σ | I−σ + H.c.), (10)

where σ = ±1 =↑,↓. Combined this leads to the effective
hyperfine Hamiltonian H eff

hf = Hhf,bd + Hhf,od. The resulting
coupling structure is depicted in Fig. 2.

To treat the quadrupole term (5) inside an orbital subspace
we use that it only includes time reversal symmetric electronic
operators and furthermore C3v fulfills an axial symmetry (here
around the z axis). The first implies that the states of one KD
cannot be mixed by the coupling, the second that only the
anisotropy component along the z axis contributes, i.e.

Hq
j,�γ

= q j,�γ

[
3I2

z − I (I + 1)
]
, (11)

with q j,�γ
= eQ 〈 j, �γ , σ |∂2Vcr/∂z2| j, �γ , σ 〉 /6I (2I − 1).

Because there are no electron spin operators in this
Hamiltonian, the electronic operator part is even proportional
to unity in the whole orbital subspace apart from corrections
due to the spin-orbit coupling. Therefore we neglect the
part of the quadrupole interaction mixing the KDs solely
stemming from the spin-orbit mixing of the states.

Combining the effective spin-orbit (3), hyperfine (7)–(10),
nuclear quadrupole H eff

q = ∑
i,�γ

Pi,�γ
Hq

i,�γ
Pi,�γ

, and nuclear
Zeeman (6) contributions, we summarize our first main
result as

Heff = H eff
el + H eff

hf + H eff
q + Hz,nuc. (12)

The immediate implications of Eq. (12) are given by its
projection on the KDs, corresponding to the effective descrip-
tion for negligible inter-KD mixing |aj,c| , |a j, f | � | |�so

j | −∑
γ μB |g‖

i,�γ
B‖| /2|. The importance of this is further un-

derlined considering measurements by Wolfowicz et al. [22]
where the hyperfine coupling strength is at least two orders of
magnitude smaller than the spin-orbit splitting in all V defects
in 4H- and 6H-SiC for the ground state ( j = 1).

A. Discussion of the Hyperfine Tensor

We now discuss the projection of Eq. (12) onto the KDs in
more detail. The effective hyperfine coupling in the |3, �4, σ 〉
KD is the most similar to the simple diagonal dipolar coupling
to the nuclear spin, because the crystal potential does not mix
the orbital singlet (m = 0) state with the remaining orbital
states and the spin-orbit coupling vanishes in first order in
the orbital singlet. Additionally, the form of the symmetry
allowed part of the anisotropic hyperfine tensor in this case
also agrees with that of the 14N NV− center which has the
same symmetry but comprises spins S = I = 1 [8,12,15].

The KDs originating from the orbital doublets deviate
significantly from this form, because the pseudospin states
have a different spin and orbital wave function, due to the
interplay of the crystal potential and the spin-orbit coupling.
This leads to the (pseudo)spin-nonconserving coupling, i.e.,
the nondiagonal coupling σ x

j,�5/6
Iz of the �5/6 KDs as well as

the σ
+(−)
j,�4

I+(−) coupling of the �4 KDs for j = 1, 2, see Fig. 2.

Furthermore, the magnitude of a‖
j,�γ

can deviate significantly
from the other two diagonal entries because it can have pure
spin contributions.

Group theory implies that the �5/6 states cannot be coupled
by operators transforming according to the E representation of
C3v , e.g. Ix, Iy. This follows from the requirement that in C3v

the spin-orbit operator part of Hhf has to transform according
to the same basis vector of the same irrep as the corresponding
nuclear spin operator, because Hhf as a whole has to transform
according to A1. On the other hand operators transforming
according to E cannot couple states transforming according to
�5/6 = �5 ⊕ �6, as this combined irrep is not part of the direct
product E ⊗ (�5 ⊕ �6) = 2�4 � �5 ⊕ �6. On the other hand
the counterpart of Iz (transforming according to A2) can couple
these states. Finally, we stress that the pseudospin matrices are
not angular momentum type operators and, therefore, σ x

j,�5/6

and σ z
j,�5/6

can in part transform according to A2. For σ x
j,�5/6

the
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relevant terms in the hyperfine Hamiltonian are xzSx + yzSy.
As can be seen by the explicit calculation in Appendix B the
contribution of these terms vanishes in the �4 KDs. The dif-
ference between the �4 KDs originating from the doublet and
those from the singlet is due to the spin-orbit coupling leading
to the pseudospin up state from the doublet transforming like
the pseudospin down state from the singlet and vice versa.

We calculate the second order hyperfine interaction inside
the KDs due to the interaction between KDs from the same
orbital doublet with a Schrieffer-Wolff transformation [45],
see Eq. (B17). We obtain the second-order correction

Hhf,(2)
j,�5/6

= −Hhf,(2)
j,�4

= aod
j

(
I2 − I2

z − Iz
)
, (13)

for j = 1, 2 and Hhf,(2)
3,�4

= 0, with the defect-configuration
dependent constant aod

j = (a2
j,c + a2

j, f )/�so
j . Combined with

Eqs. (3), (7)–(9), and (11) this leads to the second order of the
effective hyperfine Hamiltonians for the KDs

Hi,�γ
= HKD

i,�γ
+ Hhf

i,�γ
+ Hq

i,�γ
+ Hz,nuc + Hhf,(2)

i,�γ
. (14)

We stress that the quadrupole Hamiltonian as well as the sec-
ond order contribution of the hyperfine interaction is purely
diagonal in the basis where z points along the crystal axis.

B. Comparison to Recent Experimental Results

We now compare our results to the recent measurements by
Wolfowicz et al. [22], concentrating on the two ground state
KDs. In Ref. [22] optically detected magnetic resonance of
the ground states was performed, and to model the allowed
resonant transition frequencies a model for the KDs with a
form of the hyperfine coupling was used that deviates from
our hyperfine Hamiltonian. The model

∑
k=x,y,z ak

j,�γ
σ k

j,�γ
Ik/2

was used for all KDs, including a tilt of the quantization
axis of the pseudospin. Further technical details and result-
ing hyperfine coupling tensors for the KDs can be found in
Appendix D. The above-mentioned measurement in combi-
nation with our theoretical model suggests that the lowest-
energy ground states (GS1) correspond to |1, �4〉 and GS2
to |1, �5/6〉. The first point we want to highlight is that the
measurement confirms that the |1, �5/6〉 KD states do not
couple via Ix, Iy and that a tilt of the pseudospin around the
y axis corresponding to the coupling of Iz to σ x

j,�5/6
is found.

We highlight that this artificial tilt of the quantization axis
needs no further explanation in our theory where the σ x

j,�5/6
Iz

coupling emerges naturally from the interplay of the crystal
potential and the spin-orbit interaction.

The second point is that our model provides a resort to
explain the measurements [22] for GS1 without the need for
an anisotropy in the hyperfine coupling tensor in the plane
perpendicular to the crystal axis. Our model Eq. (8) shows
good agreement with the transition frequencies in Ref. [22],
despite a deviation of two energies in some configurations
for small magnetic fields. For larger magnetic fields (B �
10 mT) indeed all energies are in agreement with the model
in Ref. [22]. Not only does our model provide an explanation
without the anisotropy, it furthermore reduces the number of
free parameters. For the β configuration of the V defect in
4H-SiC we plot the comparison of the models in Fig. 3.
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FIG. 3. Hyperfine energy levels without zero-field spin-orbit en-
ergies. For a V defect in the β configuration of 4H -SiC we compare
our model (black solid lines), see Eq. (14), with the fitted model by
Wolfowicz et al. [22] (green dashed lines). The fit for �5/6 (a) of
Ref. [22] is compatible with our model and the energy levels for
the �4 states (b) were calculated using a least squares fit for the
eigenvalues of the models for magnetic fields between 2–45 mT with
200 data points. While there is a disagreement in the energy levels,
the allowed transitions for magnetic microwave driving between the
states are compatible with the experimental data. For the effective
hyperfine constants we find a‖

1,�5/6
/h ≈ 202.5 MHz and a⊥

1,�5/6
/h ≈

158.2 MHz, as well as a‖
1,�4

/h ≈ −174.7 ± 4.3 MHz and a⊥
1,�4

/h ≈
149.5 ± 4.2 MHz, where the fit errors are due to the deviation at
small magnetic fields. We additionally use g1,�4,‖ = 1.87, g1,�5/6,‖ =
2.035, and μN gN/h = −11.213 MHz/T from Ref. [22].

Additionally, the measurement of β 6H-SiC in [22] in-
cludes all relevant electronic energy splittings allowing us to
assign |3, �4〉 to the lowest energy excited state, for which we
find that the form of the hyperfine interaction of our theory
agrees with their measurement.

C. Nuclear Quantum Memory

Finally we want to use the gained understanding of the
effective hyperfine Hamiltonians within the KDs (14) [and
Eqs. (7)–(9)] and investigate the consequences. The effective
Hamiltonians can be block diagonalized in 2 × 2 blocks. In
�5/6 the KDs are mixed with each other but not with the
nuclear spin, such that the resulting states are merely tilted
around an axis perpendicular to the crystal axis. On the other
hand, the �4 KD electronic states are entangled with the
nuclear spin, i.e.,

|i, �4,+, mI〉 = cos(φi,�4,mI ) |i, �4,↑〉 |mI〉 (15)

+ sin(φi,�4,mI ) |i, �4,↓〉
{|mI − 1〉 for i = 1, 2
|mI + 1〉 for i = 3 ,

and similarly for the corresponding orthogonal states
|i, �4,−, mI ∓ 1〉. The hyperfine mixing angles φi,�4,mI , as
well as the complete analytic diagonalization of the effec-
tive hyperfine Hamiltonian (14) including a static external
magnetic field along the crystal axis can be found in Ap-
pendix C. In combination with the selection rules for the
electronic states [30], the mixing leads to the allowed tran-
sitions between hyperfine states. Here we concentrate on a
set of optical transitions under driving with an oscillatory
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|3, Γ4, +,−I〉

|1, Γ4, +,−I〉

|1, Γ4,−,−I〉 |1, Γ4,−,−I + 1〉

B⊥, E⊥
B‖, E‖

FIG. 4. Lambda (�) system to interface the electronic (pseudo)
spin and nuclear spin states (orange arrows). Using the employed
theory to find the hyperfine eigenstates for a static magnetic field par-
allel to the crystal axis as well as the selection rules for the spin-orbit
eigenstates we obtain the allowed transitions between relevant states
of different (pseudospin) KDs. The Lambda system can be used to
transfer an electronic state α | j, �4, −, −I〉 + β | j, �4, +,−I〉 (yel-
low dotted frame) to a nuclear spin state (quantum memory, purple
dashed frame) α | j, �4,−, −I〉 + β | j, �4,−, −I + 1〉. The blue dot-
ted (solid orange) line(s) corresponds to driving with a magnetic or
electric field parallel (perpendicular) to the crystal axis.

electric field, Hd = e�r · �E0 sin(ωt ), that can be used to transfer
the pseudospin state of the ground-state KD |1, �4, σ 〉 to the
nuclear spin and vice versa via a Lambda (�) system. We
now consider the case where the electronic qubit is given by
the states |1〉 , |0〉 = |1, �4,±,−I〉. The |0〉 state is shared
with the nuclear qubit where the excited state is given by
|1〉nuc = |1, �4,−,−I + 1〉. While we choose a certain mI

here, the theory can be applied analogously to other encodings
of the qubit. The states mI = ±I have the benefit that they
couple to fewer states.

Next, we outline the necessary details on how to transfer
the state between the qubits as well as an experiment to
measure the T ∗

2 time of the nuclear qubit while only directly
controlling the electron. To achieve this we propose the use
of the ancillary state |3, �4,+,−I〉 that couples polarization
dependently to the states of the electronic and nuclear qubit.
This creates a � system that transfers the population from the
|1〉 ↔ |1〉nuc, see Fig. 4. The polarization dependence ensures
that when driving the two photon process |1〉 ↔ |1〉nuc reso-
nantly, no off-resonant transition to |0〉 is excited. Storing the
state of the electronic qubit α |0〉 + β |1〉 to the nuclear qubit
can be achieved by applying a π pulse to the � system (orange
transitions in Fig. 4), resulting in the state α |0〉 + βeiψs |1〉nuc,
where ψs is a known static phase gained during the pulse.

For a modified Ramsey experiment [14], one would first
polarize the nuclear spin and prepare the electronic state |0〉.
Now applying a π/2 pulse to the electronic qubit results in
(|0〉 + |1〉)/

√
2. This is followed by a π pulse via the opti-

cal � system to transfer the state to (|0〉 + eiφs |1〉nuc)/
√

2.
During a (variable) free evolution of time T this state ac-
cumulates a further relative phase (different from the free
evolution of the electronic qubit and independent of the ini-
tial state) given by ψ = (Ei,�4,−,−I − Ei,�4,−,−I+1)T/h̄, where
the energies in terms of the model parameters and the
static magnetic field strength can be found in Appendix C.
Applying a second π pulse after the free evolution transfers
the population back to the electronic qubit, that now has a
different phase from the initially prepared state ψ ′ = ψ + δψs

where δψs is another known static phase. Applying another
electronic π/2 pulse leads to the state (1 − eiψ ′

)/2 |0〉 +

(1 − eiψ ′
)/2 |1〉 making the phase measurable via population

measurements of the state |0〉 for different free evolution du-
rations T . Due to decoherence the final state is not achieved
perfectly; this is quantified by the inhomogeneous spin co-
herence time T ∗

2,nuc that can be extracted from this kind of
experiment [14].

Similarly, our effective theory shows that the hyperfine in-
teraction opens the possibility to directly drive the pseudospin
transition of the KDs for small magnetic fields due to the pseu-
dospin tilt or the pseudospin nuclear entanglement; this was
studied using a different framework by Gilardoni et al. [46].
Lastly, when the spin-orbit splitting is sufficiently small, the
second order hyperfine interaction can enable optical driving
inside the KDs by mixing the KDs of the same orbital doublet.

Finally we note that we mostly concentrated on the vana-
dium (V) defect, because it has a high isotopic purity, the
transition line in the O band, as well as larger interest in the
experimental community. Still, our theory is applicable to Mo
as well, where the main differences are that only a fraction
of the stable isotopes have nuclear spin and the (ground state)
spin-orbit splitting is about twice the one in the corresponding
V defect [23].

IV. CONCLUSIONS

In summary, we introduced a theory to describe the hyper-
fine interaction in TM defects in SiC having a single electron
in a D shell. The theory yields insights into previous mea-
surements and reduces the required number of fit parameters
of the effective hyperfine coupling tensor. Combined with our
previous work [30] the derived form of the coupling leads to
selection rules between the hyperfine energy levels. We used
these to construct a � system that can be exploited to create a
nuclear spin quantum memory interfaced with the electronic
qubit and proposed an experimental sequence to measure the
T ∗

2 time of the nuclear qubit.
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APPENDIX A: ELECTRONIC HAMILTONIAN

The electronic Hamiltonian without the interaction with
oscillating fields and the nuclear spin of the TM is [34]

Hel = HTM + Vcr + Hso + Hz. (A1)

The first term is the atomic Hamiltonian HTM given by the
kinetic energy of the active electron and the potential of the
interaction of the active electron bound to the TM atom VTM

that localizes the active electron in the d orbital. The crystal
potential Vcr describes the interaction with the lattice atoms
and reduces the symmetry to C3v . The symmetry reduction
splits the five orbital levels into two doublets E and a singlet
A1, see Fig. 1(a).

The spin-orbit Hamiltonian Hso = h̄/2m2
ec2{∇[VTM +

Vcr] × �p} · �S, with the electron spin vector operator �S = �σ/2
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in units of the reduced Planck constant h̄ given by half the
Pauli vector �σ , and the speed of light in vacuum c, describes
the interaction of the orbital-angular momentum of the elec-
tron with the electron spin due to relativistic effects. This term
splits each of the orbital doublets into two Kramers doublets,
one transforming according to the irrep �4 and one transform-
ing according to the combination of irreps �5/6 = �5 ⊕ �6.

The Zeeman Hamiltonian Hz = μB(gs �B · �S + �B · �L) de-
scribes the coupling to a static magnetic field which breaks
time-reversal symmetry and thus energetically splits the KDs,
here μB is the Bohr magneton, gs the free electron g factor,
and �L the orbital angular momentum operator in units of h̄.
Because the coupling to electric fields is invariant under time
inversion, electric fields cannot lift the degeneracy of the KDs,
therefore we concentrate on static magnetic fields.

Due to several effects and because the precise form of Vcr

is unknown we employ the Wigner-Eckart theorem to derive
the most general symmetry-allowed form for the orbital op-

erators. The application of the Wigner-Eckart theorem to the
electronic Hamiltonian, the calculation of the block-diagonal
effective Hamiltonian, as well as the derivation of the selec-
tion rules (for magnetic and electric dipole transitions) based
on the form of the resulting electronic states can be found in
Ref. [30]. The perturbative states are also shown in Eqs. (B5)–
(B7), and the transformed effective electronic Hamiltonian in
Eq. (B8).

APPENDIX B: DERIVATION OF Hhf

In this Appendix we show a more in-depth derivation of
the general form of the hyperfine Hamiltonian of a spin-
orbit coupled electron state in a D shell of a transition
metal (TM) defect in a crystal environment with C3v sym-
metry with the TM nuclear spin. We start by writing the
hyperfine Hamiltonian with the nontrivial scalar products
expanded

Hhf = aFC �S · �I − 3a

{[(
−y2 − x2

2
Sx + xySy

)
+ xzSz + y2 + x2

2
Sx − Sx/3 + Lx/3

]
Ix

+
[(

y2 − x2

2
Sy + xySx

)
+ yzSz + y2 + x2

2
Sy − Sy/3 + Ly/3

]
Iy

+ [(xzSx + yzSy) + z2Sz − Sz/3 + Lz/3]Iz

}
, (B1)

where (x, y, z)T = �r/r are the direction vector components of the position �r of the electron relative to the TM nucleus in the
origin. In the appendices of Ref. [30] we discussed the application of the Wigner-Eckart theorem for the given symmetry in
detail; analogously we use the eigenbasis of the crystal potential inside the subspace of d-orbital like states, made up of two
doublets |±〉i transforming like the basis |l = 2, m = ±1〉 of E and given by admixtures of the states |l = 2, m 	= 0〉 (and states
that transform the same) as well as a singlet |0〉 = |l = 2, m = 0〉 transforming according to A1. For the hyperfine Hamiltonian
(B1) the relevant operators are the square components kl with k, l = x, y, z acting on the orbital states. These components
can be mapped to operators that transform the same as x, y, z, implying a one-to-one correspondence of the application of the
Wigner-Eckart theorem to the orbital terms of the electronic dipolar coupling e �E�r. In particular, z2 and (x2 + y2)/2 transform
like z according to the irrep A1, while {zx, zy} and {(y2 − x2)/2, xy} transform like {x, y} according to the irrep E . The orbital
operators transforming like z have the form

Z12

( ∑
σ=±

|σ1〉 〈σ2| + H.c.

)
+

∑
i=1,2,3

ZiiPi, (B2)

where Pj = |+ j〉 〈+ j | + |− j〉 〈− j |( j = 1, 2) and P3 = |0〉 〈0|. The operators transforming like x have the form

∑
i, j=1,2

Xi j (|+i〉 〈− j | + H.c.) +
∑
i=1,2

Xi3(|+i〉 〈0| − |−i〉 〈0| + H.c.) (B3)

and the corresponding operator transforming like y

∑
i, j=1,2

Xi j (i |+i〉 〈− j | + H.c.) +
∑
i=1,2

Xi3(i |+i〉 〈0| + i |−i〉 〈0| + H.c.). (B4)

While all operators transforming the same have these forms, the parameters Xi j and Zi j vary. The �L operators take the form
discussed in Ref. [30].
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Because the spin-orbit interaction is much larger than the hyperfine interaction, we first approximately diagonalize the spin-
orbit Hamiltonian, using the first-order Schrieffer-Wolff transformation we derived in Ref. [30], given in terms of approximate
eigenstates (rows of 1 − Sso,1)

|i, �5/6, σ 〉(1) = |σi〉 |σ 〉 + σ
2λ⊥,12r‖,12

(ε2 − ε1)(gs + 2r‖,ii )
|−σi〉 |−σ 〉 − (−1)iλ‖,12

2(ε2 − ε1)
|σ3−i〉 |σ 〉 − σλ⊥,12

ε2 − ε1
|−σ3−i〉 |−σ 〉 , (B5)

|i, �4, σ 〉(1) = |−σi〉 |σ 〉 − (−1)iλ‖,12

2(ε2 − ε1)
|−σ3−i〉 |σ 〉 − σλ⊥,i3

ε3 − εi
|0〉 |−σ 〉 for i < 3 and (B6)

|3, �4, σ 〉(1) = |0〉 |σ 〉 + σλ⊥,13

ε3 − ε1
|σ1〉 |−σ 〉 + σλ⊥,23

ε3 − ε2
|σ2〉 |−σ 〉 , (B7)

with σ = ± =↑,↓, ε j, ε3 ( j = 1, 2) the eigenvalues with the eigenvectors |± j〉 , |0〉 of the crystal potential, and λk,i j the spin-
orbit parameters.

With the Schrieffer-Wolff transformation we can
approximate the Hamiltonian H [Eq. (1)] with an effective
Hamiltonian Heff = ∑

i=1,2,3 Pi(H + [Sso,1, H])Pi =
H eff

el + H eff
d + H eff

hf + H eff
q + Hz,nuc, with H eff

q and Hz,nuc

as discussed in the main text and selection rules between the
orbital states under driving H eff

d as discussed in Ref. [30].
Renaming the independent (combinations of) parameters we
find

H eff
el =

∑
i,�γ

HKD
i,�γ

+
∑
j,σ

μB

2
[g j,c(σBx + iBy)

× | j, �5/6, σ 〉 〈 j, �4, σ | + g f ,c(Bx − σ iBy)

× | j, �5/6, σ 〉 〈 j, �4,−σ | + H.c.]

(B8)

with the KD Hamiltonians HKD
i,�γ

from Eq. (3) of the main text
and

H eff
hf =

∑
i,�γ

Hhf
i,�γ

+
∑
j,σ

a j, f [(Ix − σ iIy)

× | j, �5/6, σ 〉 〈 j, �4,−σ |+H.c.]. +
∑
j,σ

a j,c[(σ Ix + iIy)

× | j, �5/6, σ 〉 〈 j, �4, σ | + H.c.]

(B9)

with the diagonal blocks

Hhf
j,�5/6

= 1

2

(
a‖

j,�5/6
σ z

j,�5/6
+ a⊥

j,�5/6
σ x

j,�5/6

)
Iz, (B10)

Hhf
j,�4

= a‖
j,�4

2
σ z

j,�4
Iz + a⊥

j,�4

2

(
σ x

j,�4
Ix − σ

y
j,�4

Iy
)
, (B11)

Hhf
3,�4

= a‖
3,�4

2
σ z

3,�4
Iz + a⊥

3,�4

2

(
σ x

3,�4
Ix + σ

y
3,�4

Iy
)
, (B12)

for j = 1, 2, and σ k
i,�γ

is the k Pauli matrix act-
ing between the pseudospin states of the i, �γ

KD, i.e.,

σ x
i,�γ

= |i, �γ ,↑〉 〈i, �γ ,↓| + H.c., (B13)

σ
y
i,�γ

= −i |i, �γ ,↑〉 〈i, �γ ,↓| + H.c., (B14)

σ z
i,�γ

= |i, �γ ,↑〉 〈i, �γ ,↑| − |i, �γ ,↓〉 〈i, �γ ,↓| . (B15)

Analogously we can write the above equations using coupling
tensors Hhf

i,�γ
= 1

2 �σi,�γ
· Ai,�γ

· �I , with

Aj,�5/6 =
⎛
⎝0 0 a⊥

j,�5/6

0 0 0
0 0 a‖

j,�5/6

⎞
⎠, Aj,�4 =

⎛
⎝a⊥

j,�4
0 0

0 −a⊥
j,�4

0
0 0 a‖

j,�4

⎞
⎠, A3,�4 =

⎛
⎝a⊥

3,�4
0 0

0 a⊥
3,�4

0
0 0 a‖

3,�4

⎞
⎠, (B16)

and the Pauli vector �σi,�γ
= (σ x

i,�γ
, σ

y
i,�γ

, σ z
i,�γ

)T . We note that while we cannot estimate the magnitude of the different
contributions to the hyperfine Hamiltonian within our theory, the main contribution is expected to be due to the anisotropic
and orbital hyperfine interactions. In the leading order for these one would find a‖

j,�5/6
= −a‖

j,�4
(for KDs with the same orbital

origin, j = 1, 2) in agreement with the alternating signs found by the fit in Table I.
To take the block-off-diagonal part Hhf,od of (B9) into account, we apply a second Schrieffer-Wolff transformation.

Here, the unperturbed Hamiltonian H0 = ∑
i,�γ

Ei,�γ
Pi,�γ

becomes perturbed inside the KDs by Vd = Hhf,bd + Hz,nuc +∑
i,�γ

μBg‖Bzσ
z
i,�γ

/2 and between KDs with the same orbital origin by Hhf,od, leading to the first-order Schrieffer-Wolff
transformation

S1 =
∑
j,σ

1

�so
j

(a j,cσ | j, �5/6, σ 〉 〈 j, �4, σ | Iσ + a j, f | j, �5/6, σ 〉 〈 j, �4,−σ | I−σ − H.c.), (B17)

and the new effective Hamiltonian H̃ = H0 + Vd + [S1, Hhf,od] /2. After projection into one of the KDs, the effective interaction
term becomes Hhf,(2)

i,�γ
= Pi,�γ

[S1, Hhf,od] Pi,�γ
/2.
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TABLE I. Hyperfine tensors for our model calculated using the fit values of Wolfowicz et al. [22]; the defect type assignment in brackets
is according to the ab initio results by A. Csóré et al. We omit the errors for the �5/6, because we can directly calculate [see Eq. (D1)] the
values from their fit data such that there is no additional error due to fitting. Furthermore we show the values of the crystal splitting �cr

between the lowest energy ground and excited state, as well as the spin-orbit splitting between the two ground states as determined in Ref. [22]
(measurement error ≈1 GHz for both �so

2 and �cr).

Irrep Crystal Defect type a⊥
1,�γ

/h (MHz) a‖
1,�γ

/h (MHz) �cr/h (THz) [22] �so
1 /h (GHz) [22]

�4 4H-SiC α (k) 165.1 ± 1.7 −232.0 ± 3.9 234.4 529
�4 4H-SiC β (h) 149.5 ± 4.2 −174.7 ± 4.3 224.5 43
�4 6H-SiC α (k2) 165.1 ± 1.6 −232.0 ± 3.6 229.1 524
�4 6H-SiC β (k1) 141.6 ± 2.4 −171.2 ± 2.1 221.8 25
�4 6H-SiC γ (h) 147.3 ± 14.5 −175.4 ± 13.6 216.0 16
�5/6 4H-SiC β (h) 202.5 158.2
�5/6 6H-SiC β (k1) 197.6 165.8
�5/6 6H-SiC γ (h) 205.9 166.8

APPENDIX C: DIAGONALIZATION FOR A MAGNETIC FIELD ALONG THE CRYSTAL AXIS

In this Appendix we diagonalize the effective hyperfine Hamiltonian of the KDs, Eq. (14). The effective hyperfine
Hamiltonians can be decomposed into 2 × 2 blocks for a magnetic field �B along the crystal axis. For the j, �5/6 states the
blocks are spanned by | j, �5/6,↑〉 |mI〉 , | j, �5/6,↓〉 |mI〉, for the j = 1, 2, �4 states by | j, �4,↑〉 |mI〉 , | j, �4,↓〉 |mI − 1〉 (the
states | j, �4,↑〉 |−I〉 , | j, �4,↓〉 |I〉 are already diagonal), and for 3, �4 states by |3, �4,↑〉 |mI〉 , |3, �4,↓〉 |mI + 1〉 (the states
|3, �4,↑〉 |I〉 , |3, �4,↓〉 |−I〉 are already diagonal). We can diagonalize the nondiagonal blocks with the transformations

Tj,�5/6,mI = exp
( − iφ j,�5/6,mI σ

y
j,�5/6

) |mI〉 〈mI | , with tan
(
2φ j,�5/6,mI

) =
a⊥

j,�5/6
mI

μBBg‖
j,�5/6

+ a‖
j,�5/6

mI

; (C1)

Tj,�4,mI = exp
[ − iφ j,�4,mI (−i | j, �4,↑〉 |mI〉 〈mI − 1| 〈 j, �4,↓| + H.c.)

]
,

with tan 2φ j,�4,mI = a⊥
j,�4

√
I (I + 1) − mI (mI − 1)

μBg‖
j,�4

B + (
a‖

j,�4
+ 6q j,�4

)
(mI − 1/2) + μN gN B + aod

j 2mI

; (C2)

T3,�4,mI = exp
[ − iφ3,�4,mI (−i |3, �4,↑〉 |mI〉 〈mI + 1| 〈3, �4,↓| + H.c.)

]
,

with tan 2φ3,�4,mI = a⊥
3,�4

√
I (I + 1) − mI (mI + 1)

μBg‖
3,�4

B + (
a‖

3,�4
+ 6q3,�4

)
(mI + 1/2) − μN gN B

. (C3)

The corresponding eigenvalues are

Ej,�5/6,±,mI = Ej,�5/6 ±
μBBg‖

j,�5/6
+ a‖

j,�5/6
mI

2
∣∣cos 2φ j,�5/6,mI

∣∣ + μN gN mI B + q j,�5/6

[
3m2

I − I (I + 1)
] + aod

j [I (I + 1) − mI (mI + 1)], (C4)

Ej,�4,±,mI ±1/2−1/2 = Ej,�4 + a‖
j,�4

4
± μBg‖

j,�4
B + (

a‖
j,�4

+ 6q j,�4

)
(mI − 1/2) + μN gN B + aod

j 2mI

2
∣∣cos 2φ j,�4,mI

∣∣
+ μN gN B(mI − 1/2) + qj,�4

[
3

(
m2

I − mI + 1

2

)
− I (I + 1)

]
+ aod

j

[
m2

I − I (I + 1)
]
, (C5)

E3,�4,±,mI ∓1/2+1/2 = E3,�4 − a‖
3,�4

4
± μBg‖

3,�4
B + (

a‖
3,�4

+ 6q3,�4

)
(mI + 1/2) − μN gN B

2
∣∣cos 2φ3,�4,mI

∣∣
+ μN gN B(mI + 1/2) + qj,�4

[
3

(
m2

I + mI + 1

2

)
− I (I + 1)

]
, (C6)

where we use the contribution of the wave function proportional to cos(φi,�γ ,mI ) to label the energies.

APPENDIX D: HYPERFINE TENSORS FOR
EXPERIMENTAL DATA FROM WOLFOWICZ et al.

We compared our model briefly to data by Wolfowicz
et al. [22] in the main text; here we provide Table I with the
least square fits for �4 defects to translate their model to our

model as well as the parameters for �5/6 defects that can be
calculated directly using their principal axis tilt θ and AZZ

(az
j,�5/6

with j = 1, 2 in the notation of the main text) value,

a⊥
j,�γ

= sin(θ )AZZ , a‖
j,�γ

= cos(θ )AZZ . (D1)
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The fit with the worst agreement is for the γ site of 6H-SiC,
we want to stress that in this case the data provided in the
Supplemental Material in Ref. [22] seems to be not described
perfectly by their model, too. As this defect configuration also
has the smallest �so

1 it would be reasonable to include the
second order hyperfine energy correction when fitting to the
raw data. The signs in the table carry no physical meaning
here, because we did not choose a particular orientation of the
z axis, i.e., we do not show the stacking order of the crystal
with regard to the direction of the z axis and inverting the
magnetic field Bz → −Bz corresponds to changing the sign
of a‖

j,�γ
in the isolatet KD hyperfine energy lines. The sign

of the off-diagonal elements in comparison to the diagonal
elements has no effect on the energy levels used in the fit.

The magnitudes of the contributions of the crystal field and
the ground-state spin-orbit splitting for the different defect
configurations are included in Table I.

Due to availability of measurements of the hyperfine tensor
components for V we concentrated on this defect, but for
completeness we note that the crystal field splitting for mea-
surements of Mo (h site in 6H-SiC) [21] with about 267.4 THz
is of similar magnitude as for the V defects and the spin-orbit
coupling is larger than for V. According to Ref. [23] (where
the same site is assigned differently, as the k2 site) it has a
spin-orbit splitting of about 1106.05 GHz, about twice the
splitting in V. With this, we see that the arguments given based
on the spin-orbit structure in the main text hold for V as well
as Mo.
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