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A new theoretical framework to describe the experimental advances in electro-optic detection of
broadband quantum states, specifically the quantum vacuum, is devised. Electro-optic sampling is a
technique in ultrafast photonics which, when transferred into the quantum domain, can be utilized to
resolve properties of a sampled quantum state via its interaction with a strong coherent probe pulse at
ultrafast timescales. By making use of fundamental concepts from quantum field theory on spacetime
metrics, the nonlinear interaction behind the electro-optic effect is shown to be equivalent to a stationary
Unruh-DeWitt detector coupled to a conjugate field during a very short time interval. When the coupling
lasts for a time interval comparable to the oscillation periods of the detected field mode (i.e., the subcycle
regime), virtual particles inhabiting the field vacuum are transferred to the detector in the form of real
excitation. We demonstrate that this behavior can be rigorously translated to the scenario of electro-optic
sampling of the quantum vacuum, in which the (spectrally filtered) probe works as an Unruh-DeWitt
detector, with its interaction-generated photons arising from virtual particles inhabiting the electromagnetic
vacuum. Our analysis accurately encapsulates the quantum nature of the vacuum, and we propose the
specific working regime in which we can experimentally verify the existence of virtual photons with
quantum correlations in the electromagnetic ground state.
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I. INTRODUCTION

Quantum field theory is one of the foundations of
modern physics, answering many questions from the early
days of quantum physics. Although it was initially seen as
an approach restricted to particle and high-energy physics,
it gradually became a fundamental working tool for
branches of physics spanning from condensed matter
and quantum optics to quantum-relativistic effects [1].
The latter case involved the consideration of quantum
fields on relativistic spacetime metrics, leading to novel
implications and a (re)formulation of thermodynamical
laws for systems in which both relativistic and quantum
effects play major roles [2,3]. These studies led to the
proposition of a range of extremely interesting effects, of
which Unruh-Davies and Hawking radiation can be high-
lighted as some of the most intriguing. In the last two

decades techniques from quantum information science [4]
have been merged in various ways with quantum field
theory in curved spacetime, leading to investigations of
information-related questions at the interface of quantum
mechanics and relativity. Potential implications range from
creating novel measurement protocols to answering fun-
damental questions about the quantization of gravity (the
only fundamental force yet to be quantized) [5,6]. This new
field is often referred to as relativistic quantum information.
The Unruh-Davies effect corresponds to the observation

of thermal radiation in the quantum vacuum by an observer
moving with constant proper acceleration in (Minkowski)
spacetime [7,8]. It was initially proposed as an alternative
observation possibility of the effect by which an inertial
observer sees thermal radiation coming from the horizon of
a black hole, the Hawking effect [9]. The mechanism
behind both effects, which are linked by the equivalence
principle, has been related to the presence of horizons in
spacetime [10]. Initial doubts about the observability of
such radiation were allayed by the introduction of the
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Unruh-DeWitt (UDW) detector [11]. This tool is the
theoretical representation of a (usually) pointlike monopole
that couples to the quantum field of interest through a
Hamiltonian (or Lagrangian) term linear in both monopole
and field, with coupling strength and observer’s worldline
that can be varied at will [12] (cf. Fig. 1). The importance of
this innovation was that the somewhat abstract particles
seen in the relativistic field representations could really be
mapped to the excitations of a simple, but convincing
detector model.
One of the most interesting predictions based on such

devices is the possibility of getting two spacelike separated
UDW detectors entangled through their coupling to the
field even if the latter is in its ground (vacuum) state, so that
the entanglement between the detectors appears before
lightlike particles can travel the distance between the
detectors [13,14]. This discovery was given the name
vacuum entanglement, since it is believed that the vacuum
works as a reservoir of entanglement for quantum systems.
Although similar interaction Hamiltonians can be found in
several branches of physics, one of the most characteristic
examples of a real-world realization of such interactions is
the light-matter coupling.
Two-level atomic or artificial-atom systems are potential

physical embodiments of the theoretical UDW detector

[15]. Some ground-breaking experiments have managed to
make considerable advances in this regard, by either
effectively controlling the (slowly varying) time-dependent
coupling between the system and a resonator [16] or
another artificial atom [17], or even by rapidly switching
on such coupling through subcycle activation of electronic
quantum wells in an optical cavity [18]. Theory based on
the latter experiment predicts emission of virtual cavity
photons as a consequence of the nonadiabatic change of the
ground state of the system, a feature that closely resembles
the emission of Unruh-Davies particles [19–21].
Related studies employing a subcycle-light probe to

electro-optically sample low-frequency (quantum) electric
fields have recently led to the measurement of the (broad-
band) electric-field variance of the vacuum [22,23]. These
results have raised a debate on whether the measurements
deliver real estimations for vacuum fluctuations or their
outcomes represent a by-product of squeezing [23]. We
remark that theoretical support to the former interpretation
has already been provided [24,25]. It was also found that
the spectra obtained for the state resulting from the non-
linear interaction of the vacuum with an ultrashort coherent
pulse should closely resemble the spectra of Unruh-like
particles detected by a finite-lifetime observer [26,27].
Moreover, the description of the corresponding transfor-
mation of the vacuum field led to a generalization of the
known relation between two-mode squeezing and Unruh-
Davies radiation [10,28,29].
Nevertheless, the connection between the quantum

optical process of squeezing and these types of relativistic
effects is subtle. As an example, consider the dynamical
Casimir effect in which a rapidly oscillating mirror can
produce photons from the vacuum [30]. As it is the physical
acceleration of the mirror that produces the photons, there
is a clear connection between these photons and the Unruh-
Davies radiation. On the other hand, the oscillating mirror
affects the vacuum in a very similar way to an oscillating
boundary condition produced by a harmonic-optical-pump-
induced rapidly varying refractive index in a nonlinear
crystal. The latter is a well-known optical method of
producing photons from the vacuum via squeezing.
Although the physical mechanisms are distinct, the overall
effect is to produce a very similar interaction with the
vacuum.
The present article utilizes a novel analysis of the

quantum electro-optic sampling (EOS) to find the regime
in which the actions of the (UDW) detector-field and the
(electro-optic) field-field interactions are equivalent. In
fact, this equivalence defines a new and experimentally
feasible optical variant of the UDW detector [31], allowing
one to rigorously interpret the experimental results of EOS
at a deeper level of understanding. In particular, we identify
the regime in which the ultrafast switching on and off of the
interaction, controlled by a strong coherent probe pulse for
EOS, directly maps virtual particles from the vacuum into

FIG. 1. A schematic representation of the UDW detector. The
inset at the bottom right shows the harmonic oscillator of the
UDW detector, with dashed lines representing the different
energy levels with constant gap ℏωu. The vacuum modes of
the field are represented by the gray curly lines in the bottom-left
corner. The UDW detector follows the trajectory shown via the
bold black line. In this case, the UDW detector is stationary, but
in general it can follow any trajectory. The UDW interacts with
the vacuum during a very short time interval defined by the
switching function (represented by the blue line). In the Schrö-
dinger picture, both the UDW detector and the vacuum states are
affected by this interaction. The orange curvy lines represent the
evolved modes of the field that are no longer in the initial
vacuum state.
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real excitation of the probe field. The precise identification
of the virtual-particle mode gives a clear interpretation of
the field that is probed through EOS in the quantum regime
[22]. Furthermore, our analysis accurately encapsulates the
quantum nature of the electromagnetic vacuum, predicting
that the detected virtual particles are squeezed. Lastly, we
give a brief insight on how our theoretical results allude to
the possibility of observing and harnessing entanglement
from the vacuum through EOS techniques.
The remainder of this article is organized as follows:

after discussing field modes and particularly subcycle
modes in the next two sections, we proceed to our analysis
of subcycle sampling using a UDW in Sec. IV. After a brief
overview of the techniques involved in connecting the
UDW detection to electro-optic sampling in Sec. V, we
move in Sec. VI to making this connection rigorous. Our
conclusions and outlook are then presented in the final
section.

II. PRELIMINARIES

A. Scalar and conjugate fields

We start our discussion by introducing the basic tools of
this work. In the second quantization formalism, a classical
field and its conjugate are promoted to field operators by
translating the Poisson bracket between them into a
commutation relation. For the specific case of scalar
bosonic fields, both the field and its conjugate are derived
from the Klein-Gordon Lagrangian density and are given as
solutions of the Klein-Gordon equation. These solutions,
when decomposed into single-frequency modes, allow for a
description of the field operators in terms of an infinite
series of quantum harmonic oscillators [32]. When con-
sidering fields that propagate exclusively (or predomi-
nantly) along a given direction, a decomposition of these
operators in terms of traveling-wave modes turns out to be
particularly useful [33,34], since the fields so described
behave essentially as fields in (1þ 1) dimensions (i.e.,
fields depending on one space and one time coordinate),
while keeping some (3þ 1)-dimensional features, namely
the cross-sectional area. Therefore, their action is given by
a fourfold integral over the Lagragian density. In terms of
these modes, the (right-moving) field operator is given as

Φ̂ðt; xÞ ¼
Z

∞

−∞
dωΦωðt; xÞâω;

Φωðt; xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏc
4πnωjωjA

s
e−iωðt−

nωx
c Þ; ð1Þ

where we have neglected the left-moving modes for
simplicity. This simplification is justified because we only
consider interactions with the right-moving modes. Here
and in the following expressions, A is a normalization
parameter with units of area and accounts for the

transversal extension of the field. The parameter nω ¼
njωj is included to allow propagation velocities other than
the speed of light, namely vω ¼ c=nω (nω will assume the
role of refractive index once we connect these concepts to
quantum-optical systems). For free fields, nω ¼ 1. ℏ is the
reduced Planck constant.
The corresponding conjugate field in terms of the

traveling-wave mode decomposition is given by

Π̂ðt; xÞ ¼
Z

∞

−∞
dωΠωðt; xÞâω;

Πωðt; xÞ ¼ −signðωÞi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏjωj

4πnωcA

s
e−iωðt−

nωx
c Þ: ð2Þ

In this article we have adopted the convention â−ω ¼ â†ω.
This justifies the use of the terminology positive-frequency
modes for annihilation operators and negative-frequency
modes for creation operators. The corresponding commuta-
tion relation is then ½âω; â†ω0 � ¼ δðω − ω0ÞsignðωÞ, consistent
with the relation ½Φ̂ðt;xÞ;Π̂ðt;x0Þ�≈iðℏc=n2ωAÞδðx−x0Þ dic-
tated by the correspondence principle.

B. Discrete decomposition of scalar
and conjugate fields

Following the description of [35–38], we introduce a
complete orthonormal set of discrete (nonmonochromatic)
bosonic operators fâi; âj;…g:

âi ¼
Z

∞

−∞
dωfiðωÞâω: ð3Þ

This set of operators satisfies the commutation relations
½âi; â†j � ¼ δij and ½âi; âj� ¼ 0. The scalar and conjugate-
field operators can be expanded in terms of the operators in
this discrete basis set with the aid of the decomposition [38]

âω ¼
X
i

ð½âω; â†i �âi þ ½âi; âω�â†i Þ; ð4Þ

allowing these fields to be cast in the forms

Φ̂ðt; xÞ ¼
X
i

Φiðt; xÞâi þ H:c:; ð5Þ

Π̂ðt; xÞ ¼
X
i

Πiðt; xÞâi þ H:c:; ð6Þ

respectively. Φiðt; xÞ (Πiðt; xÞ) can be interpreted as the
scalar (conjugate) field mode that is annihilated by the
operator âi. We introduce ΦiðωÞ and ΠiðωÞ as the Fourier
transforms of these discrete modes,
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Φiðt; xÞ ¼
Z

∞

−∞
dωe−iωðt−

nωx
c ÞΦiðωÞ;

Πiðt; xÞ ¼
Z

∞

−∞
dωe−iωðt−

nωx
c ÞΠiðωÞ: ð7Þ

For a desired Φi mode profile, the spectral-decomposition
coefficients for âi in Eq. (3) can be written with respect to
the Fourier transform as follows:

fiðωÞ ¼ signðωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πnωjωjA

ℏc

r
Φ�

i ðωÞ

¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πnωcA
ℏjωj

s
Π�

i ðωÞ: ð8Þ

III. SUBCYCLE MODES

In this section we shall consider for simplicity a free
Klein-Gordon scalar field (nω ¼ 1) in its vacuum state (i.e.,
âωj0i ¼ 0; ∀ ω > 0). With such assumptions in mind, we
briefly describe the properties of nonmonochromatic
modes, as given by Eqs. (3)–(8), when one of these modes
is tailored to match a Gaussian pulselike profile with very
short time extension (i.e., the subcycle regime). A mode is
considered to enter the subcycle regime when the envelope
decays at a time interval shorter than its own inverse central
frequency.

A. Gaussian profile

We introduce a normalized Gaussian-profile mode of the
form

Φgðt; xÞ ¼
1

ð2πÞ1=4

ffiffiffiffiffiffiffiffiffi
ℏσc
Aω0

s
e−σ

2ðt−x
c−t0Þ2−iðt−x

cÞω0 ; ð9Þ

where we have chosen a particular mode index i ¼ g from
the infinitely many possible values of i. This Gaussian
pulse has a central (or carrier) frequency ω0=2π and a
temporal variance of 1=ð2σ2Þ, with the position of its
amplitude maximum crossing the point x ¼ 0 at time
t ¼ t0. We consider the Gaussian-profile mode to be in
the subcycle regime when 2π=ω0 >

ffiffiffi
8

p
=σ, i.e., one period

of the carrier frequency is at least as long as four standard
deviations of the Gaussian envelope.
The operator that annihilates the Gaussian mode,

Φgðt; xÞ, is given by

âg ¼
Z

∞

−∞
dωfgðωÞâω; ð10Þ

fgðωÞ ¼
1

ð2πÞ1=4 signðωÞ
ffiffiffiffiffiffiffiffi
jωj
ω0σ

s
e−it0ðω−ω0Þ−ðω−ω0Þ2

4σ2 ð11Þ

(without the loss of generality, we shall consider t0 ¼ 0
throughout the calculations for simplicity). This operator is
a normalized bosonic operator satisfying the commutation
relation ½âg; â†g� ¼ 1. It can be further decomposed into
positive- and negative-frequency components, according to

âg ¼ coshðθgÞâðþÞ
g þ sinhðθgÞâð−Þg

†: ð12Þ

Each of these terms is defined as follows:

âðþÞ
g ¼ 1

coshðθgÞ
Z

∞

0

dωfgðωÞâω; ð13Þ

âð−Þg ¼ 1

sinhðθgÞ
Z

∞

0

dωf�gð−ωÞâω; ð14Þ

θg ¼ arccosh

�Z
∞

0

dωjfgðωÞj2
�
: ð15Þ

The operators âð�Þ
g are also normalized bosonic operators:

½âð�Þ
g ; âð�Þ

g
†� ¼ 1. We note that in general θg is very small

and therefore the mode is dominated by its positive-

frequency component (i.e., âg ≈ âðþÞ
g ). The negative-

frequency component, âð−Þg , becomes significant in cases

such as the subcycle regime. We highlight that âð�Þ
g are

generally not orthogonal to each other, because

½âðþÞ
g ;âð−Þg

†�¼ 1

coshðθgÞsinhðθgÞ
Z

∞

0

dωfgðωÞfgð−ωÞ: ð16Þ

In view of Eq. (16), a completely orthogonal decomposition
of Eq. (12) might be preferred; this is achieved by further

decomposing âð−Þg into an orthogonal and a parallel

component with respect to âðþÞ
g [37,38], i.e.,

âð−Þg ¼ cosðθg;⊥Þâð−Þg;⊥ þ sinðθg;⊥Þe−iϕg;⊥ âðþÞ
g ; ð17Þ

where we have defined the following components:

âð−Þg;⊥ ¼ âð−Þg − ½âð−Þg ; âðþÞ
g

†�âðþÞ
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − j½âð−Þg ; âðþÞ
g

†�j2
q ; ð18Þ

θg;⊥ ¼ arcsin ðj½âðþÞ
g ; âð−Þg

†�jÞ; ð19Þ

ϕg;⊥ ¼ Argð½âðþÞ
g ; âð−Þg

†�Þ: ð20Þ

Utilizing these results, Eq. (12) can be recast in the
following manner:
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âg ¼ coshðθgÞâðþÞ
g þ sinhðθgÞ sinðθg;⊥Þeiϕg;⊥ âðþÞ

g
†

þ sinhðθgÞ cosðθg;⊥Þâð−Þg;⊥
†: ð21Þ

If θg;⊥ ¼ 0, then âg is in a two-mode squeezed state between

âðþÞ
g and âð−Þg;⊥. If θg;⊥ ¼ π=2, then âg is in a single-mode

squeezed state of âðþÞ
g . When 0 < θg;⊥ < π=2 the state has a

combination of single- and two-mode squeezing terms.

B. Properties of a subcycle mode

In this section, we analyze some phase-space properties
of the subcycle mode described by âg [[39], Chap. 4].
The vacuum-state projection on mode g, ρ̂gðâg; â†gÞ ¼
tr⊥gfj0ih0jg (where tr⊥g stands for trace over the comple-
mentary subspace, comprising all modes orthogonal to g)
is described by a Gaussian quasiprobability distribution
in phase space that can be fully characterized by the first
and second moments of the quadrature operator X̂gðϕÞ ¼
âge−iϕ þ â†geiϕ [40,41]. Its first moment is hX̂gðϕÞi ¼
trfj0ih0jX̂gðϕÞg ¼ trgfρ̂gX̂gðϕÞg ¼ 0, while the second
moment reads

hX̂2
gðϕÞi ¼ 1þ 2hâ†gâgi þ 2ℜ½hâ2gie−2iϕ�; ð22Þ

hâ†gâgi ¼ sinh2ðθgÞ; ð23Þ

hâ2gi ¼ coshðθgÞ sinhðθgÞ sinðθg;⊥Þ exp½iϕg;⊥�: ð24Þ

As can be seen from Eq. (23), the parameter θg, as
defined by Eq. (15), characterizes the amount of particles
that can be found in the mode g, hN̂gi ¼ hâ†gâgi. Since no
actual particles are supposed to be found in the vacuum
state (it is, after all, the ground state of all the quantum
harmonic oscillators that compose the field), any nonzero
expectation value of the particle number operator, hN̂gi, can
be attributed to virtual particles. Heisenberg’s uncertainty
principle predicts that, for sufficiently short time intervals,
energy fluctuations allow such particles to briefly come
into existence, being annihilated in particle-antiparticle
collisions right after (please note that the photon is its
own antiparticle). Considering that hN̂gi tends to zero as the
time extension of the Gaussian profile, Eq. (9), increases, it
is consistent to attribute the nonzero particle number to the
subcycle character of the mode g, with increasing particle
numbers as the timescale of the mode becomes shorter.
The parameter θg;⊥ is defined by Eq. (19), and can be

understood as the amount of overlap between positive- and
negative-frequency terms within âg. This parameter can be
found in Eq. (24) and parametrizes the amount of quad-
rature correlation (through the covariance) within this
mode. The quadrature correlation between two orthogonal
quadratures, X̂gðϕÞ and X̂gðϕþ π=2Þ, is defined as

1

2
hfX̂gðϕÞ; X̂gðϕþ π=2Þgi − hX̂gðϕÞihX̂gðϕþ π=2Þi
¼ 2Im½hâ2gie−2iϕ�: ð25Þ

We then define the quadrature correlation within the mode
described by âg to be the maximum of 2Im½hâ2gie−2iϕ� with
respect to the phase of its argument,

2jhâ2gij ¼ 2j coshðθgÞ sinhðθgÞ sinðθg;⊥Þj2: ð26Þ

When θg;⊥ ¼ 0, there are no quadrature correlations, in the
sense that the difference between the variances of any pair
of orthogonal quadratures, hX̂2

gðϕÞ − X̂2
gðϕþ π=2Þi ¼

4ℜfhâ2gie−2iϕg ∝ sinðθg;⊥Þ, is zero; in this case, the (vir-
tual) particles of âg obey a thermal distribution. On the
other hand, when θg;⊥ ¼ π=2, there is maximal quadrature
correlation, meaning that the virtual particles of âg are
distributed according to a pure single-mode squeezed state
[see Eq. (21)].
For a Gaussian pulse, both the average photon-count/

variance, parametrized by θg, and the difference between
the maximum and minimum variances, parametrized by
θg;⊥, increase as the temporal features of âg become more
subcycle (in other words, they increase alongside σ). To
show this result, we plot the maximal and minimal
(Minkowski) vacuum-state variances of the quadratures
in Fig. 2 as functions of σ. The maximal and minimal
variances are given by the variances of P̂g ¼ X̂gðπ=2Þ and
Q̂g ¼ X̂gð0Þ, respectively, [i.e., VmaxðσÞ ¼ hP̂2

gðσÞi and
VminðσÞ ¼ hQ̂2

gðσÞi]. It can be seen from this plot that
Vmax and Vmin become larger and smaller, respectively, as
the temporal extension of the Gaussian pulse decreases.
Thus a subcycle vacuum mode has more virtual particles
and quadrature correlation with a shorter temporal profile.
It is noted that Q̂g and P̂g are related via a −π=2 phase shift
applied on âg. This differs from a −π=2-phase shift applied
directly on the single-frequency annihilation operators (i.e.,
âω → âωe−iπ=2signðωÞ), as âg consists of both positive- and
negative-frequency modes.
We note that, in general, θg and θg;⊥ can be varied

independently of each other if we do not restrict ourselves
to a Gaussian waveform. For example, a Rindler mode (a
field mode as seen by an observer that moves with constant
proper acceleration along a hyperbolic worldline confined
to a [Rindler] wedge of spacetime) is a special case for
which θg;⊥ ¼ 0, with the right (left) Rindler mode operator
(related to the right [left] Rindler wedge) being given by a
Bogoliubov transformation, namely the two-mode squeez-
ing, between two modes defined in Minkowski spacetime.
This means that the detected particles in this (Rindler)
mode follow thermal statistics, having correlation/entan-
glement only between creation and annihilation operators
of orthogonal modes. For a Gaussian mode we see that the
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amount of thermalization (the difference between
the blue line and blue dashed line in Fig. 2) is very small
and hence most of the correlation lies within this
same mode.

IV. SUBCYCLE SAMPLING WITH AN
UNRUH-DEWITT DETECTOR

For a number of interesting phenomena encountered in
(curved-space) quantum field theory, realistic measurement
schemes are either intractable or impossible to implement
in view of the extreme and unusual conditions. One of the
main detection models proposed to overcome these theo-
retical difficulties, the UDW detector, relies on a simple
(dipolelike) system interacting with the field during a
properly selected time interval while following a trajectory
given by a desired worldline. Such construction, albeit
essentially theoretical, finds parallel in simple light-matter
interacting systems such as qubits or electrons in quantum
wells [16–19]; however, a fully tailorable ultrashort time-
dependent coupling to the electromagnetic field (with both
switching on and off under control) has, to the best of our
knowledge, not yet been fully implemented in the lab.
Aiming at overcoming these limitations, we introduce here
the description of a bosonic UDW which will later be
properly translated in terms of an optical system of easy
implementation in the lab.

A. Unitary operator for the evolution of the
Unruh-DeWitt detector

One can reproduce (up to minor deviations related to
differences between bosonic and the usually employed
fermionic excitations [42]) an idealized UDW detector with
an energy gap of ℏωu, by considering a quantum system
with a one-dimensional harmonic-oscillator behavior. The
detector’s annihilation operator, û, satisfies the commuta-
tion relation ½û; û†� ¼ 1. We consider the initial state of the
UDW detector to be the ground state: ûj0ui ¼ 0.
We let this UDW detector interact with the right-moving

Klein-Gordon conjugate field via the following interaction
Hamiltonian (refer to Fig. 1 for a schematic representation):

ĤIðτÞ ¼ AλðτÞQ̂ðτÞΠ̂ðtðτÞ; xðτÞÞ; ð27Þ

Q̂ ¼
ffiffiffiffiffiffi
ℏc
2A

r
ðûe−iωuτ þ û†eiωuτÞ: ð28Þ

In these equations, the dependence on the transversal
extension of the field, A, cancels out when integration
over the transversal coordinates is taken into account in the
derivation of the interaction Hamiltonian. It is worth noting,
however, that by keeping A explicitly in Eq. (28) one allows
for its interpretation as the cross-sectional area of the
detector, i.e., traveling-wave modes with transversal exten-
sion given by A are detected. Here and in what follows, τ is
the proper time parametrizing the worldline ðtðτÞ; xðτÞÞ of
the UDW detector. The coupling strength (also known as
switching function), λðτÞ, characterizes the proper-time
interval during which the UDW detector is coupled to
the field.
The corresponding interaction unitary operator, ÛI;T , is

given by

ÛI;T ¼ T exp

�
−i
ℏ

Z
∞

−∞
dτĤIðτÞ

�
; ð29Þ

where T stands for time-ordering protocol. By choosing an
operational regime in which time-ordering effects can be
neglected [43–45], we justify the usage of ÛI , the equivalent
of ÛI;T in the absence of T , as the interaction unitary
operator in the remainder of this work.

B. Sampling of a Gaussian-profile mode with an
Unruh-DeWitt detector

When one considers a stationary UDW detector follow-
ing the worldline ðτ; 0Þ and interacting with the (conjugate)
field in its vacuum state for all time with λ ¼ const, the
detector’s response is solely related to the field mode
described by the operator âωu

. As the coupling strength,
λðτÞ, acquires some time dependence, the resulting modu-
lation of the interaction in time leads to a frequency
broadening over the probed mode(s), i.e., to a modulation

FIG. 2. Numerical plot of theQ- and P-quadrature variances for
the subcycle mode g, Eq. (10), in dependence of the normalized
inverse time extension of the Gaussian profile, σ=ω0. The top
solid line (red) represents the P-quadrature variance (Vmax), while
the bottom solid line (blue) corresponds to the Q-quadrature
variance (Vmin). The dashed line represents the Q-quadrature
variance one would obtain by assuming that both variances would
characterize a single-mode (minimum-uncertainty) squeezed
state (MUS), i.e., hQ̂2

gðσÞiMUS ¼ 1=hP̂2
gðσÞi. The difference

between the dashed and the bottom solid line can be attributed
to extra thermal photons within âg. It can be seen from the graph
that the Q- and P-quadrature variances start to deviate from
quantum shot noise (which is characterized by a variance of 1) at
around σ ≈ 0.45ω0, when the Gaussian-profile mode enters the
subcycle regime.
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of the envelope of a measured-mode profile with carrier
frequency ωu. The more localized in proper time this
coupling is (meaning that the detector-field coupling
switches on and off within a finite time interval), the
broader the frequency band of the field that the detector
probes. We can therefore utilize the switching function to
control the time interval and frequency band for which a
field is probed. The resultant probed field mode has its
envelope dictated by the switching function and a carrier
frequency ωu.
The UDW detector can interact with a mode with a

Gaussian profile by setting the switching function to be

λðtÞ ¼ η expð−σ2uðt − tuÞ2Þ: ð30Þ

η can be interpreted as the coupling-strength amplitude for
the interaction between the detector and the conjugate field.
The parameters σu and tu define, respectively, the inverse
temporal extension (bandwidth) and the initial time shift of
the pulselike coupling. By setting the switching function
and the energy gap of the UDW detector to be consistent
with Eq. (9) (i.e., σu ¼ σ, tu ¼ t0 and ωu ¼ ω0), the
interaction unitary operator can be simplified to (refer to
the Appendix A)

ÛI ¼ exp½θuðâgû† − H:c:Þ�: ð31Þ

θu ¼ − η
2

ffiffiffiffi
ω0

σ

q
ðπ
2
Þ1=4 can be interpreted as the effective

interaction strength between âg and û. This unitary operator
resembles a beam-splitter-type interaction between the
UDW detector, described by the operator û, and the
Gaussian-profile mode corresponding to âg. In the subcycle
regime when hN̂gi ≠ 0, this unitary operator maps the
virtual particles in the vacuum field to real excitations in the
UDW detector. It is noted that we are assuming a positive
energy gap for the UDW detector. For a negative energy
gap of the UDW detector, with û → û†, this interaction
would change to a squeezing-type interaction.

C. Detection mechanism

The Heisenberg evolution of the UDW-detector annihi-
lation operator as dictated by ÛI leads to an exchange of
particles between the two modes involved in Eq. (31):

û0 ¼ Û†
I ûÛI ¼ cosðθuÞûþ sinðθuÞâg: ð32Þ

Analogously to the discussion preceding Eq. (22), the
Gaussian character of the phase-space distributions for the
state tr⊥u0fj0uij0ih0jh0ujg guarantees that a full description
of this state can be done solely in terms of the expectation
values of X̂u0 ðϕÞ ¼ û0e−iϕ þ û0†eiϕ and corresponding
variances, hX̂l

u0 ðϕÞi¼trfj0uij0ih0jh0ujX̂l
u0 ðϕÞgwith l¼1, 2.

These read

hX̂u0 i ¼ cosðθuÞhX̂ui þ sinðθuÞhX̂gi; ð33Þ

hX̂2
u0 i ¼ cos2ðθuÞhX̂2

ui þ sin2ðθuÞhX̂2
gi: ð34Þ

Due to the particle exchange between the detector and field
induced by the evolution, Eq. (31), the variance of the
detector’s quadrature operator contains X̂g terms. The extra
factor of sinðθuÞ (sin2ðθuÞ) is related to the efficiency of the
detector.
We find that the first moment is hX̂u0 i ¼ 0, while

substituting the results from Eqs. (21) and (22) gives for
the second moment

hX̂2
u0 ðϕÞi ¼ 1þ 2sin2ðθuÞhâ†gâgi

þ 2sin2ðθuÞℜ½hâ2gie−2iϕ�: ð35Þ

When sinðθuÞ ¼ 1, the Unruh-DeWitt detector has unit
efficiency and maps all of the virtual particles in âg to
excitations of û, giving an identical result to Eq. (22).

D. Quantum-optical analog

A UDW detector with a coupling strength of subcycle
character can detect virtual particles in the field vacuum,
j0i, which otherwise would remain concealed to inertial
observers. The complete subcycle switching on and off,
however, has yet to be implemented in a realizable system
[18,19]. In what follows, we shall show that a closely
related optical system can in fact provide the desired
coupling.
As an optical variant of our UDW detector we study the

broadband χð2Þ interaction in a nonlinear crystal [ [46],
Chap. 16] driven by a strong coherent pump, ÊðωÞ →
αgðωÞ [refer to Eq. (56) and Table I for comparison]. The
corresponding evolution operator for the states propagating
through the crystal contains in its exponent all possible
bilinear combinations of annihilation/creation operators
with frequency variables running continuously over the
ranges determined by a frequency-dependent interaction
strength. In order to achieve a similar structure for the
interaction between the UDW detector and conjugate field,
we recast Eq. (31) in the form

ÛI ¼ exp½ŜðþÞ
I þ Ŝð−ÞI �; ð36Þ

ŜðþÞ
I ¼

Z
∞

0

dωζgðωÞαgðωu − ωÞâωû† − H:c:; ð37Þ

Ŝð−ÞI ¼
Z

∞

0

dωζgðωÞαgðωu þ ωÞâ†ωû† − H:c:; ð38Þ

where we have defined the following quantities:

αgðωÞ ¼ e−
ω2

4σ2
þiωt0 ; ð39Þ
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ζgðωÞ ¼ signðωÞ η

2σ

ffiffiffiffiffiffi
jωj
2

r
: ð40Þ

It is noted that αgðωÞ is proportional to the Fourier transform
of the switching function. The action term ŜðþÞ

I has the shape

of a beam-splitter-type interaction,while Ŝð−ÞI corresponds to
a squeezing-type interaction. Note that while âg contains

both positive- and negative-frequency operators, Ŝð�Þ
I con-

tains solely operators for which ω > 0.
Tracing a parallel to the broadband χð2Þ interaction, ŜðþÞ

I

(Ŝð−ÞI ) resembles the action of sum-(difference-)frequency
generation. It is noted that the Gaussian form of Eq. (39)
comes from the profile of the switching function, while for
the broadband χð2Þ interaction, this parameter comes from
the Gaussian profile of the strong coherent pump. As a
result, the strong coherent pulse in the nonlinear interaction
replaces the role of the switching function in the UDW
detector (refer to the penultimate line in Table I for more
details). ζgðωÞ is a frequency-dependent function, reflect-
ing the degree of fulfillment of the phase-matching con-
dition in an analog nonlinear-optical setup [ [47],
Chap. 2.3], [48], taken here in the limit case of perfect
phase matching (when we may effectively neglect the
frequency dependence of nω for the given length of the
utilized nonlinear crystal). The main difference between
the evolution defined by Eqs. (36)–(40) and the actual
broadband χð2Þ interaction is the restriction of one of the
frequencies (and therefore one of the annihilation/creation
operators) to the fixed valueωu defined by the UDWenergy
gap in the former. This represents, however, no short-
coming in this analogy, since a similar restriction can also
be achieved through frequency postselection of the out-
going photons. We shall therefore further analyze such an
effective nonlinear interaction from the perspective of a
UDW-detector implementation.

V. BRIDGING QUANTUM OPTICS AND
RELATIVISTIC QUANTUM INFORMATION

Before giving the precise description of the actual
nonlinear interaction that reproduces a UDW-detector
behavior, we shall briefly introduce and justify the approx-
imations playing a major role in the following sections. The
action of sum- and difference-frequency generation, when
we treat the nonlinear crystal to be driven by a classical
coherent pump, can generally be written in the form

Ŝ ¼
Z

∞

−∞
dω

Z
∞

−∞
dω0Sðω;ω0Þâ†ωûω0 ; ð41Þ

Û ¼ exp½Ŝ�; ð42Þ

where the operators ûω ¼ û†−ω can in general be related to a
new set of bosonic modes (therefore commuting with âω
for all frequencies) or be the same as âω depending on the
structure of the susceptibility tensor of the nonlinear

crystal, χð2Þijkðωþ ω0;ω;ω0Þ. In this section we consider

the prior, satisfying the commutation relation ½ûω; û†ω0 � ¼
signðωÞδðω − ω0Þ and ½ûω; â†ω0 � ¼ 0. Since Eqs. (41) and
(42) define a unitary operator, the condition Sðω;ω0Þ ¼
−S�ð−ω;−ω0Þ must be satisfied.
Heisenberg evolution of the annihilation operators

according to this unitary operator (i.e., û0ω ¼ Û†ûωÛ) leads
to operators described by an infinite series of convolutions
over increasing numbers of frequencies [26]. A more
transparent and simpler, yet fully analytical, presentation
of the core properties (e.g., whether the interaction can be
modeled as a beam-splitter-type interaction or squeezing-
type interaction) of the system under study can be achieved
through introduction of a technique we shall refer to as the
first-order unitary evolution.

TABLE I. Correspondence between a stationary UDW detector and EOS. The similarity becomes more pronounced with better phase
matching. The switching function and/or the coherent probe pulse can be altered in order to make the detected field modes in both
schemes precisely equivalent, even without perfect phase-matching conditions.

Equivalence Unruh-DeWitt detector Electro-optic sampling

Simplified action θuðâgû† − H:c:Þ θð1Þω̃ ðāω̃û†
ω̃ − H:c:Þ

Interaction strength θu ¼ − η
2

ffiffiffiffi
ω0

σ

q
ðπ
2
Þ1=4 θð1Þω̃ ¼ ½Δω R

dΩjαpðω̃ − ΩÞζΩ;ω̃j2�1=2
Detector mode operator Single-frequency harmonic oscillator: û ûω̃ ¼ R∞

−∞ dω 1ffiffiffiffiffi
Δω

p rectðω̃−ωΔω Þâω
Detected field mode operator āg ¼ 1

θu

R
dωαgðωu − ωÞζgðωÞâω āω̃ ¼

ffiffiffiffiffi
Δω

p

θð1Þω̃

R
dΩαpðω̃ − ΩÞζΩ;ω̃âΩ

Correspondence

Frequency-dependent coupling efficiency
ζgðωÞ ¼ signðωÞ η

2σ

ffiffiffiffiffi
jωj
2

q
ζΩ;ω̃ ¼ −isignðω̃ΩÞ λL

Acϵ0

ffiffiffiffiffiffiffiffi
jω̃Ωj
nω̃nΩ

q
sin cðηω̃;ΩÞ

Switching function αgðωÞ ¼ e−
ω2

4σ2
þiωt0

αpðωÞ ∝ e−
ðω−ωpÞ2

4σ2
þiωt0

Detector energy gap ℏωu ℏðω̃ − ωpÞ
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A. Discrete-mode decomposition

By decomposing ûω in terms of an arbitrary discrete
basis set fûi; û†i g [refer to Eq. (4)], Eq. (41) can be recast in
the form

Ŝ ¼
X
i

θð1Þi ðāiû†i − H:c:Þ; ð43Þ

āi ¼
1

θð1Þi

½ûi; Ŝ�; ð44Þ

θð1Þi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j½½ûi; Ŝ�; ½Ŝ; û†i ��j

q
: ð45Þ

We adopt the notation āi for operators that can behave as
either annihilation (âi) or creation (â†i ) operators (note that
these operators are not necessarily the annhilation/creation
operators of the Minkowski vacuum). When ½āi; ā†i � ¼ 1, āi
has the properties of an annihilation operator and hence
āi ¼ âi. When ½āi; ā†i � ¼ −1, āi has the properties of a

creation operator and hence āi ¼ â†i . θ
ð1Þ
i is the normali-

zation factor ensuring āi is normalized: j½āi; ā†i �j ¼ 1. Note
that in general ½āi; ā†j � ≠ 0 for i ≠ j. As these operators are
not orthogonal, a closed (nonperturbative) expression for
the Baker-Hausdorff lemma is not possible, and it motivates
us to introduce the first-order unitary approximation.

B. First-order unitary evolution

The nth-order unitary evolution is a technique we
develop in Appendix C. It simplifies the evolution of an
operator by considering a slightly modified, easier to
handle, action such that the evolution of operators exactly
satisfies the Baker-Hausdorff lemma (expressed in terms of
the original action) to a desired nth order. For the first-order
unitary evolution, the evolution of the annihilation oper-
ators for a specific mode g is computed via a unitary
evolution for which only the g-containing terms in
Eq. (43) are considered, i.e., the evolution operator is
approximated by

Û½1� ¼ exp½Ŝ½1��; ð46Þ

Ŝ½1� ¼ θð1Þg ðû†gāg − H:c:Þ: ð47Þ

The first-order unitary evolution is then found to be

û½1�g ¼ Û½1�†ûgÛ½1�

¼
�
cosðθð1Þg Þûg−sinðθð1Þg Þâg; if ½āg; ā†g�¼1;

coshðθð1Þg Þûg−sinhðθð1Þg Þâ†g; if ½āg; ā†g�¼−1:
ð48Þ

Since the approximation is made for the action occurring in
the exponent (i.e., Ŝ ≈ Ŝ½1�Þ, the first-order unitary evolution

contains, in terms of the Baker-Hausdorff lemma expan-
sion, terms of arbitrarily high order in the interaction

strength, θð1Þg . In fact, Eq. (48) represents a nonperturbative
result. The first-order approximation might seem to be
inconsistent with our goal of calculating both first and
second moments of the quadrature operators, since the

latter is quadratic in θð1Þg . We show in Appendix E, however,
that a complete analysis of the evolved annihilation and
creation operators in Eq. (48) in terms of the second-order
unitary approximation leads to additional terms with
negligible contribution to the moments we are interested
in. These terms are only formally needed to guarantee that
the commutation relations for the operators are accurate to
second order after the evolution. We will therefore not
consider them in the following discussions and derivations,
focusing instead on the first-order evolution, as described
by Eq. (48).

VI. ELECTRO-OPTIC SAMPLING

We are now ready to properly address the real-world
counterpart of our UDW detector. Assuming that different
polarization components of the vector fields can be treated
independently, we consider the components of the electric
field (the conjugate of the vector potential in quantum
electrodynamics) to be proportional to conjugate Klein-
Gordon fields.1 We match each of the two polarization
components of the field, ν ∈ fs; zg (cf. Fig. 4), to an
independent massless Klein-Gordon conjugate field, as
defined by Eq. (2), through the relation

Êνðt; xÞ ¼
Z

∞

−∞
dωEω;νðt; xÞâω ¼ −

ffiffiffiffiffi
1

ε0

s
Π̂νðt; xÞ; ð49Þ

Eω;νðt; xÞ ¼ signðωÞi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏjωj
4πnωcε0A

s
e−iωðt−

nωx
c Þ: ð50Þ

From now on, nω will stand for the refractive index of the
nonlinear crystal in which the χð2Þ process takes place (we
assume it to be isotropic in terms of the linear optical
properties). We have included into the field amplitudes the
constant factor of −1= ffiffiffiffiffi

ε0
p

, with ε0 being the vacuum
permittivity, so that the commutation relations between
creation and annihilation operators are preserved:
½âω;ν; â†ω0;ν0 � ¼ δðω − ω0ÞsignðωÞδνν0 [in terms of the

1In the Lorenz gauge, the (massless) Klein-Gordon and the
Helmholz equations (describing, respectively, the Klein-Gordon
and vector-potential fields) have the same functional form. Apart
from belonging to different representations of the Lorentz group,
leading to different behaviors under Lorentz transformations (see,
e.g., [10, pp. 81–88]), each component of the vector potential
behaves as an independent Klein-Gordon field, therefore justify-
ing the approximation.
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discrete modes described by Eqs. (3)–(8), one has
½âi;ν; â†j;ν0 � ¼ δijδ

ν
ν0 ].

A. Hamiltonian of a χ ð2Þ electric-field interaction

The electro-optic effect utilizes the optical response of
the polarization in a nonlinear crystal to mediate an
effective nonlinear interaction of the electric field with
itself. In the specific case of the Pockels effect [47], the
outgoing (i.e., generated) field depends quadratically on the
incoming field, with a proportionality constant dependent
on the effective second-order susceptibility of the medium,
χð2Þ, determined by its corresponding tensor components.
This interaction is one of the possible mechanisms behind
squeezing [ [34], Chap. 8.2.3]. It can also be used to probe
an electric field of given polarization and frequency range
by additionally impinging a copropagating strong coherent
probe field having suitable polarization and frequency
range. In the latter case, the probe polarization is dictated
by the structure of the susceptibility tensor, while its
frequency range should be chosen to have minimal overlap
with the sampled field’s spectrum. The duration of the
probe pulse should be shorter than the period or the
characteristic timescale of the sampled radiation, giving
the subcycle resolution required for the electro-optic
sampling. Quantum versions of experiments of this kind
have managed to detect the electric-field variance of the
electromagnetic vacuum in the midinfrared (MIR) [22] and
terahertz [23] frequency ranges. We shall therefore focus on
a similar measurement scheme.
We represent the sampled-frequency photons by â†Ω (Ω

being a MIR frequency), while the detected-frequency-
range particles are represented by â†ω (ω being a near-
infrared, or NIR, frequency). The nonlinear interaction is
modulated by a short and strong coherent electric-field
pulse with an amplitude given by α. We assume that this
pulse is short enough so that the interaction time, dictated
by αpðtÞ, is subcycle relative to the sampled MIR field.
As in Ref. [24], we consider the incoming probe field to
be linearly polarized along the z direction (see Fig. 4),
while the sampled vacuum modes are restricted to the
perpendicular s polarization, so as is the newly generated
(through the Pockels effect) quantum correction to the
NIR field (this restriction is enforced by the structure of
the second-order susceptibility tensor of zincblende-type
materials).
We model the resulting effective interaction through the

following Hamiltonian:

ĤχðtÞ ¼
Z

∞

−∞
dxλÊzðt; xÞÊsðt; xÞÊsðt; xÞrect

�
x
L

�
: ð51Þ

The coefficient λ ¼ Aε0d
2

includes the cross-sectional area A,
the s-polarized-field permutation factor of 1=2 (avoids
double counting) and the coupling constant d ¼ −n4r41,

expressed in terms of the electro-optic (susceptibility)
coefficient, r41, and the refractive index of the crystal,
n ¼ nωp

, at the central frequency of the probe, ωp.
rectðx=LÞ is a rectangular distribution with value 1 for
−L=2 ≤ x ≤ L=2 and 0 otherwise, representing the spatial
extension of the nonlinear crystal of thickness L.
We consider the z-polarized field to be strongly dis-

placed via D̂ ¼ exp½αâ†p;z − α�âp;z� (with jαj ≫ 1), leading
to a strong (semi-)classical coherent field. The annihilation
operator âp;z is defined through Eqs. (3) and (8) with a
(complex) electric-field waveform:

EpðωÞ¼
−1ffiffiffiffiffiffi
4π

p
Np

�
1

2π

�
1=4

ffiffiffiffiffiffiffiffiffiffiffiffi
jωjϵ0
nωp

σp

s
e
−ðω−ωpÞ2

4σ2p
þiðωtpþϕpÞ

; ð52Þ

where Np is a normalization constant ensuring
½âp; â†p� ¼ 1. As the z-polarized field is in a strong coherent
state, we may utilize the mean-field approximation to
express the corresponding operator in terms of its coherent
amplitude, leading to

ĤχðtÞ ¼
Z

∞

−∞
dxλαpðt; xÞÊðt; xÞÊðt; xÞrect

�
x
L

�
: ð53Þ

The polarization subscripts will from this point forward be
omitted as we treat the electric field with z polarization
(semi-)classically and the remaining field operators have
the same polarization. αpðt; xÞ ¼ Epðt; xÞαþ E�

pðt; xÞα� is
the real probe amplitude for a given (complex) pulse profile
Epðt; xÞ [see, e.g., Eq. (9)].
The exponent of the evolution operator for such inter-

action is defined as

Ŝ ¼ −
i
ℏ

Z
∞

−∞
dtĤχðtÞ: ð54Þ

Assuming negligible overlap between frequencies in the
NIR and MIR, we split the electric field into the detector-
frequency range and the sampled-frequency range,

Êðt; xÞ ¼ ÊΩðt; xÞ þ Êωðt; xÞ; ð55Þ

where the relation ½âω; â†Ω� ¼ 0 is satisfied due to the
difference in their frequency ranges. We neglect
Epðt; xÞÊωðt; xÞÊωðt; xÞ and Epðt; xÞÊΩðt; xÞÊΩðt; xÞ as
they are highly oscillatory terms, averaging out to con-
tributions close to zero through the rotating-wave approxi-
mation. We then integrate with respect to space and time to
obtain (cf. Appendix D)

Ŝ ¼
Z
jΩj<Λ

dΩ
Z
Λ<jωj

dωSðΩ;ωÞâΩâ†ω; ð56Þ

where

SHO ONOE et al. PHYS. REV. D 105, 056023 (2022)

056023-10



SðΩ;ωÞ ¼ αpðω −ΩÞζΩ;ω; ð57Þ

ζΩ;ω ¼ −isignðωΩÞ λL
Acϵ0

ffiffiffiffiffiffiffiffiffiffiffi
jωΩj
nωnΩ

s
sin cðηω;ΩÞ; ð58Þ

ηΩ;ω ¼ L
2c

½ωðnω − nω−ΩÞ −ΩðnΩ − nω−ΩÞ�: ð59Þ

We note that Ŝ† ¼ −Ŝ is fulfilled as αpðωÞ ¼ EpðωÞαþ
E�
pð−ωÞα� satisfies αpðωÞ ¼ α�pð−ωÞ. We have introduced

a transition frequency, Λ, in order to avoid frequency
crossing between the MIR and the NIR. ζω;Ω determines
the phase matching between âω and âΩ and sincðxÞ ¼
sinðxÞ=x.

B. First-order unitary evolution
in a nonlinear crystal

In this subsection we implement the first-order unitary
evolution to reduce Eq. (56) to a form resembling Eq. (36).
To do this, we must introduce a bosonic mode operator that
resembles û, i.e., a mode to which we can assign the role of
a (UDW) detector. The UDW detector is described by a
harmonic oscillator with a well-defined energy gap of ℏωu.
We introduce a narrow-frequency-band mode centered at ω̃
to mimic the UDW detector’s (discrete) single-frequency
mode:

ûω̃ ¼
Z

∞

−∞
dω

1ffiffiffiffiffiffiffi
Δω

p rect

�
ω̃ − ω

Δω

�
âω: ð60Þ

The bandwidthΔω can be as small as bandpass filters allow
in real-world experiments. On top of such restrictions,
decreasing Δω will also filter out more photons, meaning
less photons will be detected in the output. While one can
span the whole NIR frequency range in terms of modes of
the form (60) with nonoverlapping frequency windows of
width Δω, we shall focus on a single such frequency
window. By taking ûg → ûω̃ in Eq. (47), one can see that
the mode operator corresponding to āg has the form

āω̃ ¼ 1

θð1Þω̃

½ûω̃; Ŝ� ¼
Z
jΩj<Λ

dΩfω̃ðΩÞâΩ; ð61Þ

fω̃ðΩÞ ¼
1

θð1Þω̃

ffiffiffiffiffiffiffi
Δω

p
Z

ω̃þΔω=2

ω̃−Δω=2
dωαpðω −ΩÞζΩ;ω; ð62Þ

where θð1Þω̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j½½Ŝ; û†

ω̃�; ½ûω̃; Ŝ��j
q

. āω̃ is generated through

commutation of the action with the quasimonochromatic
operator ûω̃, so we distinguish these annihilation/
creation operators from the standard monochromatic oper-
ators. In the limit of sufficiently small Δω, fω̃ðΩÞ≈ffiffiffiffiffi
Δω

p

θð1Þω̃

αpðω̃ −ΩÞζΩ;ω̃. One can see that it closely

approximates the respective expression one would expect
for the actual UDW case: fgðΩÞ ¼ 1

θu
αgðωu −ΩÞζgðΩÞ

(refer to Table I for comparison). The main source of
discrepancy between fω̃ðωÞ and fgðΩÞ can be attributed to
the phase-matching functions, ζΩ;ω̃ and ζg. In the case of
perfect phase matching, αpðω̃ − ΩÞ takes the role of
αgðωu −ΩÞ. In this regime, the envelope of the probed
field mode is determined by jEpðt; 0Þj, while the carrier
frequency is determined by ω̃ − ωp. In Fig. 3, we plot the
temporal waveforms of fω̃ðΩÞ and Epðt; 0Þ for a given
choice of ω̃. It is found that the temporal width of the
former is slightly larger than that of Epðt; 0Þ due to the
difference in (ω̃-dependent) phase velocity.
We compute the first-order unitary evolution on the

filtered NIR-frequency operator as follows:

û0̃ω ≈ û½1�
ω̃ ¼ Û½1�†ûω̃Û

½1�; ð63Þ

Û½1� ¼ exp½θð1Þω̃ ðāω̃û†
ω̃ − H:c:Þ�: ð64Þ

This is a simple two-mode interaction between āω̃ and ûω̃.
If āω̃ ¼ âω̃, the interaction between these two modes is a
beam-splitter-type interaction described by Eq. (31). In this
regime, the Hamiltonian of the nonlinear electric-field
interaction can be modeled as an interaction between a
UDW detector ûω̃ and the subcycle field mode âω̃. This
association is not possible in case āω̃ ¼ â†ω̃, for which the
interaction is modeled as a two-mode squeezing interac-
tion. In other words, when measurements are conducted in
the regimes for which āω̃ ¼ âω̃ holds, the nonlinear

FIG. 3. (a) Amplitude of the scalar-field mode for the probed
waveform fω̃ðΩÞ, as given by Eqs. (5)–(8). The green solid lines
represent the envelope of the probed subcycle mode,

�j
ffiffiffi
1
ε0

q
Φω̃ðt; 0Þj. Its real part is given by the dashed green line.

(b) The purple solid lines show �jEpðt; 0Þj, the envelope of the
probe pulse that drives the interaction, with a dashed purple line
representing its real part. We have set tp ¼ 0 and ω̃ ¼
ωp þ 1.5σp, where ωp=ð2πÞ ¼ 255 THz, σp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2 log 2
p

=t1=2
and t1=2 ¼ 5.8 fs.
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interaction promotes the (vacuum) virtual particles to real
excitations in the NIR frequencies. This is equivalent to the
sense in which virtual Rindler particles can be detected via
an accelerated UDW detector [11], but the latter requires
accelerations that can only be simulated for optical imple-
mentation (e.g., by studying analog systems [49]). In this
case, the detection of thermal particles does not correspond
to the direct observation of the Unruh effect.
In real-world experiments, the detection of the mode

corresponding to Eq. (60) can be approximated by photon
counting with setups in which the detected photons are
restricted to a given (narrow-) frequency band. This can be
achieved, e.g., through insertion of high- and low-pass filters
before the photodetectors, as in the experiments performed in
Refs. [50,51] (see Appendix F for more details). The
(filtered) ν-polarization-photon number operator, N̂ω̃;ν ¼R ω̃þΔω=2
ω̃−Δω=2 dωâ0†ω;νâ0ω;ν, can be shown to be proportional to

û½1�
ω̃ to leading order in the probe amplitude α.

C. Ellipsometry scheme

We are interested in the quadrature variance of āω̃ for
various ω̃. As described in the discussion around Eq. (35),
measurement of the UDW detector’s mode, represented by
ûω̃ in the present formulation, conveys, within the validity
of adopted approximations, the information one needs
about the sampled field. It therefore allows for the char-
acterization of the main statistical features of the quasi-
probability distributions describing the state associated
with āω̃.
Electro-optic sampling makes use of ellipsometry to

implement a functionality similar to homodyning, e.g., both
ellipsometry and homodyning rely on the linear super-
position of two fields. In this section, we shall focus our
discussion on ellipsometry, while further analogy to its
mathematically equivalent scheme, the (polarization-based)
balanced-homodyne detection, is provided in Appendix F.
We consider an ellipsometry scheme as depicted in Fig. 4.
This scheme utilizes a ϕ wave plate (i.e., a ϕ-phase

shifter) to change the phase of the z-polarized field.
This is followed by a half-wave plate at an angle of π=8
rotated relative to the z axis on the plane perpendicular
to the propagation axis (cf. Ref. [50]). A WP then
spatially splits the electric field into its s and z components,
which are separately measured by photodetectors. For
the measurement of the modes described in this
section, the electric field additionally passes through
a bandpass filter of width Δω around ω̃ after the
nonlinear crystal (EOX). The result of such a measurement

can be related to Eq. (35): hðû½1�
ω̃ e−iϕþû½1�

ω̃
†eiϕÞ2i¼

1þ2sin2ðθ½1�ω̃ Þhā†ω̃āω̃iþ2sin2ðθ½1�ω̃ Þℜ½hā2ω̃e−2iϕi�. In fact,

the quadrature operator X̂½1�
ω̃ ðϕÞ ¼ û½1�

ω̃ e−iϕ þ û½1�
ω̃

†eiϕ can
have its expectation values directly extracted from the
electro-optic measurement through [52]

X̂½1�
ω̃ ðϕÞ ≈ N̂ω̃;zðϕÞ − N̂ω̃;sðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hN̂ω̃;zðϕÞ þ N̂ω̃;sðϕÞi
q ; ð65Þ

where N̂ω̃;νðϕÞ can be obtained from N̂ω̃;ν by application of
the proper ϕ-dependent rotation matrices on its annihilation
and creation operators. For the specific cases of ϕ ¼ 0 and
ϕ ¼ π=2 with āω̃ ¼ âω̃ (i.e., the UDW-detector regime), a
slight reformulation of Eq. (48) allows us to write the

variances of X̂½1�
ω̃ ðϕÞ in a way similar to Eq. (34):

hðX̂½1�
ω̃ ð0ÞÞ2i ¼ cos2θð1Þω̃ hQ̂2

ui þ sin2θð1Þω̃ hQ̂2
ai

¼ 1þ 2sin2θð1Þω̃ hâ†ω̃âω̃i þ 2sin2θð1Þω̃ ℜ½hâ2ω̃i�;
ð66Þ

��
X̂½1�
ω̃

�
π

2

��
2
	
¼cos2θð1Þω̃ hP̂2

uiþsin2θð1Þω̃ hP̂2
ai

¼1þ2sin2θð1Þω̃ hâ†ω̃âω̃i−2sin2θð1Þω̃ ℜ½hâ2ω̃i�:
ð67Þ

Q and P stand for the two orthogonal phase-space quad-
ratures and the subscripts u and a represent the ûω̃ and âω̃
operators, respectively. In this regime, we obtain a result
equivalent to the case of UDW detector [refer to Eqs. (33)–
(35)]. The pure ûω̃ terms (hQ̂2

ui and hP̂2
ui) are associated

with the NIR shot noise, which sums up with similar
contributions from the âω̃ terms to give 1. The latter terms
(hQ̂2

ai and hP̂2
ai) contain the (ω̃-dependent) information

about the ultrabroadband MIR mode (i.e., subcycle mode)
of interest. We note that Q̂a and P̂a are related via a phase
shift of π=2 on âω̃, not on the positive-frequency modes,
âΩ, due to reasons discussed in Sec. III B.

FIG. 4. The electric field propagates through the electro-optic
crystal (EOX) for the coherent pulse to induce an interaction with
the vacuum. The outgoing field propagates through a narrow
bandpass filter, filtering out outside the narrow-band frequency
window ω̃ − Δω=2⩽ω⩽ω̃þ Δω=2. This is followed by a ϕz
wave plate, which applies to the field a ϕ-phase shift in the z
polarization. Then the field passes through a half-wave plate
(λ=2) at an angle of π=8 from the horizontal (see diagonal light-
gray line) and a Wollaston prism (WP), which physically splits
the s and z components of the field. Each output is detected by a
photon counter.
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D. Numerical results

In order to visualize the analytical results of this section,
we consider realistic values for the variables involved in the
electro-optical equivalent of the UDW detector [22,24].
For the probe waveform, Eq. (52), we assume a central
frequency of ωp=ð2πÞ ¼ 255 THz and a temporal intensity
profile with a full width at half maximum of 5.8 fs
(therefore σp ≈ 203 THz). The effective cross-sectional
area of the beam (waist) is A ¼ πr2 with r ¼ 3 μm and
the probe-pulse photon content is jαj2 ¼ 5 × 109. The
length of the zincblende-type crystal is L ¼ 7 μm and
its electro-optic coefficient is taken as r41 ¼ 4 pm=V (for
the particular case of ZnTe). The refractive index, nΩ, varies
only slightly (from 2.55 to 2.59) in the MIR [24]. We utilize
a fit for the refractive index in the NIR frequency range nω
[53] (more details on the refractive index are given in
Appendix D). We set Δω=ð2πÞ ¼ 1 THz to ensure that this
frequency band is small enough so that the (quasi-)mono-
chromatic approximation is valid, but large enough so that
the signal-to-noise ratio is sufficiently high: we achieve a
signal-to-noise ratio on the order of ∼10−4, which is high
enough to be detected within current experimental capa-
bilities [54]. Figure 5 shows the maximal and minimal

quadrature variances (P̂½1�
ω̃ and Q̂½1�

ω̃ variances, respectively)
for various detected central frequencies, ω̃. It is noted that
an identical behavior can be observed in a stationary UDW
if one follows the equivalence established in Table I.
Through the first-order unitary evolution we are able to

delineate two important regimes, portrayed in Fig. 5 via a
dividing vertical dashed line. The region on the right-hand
side of this line corresponds to the regime in which the
interaction can be modeled as a beam-splitter operation

between ûω̃ and âω̃. We identify this regime as the subcycle
probing of the vacuum according to the sampling mecha-
nism of a UDW detector. In this frequency range, devia-
tions of both quadrature variances from the value of 1 are
related to the sampling of virtual particles. On the other
hand, when ω̃≲ ωp, one gets āω̃ → â†ω̃ and therefore the
interaction between the two modes is modeled as a
squeezing-type operation. The detected particles can be
attributed to one-half of the photon pairs created by this
two-mode squeezing, with the trace over the subspace
corresponding to the other half therefore explaining the
larger than shot-noise (i.e., >1) values for both quadratures
in this frequency range (thermalization). It is worth noting
that thermalization is also seen in the UDW regime in
Fig. 5: the product of the two variances shows that this is
not a minimal-uncertainty state. This thermalization effect
is a signature of entanglement breakage/redistribution
between virtual particles and the UDW detector, hinting
at the possibility of harnessing (vacuum) entanglement
from these particles.
For the sake of comparison, we include in Fig. 5 similar

results for the standard first-order perturbation theory as in
Ref. [24]. The key difference between these approaches lies
in the prediction of ûω̃-quadrature measurements that are
below unity for some ω̃ values when the first-order unitary
approximation is employed. This shows that for ω̃≳ ωp

(ω̃≲ ωp) thermalization effects are overestimated (under-
estimated) when the first-order perturbation theory is
applied. These two contributions compensate each other
when integration over frequencies is considered, therefore
leading to negligible disagreement between the integrated
variances presented here and in Refs. [24,26,29]. The
prediction of sub-shot-noise variance through the first-
order unitary approximation represents an important step in
understanding the properties of the electromagnetic vac-
uum, considering sub-shot-noise quadrature variance as
one of the trademarks for characterization of quantumness.

VII. CONCLUSION

In summary, we characterized a massless bosonic field
mode with a subcycle Gaussian profile. Its subcycle
character renders it broadband enough to encompass both
positive and negative frequencies, resulting in a nonzero
photon-number expectation value in the mode, even though
the background field state is the Minkowski vacuum state.
The photons present in the vacuum are off-shell (virtual)
particles and therefore cannot exist outside of very short
time intervals. We show that a simple harmonic-oscillator
UDW detector interacting with the field through a very fast
switching on and off of the interaction can couple to the
subcycle Gaussian mode and therefore detect its virtual
particles. We then translate this behavior to the language
of electro-optic sampling by finding the regime in which
the nonlinear electro-optic interaction reproduces the

FIG. 5. Numerical plot of the Q- and P-quadrature variances V
obtained with the first-order unitary evolution method. The top
line (solid red) is the P-quadrature variance, while the bottom line
(solid blue) represents the Q-quadrature one. The dashed lines
represent the numerical result when we utilize the standard first-
order perturbation theory. In this plot, there is a vertical line near
ωp. To the right of it, the electro-optic sampling can be modeled
as a UDW detector.
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UDW-field interaction Hamiltonian. Since electro-optic
sampling is an inherently subcycle technique, the fast
switching on and off of the coupling in the optical system
is guaranteed by the ultrashort pump that drives the inter-
action. From these results, it is possible to identify the
contributions from virtual particles (i.e., from the quantum
vacuum itself) to the signal variance detected in quantum
electro-optic measurements of the electromagnetic vacuum.
The comparison between the normalized action of the

UDW detector and the nonlinear χð2Þ interaction of the
electric field within an optically active crystal is enabled by
the introduction of a novel first-order unitary evolution
approximation. This method models the nonlinear inter-
action of the electric field as either a beam-splitter inter-
action or two-mode squeezing between a detected mode
and a subcycle mode. When the beam-splitter interaction
dominates, excitations of the subcycle mode are mapped
directly onto the probe mode in an analogous way as for the
UDW detector. On the other hand, when the two-mode
squeezing dominates the process, the interaction is similar
to the usual squeezing seen in nonsubcycle quantum optics.
Our numerical results for a setting similar to what is

found in the literature [22,24] allow us to estimate the
transition point between regimes in which two-mode
squeezing and beam splitting are predominant, respectively,
therefore providing a rigorous delineation of the conditions
necessary to achieve a proper mapping of a χð2Þ interaction
into a UDW detector. Furthermore, we have proposed an
ellipsometry scheme to allow for detection of the first and
second moments of the electric-field quadratures of such
subcycle modes of the vacuum.
The detection of virtual photons from the vacuum field is

a feature of (curved-space) quantum field theory effects
such as Unruh-Davies [7] and Hawking radiation [9]. In
these effects, the virtual particle and antiparticle of the pair
are separated by a horizon, the Rindler and event horizons
for Unruh and Hawking effects, respectively. In such
situations the particle and antiparticle of the pair are
necessarily delocalized, and hence entangled. For the
subcycle UDW detector, a horizon can be introduced via
the fast switching on and off of the interaction. This fast
switching can decouple the virtual antiparticle from the
observed virtual particle, leading in principle to the ability
to observe vacuum entanglement between different regions
of spacetime [14]. In our work, we do not observe strong
decoupling from the entangled virtual antiparticle. The
inability to strongly decouple the antiparticles can be traced
back to the Gaussian-profile switch. The Gaussian profile
leads to a “soft” horizon in which the probe predominantly
detects both the particle and the antiparticle in the same
mode. The signature of this effect is the squeezing that we
observe in both Figs. 2 and 5. As a future research
direction, it would be interesting to explore in detail
how the statistics of the subcycle mode is affected by
the profile of the switching function and hence seek pump

profiles that are compatible with the observation of vacuum
entanglement. Our study shall theoretically supplement
experimental measurements targeting the detection of
spacelike autocorrelations in EOS [55].
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APPENDIX A: INPUT-OUTPUT FORMALISM
FOR AN UNRUH-DEWITT DETECTOR

In this section, we consider the input-output relation of
the Unruh-DeWitt detector, with û and û0 being the input
and output mode operators, respectively. The output can
be calculated via the Heisenberg evolution of the input
operator. Using the interaction Hamiltonian (27), we
introduce the evolution operator

ÛI;T ¼T
�
exp

�
−i
ℏ

Z
∞

−∞
dτAλðτÞQ̂ðτÞΠ̂ðtðτÞ;xðτÞÞ

��
; ðA1Þ

where T is the time-ordering protocol. The output under
this unitary operator can be calculated as follows:

û0 ¼ Û†
I;T ûÛI;T : ðA2Þ

This can be evaluated via a Magnus expansion, which is
difficult to compute nonperturbatively. In certain regimes,
the time-ordering effect can be neglected [43], allowing for
the following approximation:

ÛI;T ≈ ÛI

¼ exp

�
−i
ℏ

Z
∞

−∞
dτAλðτÞQ̂ðτÞΠ̂ðtðτÞ; xðτÞÞ

�
: ðA3Þ

The Baker-Hausdorff lemma can now be utilized to
compute û0. By noting that Π̂ is Hermitian, we write the
unitary operator in the following way:

ÛI ¼ exp

��
−
i
ℏ

Z
∞

−∞
dτAλðτÞΠ̂ðtðτÞ;xðτÞÞeiωuτ

�
û†−H:c:

�
:

ðA4Þ
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Inserting Eqs. (2) and (30) into the previous expression and considering a worldline of the form ðt; xÞ ¼ ðτ; 0Þ, we obtain

ÛI ¼ exp

��
−
Z

∞

−∞
dωsignðωÞη

ffiffiffiffiffiffi
jωj
8π

r Z
∞

−∞
dte−σ

2
uðt−tuÞ2−iðω−ωuÞtâω

�
û† − H:c:

�

¼ exp

��
−
Z

∞

−∞
dωsignðωÞ η

2σu

ffiffiffiffiffiffi
jωj
2

r
e
−ðω−ωuÞ2

4σ2u
−iðω−ωuÞtu

âω

�
û† − H:c:

�
: ðA5Þ

It is noticed that the term inside the brackets is similar to
the spectral decomposition of a Gaussian profile mode,
Eq. (11). By setting σu ¼ σ, tu ¼ t0 and ωu ¼ ω0, the
unitary evolution can be cast in the form

ÛI ¼ exp

��
−η

2

ffiffiffiffiffiffi
ω0

σ

r �
π

2

�
1=4

Z
∞

−∞
dωfgðωÞâω

�
û†−H:c:

�
;

ðA6Þ

or alternatively, by setting θu ¼ − η
2

ffiffiffiffi
ω0

σ

q �
π
2

�
1=4

, in the

form

ÛI ¼ exp ½θuðâgû† − H:c:Þ�: ðA7Þ

APPENDIX B: DECOMPOSITION
OF OPERATORS

1. Linear and quadratic operator decomposition

In this section we demonstrate how linear and quadratic
operators can be decomposed in terms of an arbitrary basis
set. We introduce a complete discrete orthonormal bosonic
basis set fâi; âj;…g that satisfies the commutation rela-
tions ½âi; âj� ¼ 0 and ½âi; â†j � ¼ δij.
We first consider an arbitrary operator Â, that is linear in

both âi and â
†
i . Given that this operator belongs to the space

spanned by the complete set fâi; âj;…g, this operator can
be decomposed as

Â ¼
X
i

Aiâi þ A0
iâ

†
i : ðB1Þ

The prefactors in front of âi can be found utilizing the
properties of the commutation relations,

Ai ¼ ½Â; â†i �; A0
i ¼ ½âi; Â�; ðB2Þ

giving the following result:

Â ¼
X
i

½Â; â†i �âi þ ½âi; Â�â†i : ðB3Þ

Let us now consider another operator, B̂, quadratic in
âi and â†i . This operator can be decomposed in terms of
fâi; âj;…g in the following way:

B̂¼
X
i

�
BiiâiâiþB0

iiâ
†
i âiþB00

iiâ
†
i â

†
i

þ
X
j>i

ðBijâiâjþB0
ijâ

†
i âjþB0

jiâ
†
j âiþB00

ijâ
†
i â

†
jÞ
�
: ðB4Þ

Utilizing properties of the commutation relations, we find

Bij ¼
1

1þ δij
½½B̂; â†i �; â†j �;

B00
ij ¼

1

1þ δji
½âj; ½âi; B̂��;

B0
ij ¼ ½½âi; B̂�; â†j �: ðB5Þ

2. Parallelization and orthogonalization
of a quadratic operator

In this section we introduce a process we refer to as
parallelization/orthogonalization with respect to a quadratic
operator. We consider as reference the operator âk, a chosen
operator within the orthonormal set fâi; âj;…g, for which
½âi; â†j � ¼ δij. We can split a normally ordered quadratic

operator B̂ into components parallel to âk and components
orthogonal to âk, namely

B̂ ¼ B̂kk þ B̂⊥k: ðB6Þ
The components parallel to âk (i.e., terms that do not
commute with either âk or â†k) can be expressed as

B̂kk¼
X
j

½BkjâkâjþB0
kjâ

†
kâjþð1−δjkÞB0

jkâ
†
j âkþB00

kjâ
†
kâ

†
j �;

ðB7Þ

where ð1 − δjkÞ avoids double counting when j ¼ k. We
will refer to this decomposition as parallelization. It can be
reduced to a compact form:

B̂kk ¼ ½B̂; â†k�âk þ â†k½âk; B̂�
− ðBkkâkâk þ B0

kkâ
†
kâk þ B00

kkâ
†
kâ

†
kÞ: ðB8Þ

The component orthogonal to âk (i.e., all terms that
commute with both âk and â†k) has the form
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B̂⊥k ¼
X
i≠k

X
j≥i;j≠k

Bijâiâj þ B0
ijâ

†
i âj

þ ð1 − δijÞB0
jiâ

†
j âi þ B00

ijâ
†
i â

†
j : ðB9Þ

This operator can also be written in a compact way
by rewriting Eq. (B6) as B̂⊥k ¼ B̂ − B̂kk and substituting
Eq. (B8):

B̂⊥k ¼ B̂ − ð½B̂; â†k�âk þ â†k½âk; B̂�
− ðBkkâkâk þ Bk̆kâ

†
kâk þ Bk̆ k̆â

†
kâ

†
kÞÞ: ðB10Þ

The second-order parallelization with respect to both âk
and âk0 gives

B̂kkk0 ¼ Bkk0 âkâk0 þ B0
kk0 â

†
kâk0 þ ð1 − δkk0 ÞB0

k0kâ
†
k0 âk

þ B00
kk0 â

†
kâ

†
k0 : ðB11Þ

Any normal ordered operator quadratic with respect to
the set fâi; âj;…g can be therefore decomposed in the
following way:

B̂ ¼
X
i

X
i0≥i

B̂kii0 : ðB12Þ

APPENDIX C: nth-ORDER
UNITARY EVOLUTION

The nth-order unitary evolution is a simplification of the
non-time-ordered evolution operator, Eq. (A1), based on an
approximation to the action: Ŝ ≈ Ŝ½n�. This section intro-
duces this formalism in the following manner: in Sec. C 1,
we introduce an explicit definition of the formalism,
deriving the constraints on the nth-order action, Ŝ½n�; in
Sec. C 2, we introduce a simple formula for Ŝ½n� when Ŝ is a
quadratic operator; in Sec. C 3, we prove that the Ŝ½n�

introduced in Sec. C 2 satisfies the constraints imposed on
an nth-order unitary action, as discussed in Sec. C 1.

1. Definition of the formalism

In this section, we introduce the nth-order unitary
evolution method. We begin by considering an arbitrary
unitary operator ÛS of the form

ÛS ¼ exp½Ŝ�; ðC1Þ
where Ŝ is an arbitrary (normalized by iℏ) action.
The Heisenberg evolution of an arbitrary operator, Ĉ0 ¼
Û†

SĈÛS, obeys the Baker-Hausdorff lemma,

Ĉ0 ¼ Ĉþ ½Ĉ;Ŝ� þ
1

2!
½½Ĉ;Ŝ�; Ŝ� þ

1

3!
½½½Ĉ;Ŝ�; Ŝ�; Ŝ� þ � � �

¼
X∞
n¼0

1

n!
½Ĉ; Ŝ�ðnÞ: ðC2Þ

with ½Ĉ; Ŝ�ðnÞ ¼ ½½Ĉ; Ŝ�ðn−1Þ; Ŝ� and ½Ĉ; Ŝ�ð0Þ ¼ Ĉ. For non-
trivial interaction Hamiltonians (contained in the action),
the Heisenberg evolution of Ĉ is usually difficult to
compute. The nth-order unitary evolution simplifies this
calculation by approximating the normalized action Ŝ with
the normalized nth-order unitary action Ŝ½n�. The nth-order
unitary evolution of Ĉ is defined as

Ĉ½n� ¼ Û½n�
S

†ĈÛ½n�
S ¼

X∞
m¼0

1

m!
½Ĉ; Ŝ½n��ðmÞ: ðC3Þ

The nth-order normalized action Ŝ½n� is defined so that the
evolution is accurate to at least nth order when expanded
according to the Baker-Hausdorff lemma:

½Ĉ; Ŝ�ðmÞ ¼ ½Ĉ; Ŝ½n��ðmÞ; ∀m⩽n: ðC4Þ

2. Ŝ½n� for quadratic actions

In this section, we demonstrate a method to determine
a simple Ŝ½n� for an arbitrary normalized quadratic action:

Ŝ ¼
Z

∞

−∞
dωdω0Sðω;ω0Þâ†ωûω0 − H:c:: ðC5Þ

To keep things general, we do not specify the commuta-
tion relation between âω and ûω. fâω; ∀ω ∈ Rg ∪
fûω; ∀ω ∈ Rg is the set spanning all (linear) operators
one can generate with both âω and ûω. Since we have not
specified the commutation relations between âω and ûω, a
general treatment would allow noncommuting elements
between âω and ûω0 . When there are noncommuting terms,
the union of the sets would not be an orthonormal set (this
would mean that the union of the two subsets may be
overcomplete). For this reason, we introduce a complete
orthornormal discrete set of operators fĉi; ĉj;…g, so that
all âω and ûω can be written as linear combinations of its
elements.
We represent the nth-order evolution component of the

(kth) element of the set fĉi;…g (i.e., ĉk), as ĉðnÞk . This
operator is derived in the following way:

c̄ðnÞk ¼ ½c̄ðn−1Þk ; Ŝ�=ðθðnÞk Þ ðC6Þ

θðnÞk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j½½c̄ðn−1Þk ; Ŝ�; ½Ŝ; c̄ðn−1Þk

†��j
q

; ðC7Þ

c̄ðnÞk ¼

8>><
>>:

ĉðnÞk if ½c̄ðnÞk ; c̄ðnÞk
†� > 0

ĉðnÞk
† if ½c̄ðnÞk ; c̄ðnÞk

†� < 0

0 otherwise:

ðC8Þ
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ĉð0Þk ¼ ĉk. Note that the set of evolution components

generated from a chosen ĉk, fĉk; c̄ð1Þk ;…; c̄ðnÞk g, is not
orthonormal. We can orthogonalize this set of operators
in the following manner (we will omit the index k here-
after):

c̄ðnÞ ¼ c̄ðnÞ−
�X

m<n

½c̄ðnÞ; c̄ðmÞ†�c̄ðmÞ þ ½c̄ðmÞ; c̄ðnÞ�c̄ðmÞ†
�
; ðC9Þ

c̃ðnÞ ¼ c̄ðnÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j½c̄ðnÞ; c̄ðnÞ†�j

q
; ðC10Þ

where c̃ðnÞ being either ĉðnÞ or ĉðnÞ† depending on the sign of
the commutator. Utilizing the Schmidt decomposition, we
can arbitrarily set (as long as the first n operators ĉðnÞ are
orthogonal to each other) the first n operators of a complete
orthonormal discrete bosonic set. We therefore introduce
the complete orthonormal set, fĉð0Þ; ĉð1Þ;…; ĉðnÞg ∪
fd̂1; d̂2;…g. We have set fd̂1; d̂2;…g to be orthogonal to
the set fĉð0Þ; ĉð1Þ;…; ĉðnÞg. We then define Ŝ½n� in the
following way:

Ŝ½n� ¼
Xn
m¼0

Xn
m0¼m

Ŝkmm0 ðĉð0Þ; ĉð0Þ†; ĉð1Þ; ĉð1Þ†;…; ĉðnÞ; ĉðnÞ†Þ;

ðC11Þ

where Ŝkmm0 is defined in Eq. (B11).

3. Proving the validity of Ŝ½n�

In this section, we prove that Eq. (C11) leads to an action
accurate to at least nth order in the Baker-Hausdorff-lemma
expansion. The full expansion of Ŝ in terms of the operators
in the basis set fĉð0Þ; ĉð1Þ;…; ĉðnÞg ∪ fd̂1; d̂2;…g is

Ŝ ¼ Ŝ½n� þ Ŝ½n�⊥ þ Ŝ⊥;

Ŝ½n� ¼
Xn
m¼0

Xn
m0¼m

Ŝkmm0 ðĉð0Þ; ĉð0Þ†;…Þ; ðC12Þ

Ŝ⊥ ¼
X∞
i¼1

X∞
j¼i

Ŝkijðd̂1; d̂†1;…Þ;

Ŝ½n�⊥ ¼
Xn
m¼0

X∞
i¼1

Ŝkmiðĉð0Þ; ĉð0Þ†;…; d̂1; d̂
†
1;…Þ; ðC13Þ

where the sums with respect to m, m0 are over the elements
of the set fĉð0Þ; ĉð1Þ;…; ĉðnÞg, while the sums with respect
to i, j are over the elements of the set fd̂1; d̂2;…g.
Proposition 1.—Ŝ½n� is given by Eq. (C11) if the

following conditions are satisfied:

½Ŝ⊥; c̄ðmÞ†� ¼ ½c̄ðmÞ; Ŝ⊥� ¼ 0; ∀m < n; ðC14aÞ

½Ŝ½n�⊥ ; c̄ðmÞ†� ¼ ½c̄ðmÞ; Ŝ½n�⊥ � ¼ 0; ∀m < n: ðC14bÞ

Proof.—Equation (C11) gives Ŝ½n� if it satisfies Eq. (C4).
Utilizing Eq. (C12):

½ĉ; Ŝ�ðmÞ ¼ ½½ĉ; Ŝ�ðm−1Þ; Ŝ½n�� þ ½½ĉ; Ŝ�ðm−1Þ; Ŝ⊥�
þ ½½ĉ; Ŝ�ðm−1Þ; Ŝ½n�⊥ �: ðC15Þ

We note that ½ĉ; Ŝ�ðm−1Þ is generated by the operators in
fĉðm−1Þ; ĉðm−1Þ†g by definition [refer to Eq. (C6)]. The
conditions (C14a) and (C14b) therefore imply

½½ĉ; Ŝ�ðm−1Þ; Ŝ⊥� ¼ ½½ĉ; Ŝ�ðm−1Þ; Ŝ½n�⊥ � ¼ 0; ∀m⩽n: ðC16Þ

By substituting this result into Eq. (C15) we obtain

½ĉ; Ŝ� ¼ ½ĉ; Ŝ½n�� ðC17Þ

½ĉ; Ŝ�ðmÞ ¼ ½½ĉ; Ŝ�ðm−1Þ; Ŝ½n��; ∀m⩽n; ðC18Þ

where the first equation is an explicit form of the second
equation when m ¼ 1. By the domino effect, we obtain

½ĉ; Ŝ�ðmÞ ¼ ½ĉ; Ŝ½n��ðmÞ; ∀m⩽n; ðC19Þ

which completes the proof. ▪
Proposition 2.—½Ŝ⊥; ĉðmÞ†� ¼ ½ĉðmÞ; Ŝ⊥� ¼ 0; ∀m⩽n

is true.
Proof.—By construction, each element of the set

fĉ; ĉð1Þ;…; ĉðnÞg is orthogonal to any element in the set
fd̂1; d̂2;…g. Utilizing this property, one can show that

½Ŝ⊥; ĉðmÞ†� ¼ ½ĉðmÞ; Ŝ⊥� ¼ 0; ∀m⩽n: ðC20Þ

This implies that

�
Ŝ⊥;

Xn
m¼0

AmĉðmÞ þ A0
mĉðmÞ†

�
¼ 0: ðC21Þ

Since any element of the set fĉ; ĉð1Þ;…; ĉðnÞg can be written
as a linear combination of the elements in the set
fĉ; ĉð1Þ;…; ĉðnÞg, by selecting the correct values for Am
and A0

m, one can assure that

½Ŝ⊥; ĉðmÞ†� ¼ ½ĉðmÞ; Ŝ⊥� ¼ 0; ∀m⩽n; ðC22Þ

thus completing the proof. ▪
Proposition 3.—½Ŝ½n�⊥ ; ĉðmÞ†� ¼ ½ĉðmÞ; Ŝ½n�⊥ � ¼ 0; ∀m < n

is true.
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Proof.—We prove this conjecture by noticing that

½ĉðm−1Þ; Ŝ� ¼ QĉðmÞ þ RĉðmÞ†;

½Ŝ; ĉðm−1Þ†� ¼ −RĉðmÞ −QĉðmÞ†; ∀m < n; ðC23Þ

where fQ;Rg ∈ R. For brevity, we only consider the first
part of the equation. Utilizing the result from Proposition 2,
Eq. (C23) can be simplified to

½ĉðm−1Þ; Ŝ½n�� þ ½ĉðm−1Þ; Ŝ½n�⊥ � ¼ QĉðmÞ þ RĉðmÞ†: ðC24Þ

We notice that Ŝ½n�⊥ only includes terms of the form ĉðmÞd̂i,
ĉðmÞ†d̂i, ĉðmÞd̂†i or ĉðmÞ†d̂†i . Similarly, Ŝ½n� only includes
terms of the form ĉðmÞĉðm0Þ, ĉðmÞ†ĉðm0Þ or ĉðmÞ†ĉðm0Þ†. This
allows us to conclude that

½ĉðmÞ; Ŝ½n�⊥ � ¼
X∞
i¼1

Qmid̂i þ Rmid̂
†
i ; ½ĉðmÞ; Ŝ½n��

¼
Xn
m0¼0

Q0
mm0 ĉðmÞ þ ð1þ δm

0
m ÞR0

mm0 ĉðm
0Þ†: ðC25Þ

By substituting Eq. (C25) into Eq. (C24) and noticing how
the right-hand side does not contain d̂i terms, we find the
following:

½Ŝ½n�⊥ ; ĉðmÞ†� ¼ ½ĉðmÞ; Ŝ½n�⊥ � ¼ 0; ∀ m < n: ðC26Þ

This completes the proof. ▪
Combining Propositions 1, 2, and 3), we prove that

Eq. (C11) is a valid nth-order unitary action, satisfy-
ing Eq. (C4).

APPENDIX D: HAMILTONIAN FOR A
NONLINEAR FIELD INTERACTION

In this section we derive Eq. (56) from the following
action:

Ŝχ ¼ −
i
ℏ

Z
∞

−∞
dxdtλαpðt; xÞðÊΩðt; xÞ þ Êωðt; xÞÞ2rect

�
x
L

�
:

ðD1Þ

By the rotating-wave approximation, we simplify the
equation to the following form:

Ŝχ¼−
2i
ℏ

Z
∞

−∞
dxdtλαpðt;xÞÊΩðt;xÞÊωðt;xÞrect

�
x
L

�
: ðD2Þ

The Fourier decomposition of these operators leads to

Ŝχ ¼
iαλ

2πAcϵ0

Z
dω⃗signðωΩÞ

ffiffiffiffiffiffiffiffiffiffiffi
jωΩj
nωnΩ

s
EpðωpÞâωâΩ

×
Z

L=2

−L=2
dxe−iðωpnωpþωnωþΩnΩÞxc

×
Z

∞

−∞
dte−iðωpþωþΩÞt − H:c:; ðD3Þ

where dω⃗ ¼ dωpdωdΩ. The integral over time can be
performed to give

Z
∞

−∞
dte−iðωpþωþΩÞt ¼ 2πδðωp þ ωþ ΩÞ: ðD4Þ

By integrating over ωp, we set ωp ¼ −ω −Ω:

Ŝχ ¼
iαλ
Acϵ0

Z
dωdΩsignðωΩÞ

ffiffiffiffiffiffiffiffiffiffiffi
jωΩj
nωnΩ

s
Epð−ω −ΩÞâωâΩ

×
Z

L=2

−L=2
dxe−iðωðnω−nωþΩÞþΩðnΩ−nωþΩÞÞxc − H:c:; ðD5Þ

where we have used the property that nω ¼ n−ω. Integration
over the space coordinate gives

Z
L=2

−L=2
dxe−iðωðnω−nωþΩÞþΩðnΩ−nωþΩÞÞxc

¼ Lsinc
nL
2c

½ωðnω − nωþΩÞ þΩðnΩ − nωþΩÞ�
o
: ðD6Þ

This is proportional to the phase-matching funcion (i.e.,
ζω;Ω). Utilizing this result, we obtain

Ŝχ ¼
iαλL
Acϵ0

Z
dωdΩsignðωΩÞ

ffiffiffiffiffiffiffiffiffiffiffi
jωΩj
nωnΩ

s
Epð−ω −ΩÞâωâΩ

× sinc

�
L
2c

½ωðnω − nωþΩÞ þ ΩðnΩ − nωþΩÞ�



− H:c: ðD7Þ

By setting one of the dummy variables as ω → −ω,

Ŝχ ¼ −
iαλL
Acϵ0

Z
dωdΩsignðωΩÞ

ffiffiffiffiffiffiffiffiffiffiffi
jωΩj
nωnΩ

s
Epðω − ΩÞâ†ωâΩ

× sinc

�
L
2c

½ΩðnΩ − nω−ΩÞ − ωðnω − nω−ΩÞ�



− H:c: ðD8Þ

Setting the dummy variable ω → −ω and Ω → −Ω for the
Hermitian conjugate, we obtain
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Ŝχ ¼ −
iλL
Aγ

Z
dωdΩsignðωΩÞ

ffiffiffiffiffiffiffiffiffiffiffi
jωΩj
nωnΩ

s
½αEpðΩ − ωÞ

þ α�E�
pðω − ΩÞ�

× sinc

�
L
2c

½ΩðnΩ − nω−ΩÞ − ωðnω − nω−ΩÞ�


â†ωâΩ:

ðD9Þ

With the aid of Eqs. (58) and (59) we write this equation in
a compact form:

Ŝχ ¼
Z

dΩdωαpðω −ΩÞζω;ΩâΩâ†ω: ðD10Þ

APPENDIX E: NUMERICAL RESULTS ON THE
SECOND-ORDER UNITARY EVOLUTION

1. Second-order unitary evolution

Let us define the operator ûω̃ ¼ R
dω 1ffiffiffiffiffi

Δω
p Πðω̃−ωΔω Þâω. We

are interested in the second-order unitary evolution under
the action

Ŝχ ¼
Z

∞

−∞
dωdΩSχðΩ;ωÞâΩâ†ω: ðE1Þ

The evolution of ûω̃ according to the Baker-Hausdorff-
lemma expansion to second order reads

û0̃
ω ≈ ûω̃ þ ½ûω̃; Ŝ� þ

1

2!
½½ûω̃; Ŝ�; Ŝ�: ðE2Þ

We can then use the approach defined by Eqs. (C6)–(C8) to
write

û0̃
ω ≈ ûω̃ þ θð1Þω̃ ūð1Þ

ω̃ þ 1

2
θð1Þω̃ θð2Þω̃ ūð2Þ

ω̃ : ðE3Þ

We note that in the article ūð1Þ
ω̃ ¼ āω̃. One can orthonorm-

alize these operators with the aid of Eq. (C10), with ũð1Þω̃ and

ũð2Þω̃ being the so-obtained orthonormalized first- and
second-order mode operators. Equation (C11), written in
terms of these operators, reads [note that energy conserva-
tion does not allow for quadratic terms on the same mode
operator, therefore ruling out ðŜχÞkii terms]:

Ŝ½2�χ ¼
X2
m¼0

X2
m0¼m

ðŜχÞkmm0 ðE4Þ

¼ ðŜχÞk01 þ ðŜχÞk12 ðE5Þ

¼ ðθð1Þω̃ ũð1Þω̃ ûð0Þω̃
† − H:c:Þ

þ ½ũð1Þω̃ ; ũð1Þω̃
†�ðθð2Þω̃ ũð1Þω̃

†ũð2Þω̃ − H:c:Þ ðE6Þ

¼ ½ūð1Þ
ω̃ ; ūð1Þ

ω̃
†�θð2Þω̃ ðūð1Þ

ω̃
†ūð2Þ

ω̃ − ūð2Þ
ω̃

†ūð1Þ
ω̃ Þ: ðE7Þ

The evolution of ûω̃ under the second-order unitary
evolution is therefore given by

û0̃
ω ¼

8>>>>><
>>>>>:

ûω̃ þ ½ûω̃; û
ð2Þ
ω̃

†�ððcosðθð2Þω̃ Þ − 1Þûð2Þ
ω̃ − sinðθð2Þω̃ Þûð1Þ

ω̃ Þ; if ½ūð1Þ
ω̃ ; ūð1Þ

ω̃
†� ¼ 1; ½ūð2Þ

ω̃ ; ūð2Þ
ω̃

†� ¼ 1;

ûω̃ þ ½ûð2Þ
ω̃ ; ûω̃�ððcoshðθð2Þω̃ Þ − 1Þûð2Þ

ω̃
† þ sinhðθð2Þω̃ Þâð1Þω̃ Þ; if ½ūð1Þ

ω̃ ; ūð1Þ
ω̃

†� ¼ 1; ½ūð2Þ
ω̃ ; ūð2Þ

ω̃
†� ¼ −1;

ûω̃ þ ½ûω̃; û
ð2Þ
ω̃

†�ððcoshðθð2Þω̃ Þ − 1Þûð2Þ
ω̃ þ sinhðθð2Þω̃ Þûð1Þ

ω̃
†Þ; if ½ūð1Þ

ω̃ ; ūð1Þ
ω̃

†� ¼ −1; ½ūð2Þ
ω̃ ; ūð2Þ

ω̃
†� ¼ 1;

ûω̃ þ ½ûð2Þ
ω̃ ; ûω̃�ððcosðθð2Þω̃ Þ − 1Þûð2Þ

ω̃
† − sinðθð2Þω̃ Þûð1Þ

ω̃
†Þ; if ½ūð1Þ

ω̃ ; ūð1Þ
ω̃

†� ¼ −1; ½ūð2Þ
ω̃ ; ūð2Þ

ω̃
†� ¼ −1:

ðE8Þ

By introducing the expressions

Mð0Þ
ω̃ ¼ ½ûω̃; û

ð2Þ
ω̃

†� þ ½ûð2Þ
ω̃ ; ûω̃�; ðE9Þ

Mð2Þ
ω̃ ¼ j½ūð1Þ

ω̃ þ ūð2Þ
ω̃ ; ūð1Þ

ω̃
† þ ūð2Þ

ω̃
†�j

2
cosðθð2Þω̃ Þ

þ j½ūð1Þ
ω̃ þ ūð2Þ

ω̃ ; ūð1Þ
ω̃

† − ūð2Þ
ω̃

†�j
2

coshðθð2Þω̃ Þ; ðE10Þ

Mð1Þ
ω̃ ¼ −

j½ūð1Þ
ω̃ þ ūð2Þ

ω̃ ; ūð1Þ
ω̃

† þ ūð2Þ
ω̃

†�j
2

sinðθð2Þω̃ Þ

þ j½ūð1Þ
ω̃ þ ūð2Þ

ω̃ ; ūð1Þ
ω̃

† − ūð2Þ
ω̃

†�j
2

sinhðθð2Þω̃ Þ; ðE11Þ

we simplify Eq. (E8) to

û0̃
ω ¼ ûω̃ þMð0Þ

ω̃ ððMð2Þ
ω̃ − 1Þūð2Þ

ω̃ þMð1Þ
ω̃ ūð1Þ

ω̃ Þ: ðE12Þ

By utilizing the properties of the commutator, namely

½ūð2Þ
ω̃ ; ūð2Þ

ω̃
†� ¼ 1 ⇒

� ½ûω̃; ū
ð2Þ
ω̃

†� ¼ −½ūð1Þ
ω̃ ; ūð1Þ

ω̃
†�θð1Þω̃ =θð2Þω̃ ;

½ûð2Þ
ω̃ ; ûω̃� ¼ 0;

½ūð2Þ
ω̃ ; ûð2Þ

ω̃
†� ¼ −1 ⇒

� ½ûω̃; û
ð2Þ
ω̃

†� ¼ 0;

½ûð2Þ
ω̃ ; ûω̃� ¼ ½ūð1Þ

ω̃ ; ūð1Þ
ω̃

†�θð1Þω̃ =θð2Þω̃ ;

ðE13Þ
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we show that all four cases of Eq. (E8) coincide with
Eq. (E3) up to second order in θð2Þω̃ . This means that Ŝ½2�χ is a
proper second-order normalized action, giving results
accurate to at least second order in perturbation theory.
By utilizing Eq. (E12) we compute the quadrature

variance. A numerical plot of the quadrature variance is
shown in Fig. 6, with the refractive index shown in Fig. 7. It
is found that the difference between the first- and second-
order unitary evolution method is negligible. There is a
minor deviation between the two predictions near ωp. This

is the point where θð2Þω̃ becomes large, and the predictions
made by second-order unitary evolution method starts to
fail. Higher-order calculations are required to have a more
accurate model in this regime.

APPENDIX F: HOMODYNE DETECTION
WITH ELECTRO-OPTIC SAMPLING

In this section, we consider the mathematics of an
alternative approach to the ellipsometry scheme (cf.
Fig. 8). The final state of the electric field, jψi, after going
through the various crystals, can be written in the
Schrödinger picture as jψi ¼ Ûϕz

Ûχ j0i, with

Ûϕz
¼ exp

�
iϕ

Z
∞

0

dωâ†ω;zâω;z

�
ðF1Þ

being the evolution operator corresponding to the action of
a ϕ wave plate. In the Heisenberg picture, on the other
hand, evolution is considered on the operators themselves,
so that âω;ν (with polarization states ν ¼ s, z) is evolved to
the form

â00ω;ν ¼ ðÛϕz
ÛχÞ†âω;SÛϕz

Ûχ ; ðF2Þ

with Û†
ϕz
âω;zÛϕz

¼ eiϕâω;z and Û†
ϕz
âω;sÛϕz

¼ âω;s.

Adopting the notation â0ω;S ¼ Û†
χ âω;SÛχ and considering

the alternative pair of annihilation operators âω;a ¼
1ffiffi
2

p ðâω;s þ âω;zÞ and âω;b ¼ 1ffiffi
2

p ðâω;z − âω;sÞ for the polari-

zation axes a and b rotated by π=4 relative to s and z, one
finds

â00ω;a ¼
1ffiffiffi
2

p ðâ0ω;zeiϕ þ â0ω;νÞ; ðF3Þ

â00ω;b ¼
1ffiffiffi
2

p ðâ0ω;zeiϕ − â0ω;νÞ: ðF4Þ

At the output, we consider the measurement of the
filtered photon-number operators defined as

N̂ω̃;ν ¼
Z

ω̃þΔω=2

ω̃−Δω=2
dωâ†ω;νâω;ν: ðF5Þ

The integration domain corresponds to a photodetection
limited to the frequency band of width Δω centered at ω̃.
Such a measurement can be achieved with the inclusion of
a bandpass filter before detection. The Wollaston prism
isolates the particle in the a and b polarization, allowing the
detection of N̂00̃

ω;a and N̂00
ω̃;b, independently. The detected

(filtered) photon-number operators have the forms

N̂00̃
ω;a ¼

Z
ω̃þΔω=2

ω̃−Δω=2
dω

1

2
ðâ0ω;zeiϕþ â0ω;sÞ†ðâ0ω;zeiϕþ â0ω;sÞ

¼ 1

2
ðN̂ 0̃

ω;sþ N̂ 0̃
ω;zÞ

þ1

2

Z
ω̃þΔω=2

ω̃−Δω=2
dωðâ0†ω;zâ0ω;se−iϕþ â0†ω;sâ0ω;zeiϕÞ; ðF6Þ

FIG. 7. The frequency-dependent refractive index of the EOX
crystal is plotted. We have utilized the (simplified) model of [24]
for the MIR regime. For the NIR regime, we have utilized the fit
provided by [53]. We have continuously connected the two
models.

FIG. 6. Numerical plot of the X and P quadrature variance for
both first- and second-order unitary evolution theory. The top line
(the red line) is the P-quadrature variance, while the bottom line
(the blue line) is the X-quadrature variance. The dotted line
corresponds to the second-order results.
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N̂00
ω̃;b ¼

1

2
ðN̂ 0̃

ω;sþ N̂ 0̃
ω;zÞ

−
1

2

Z
ω̃þΔω=2

ω̃−Δω=2
dωðâ0†ω;zâ0ω;se−iϕþ â0†ω;sâ0ω;zeiϕÞ: ðF7Þ

Their sum, N̂00̃
ω;a þ N̂00

ω̃;b ¼ ðN̂ 0̃
ω;s þ N̂ 0̃

ω;zÞ, gives the total
detected photon number, while their difference gives the
electro-optic signal:

N̂00̃
ω;a − N̂00

ω̃;b ¼
Z

ω̃þΔω=2

ω̃−Δω=2
dωðâ0†ω;zâ0ω;se−iϕ þ â0†ω;sâ0ω;zeiϕÞ:

ðF8Þ

By utilizing the mean-field approximation for the z
component of the electric field, these equations reduce to

N̂00̃
ω;a þ N̂00

ω̃;b ≈
Z

ω̃þΔω=2

ω̃−Δω=2
dωjαzðωÞj2; ðF9Þ

N̂00̃
ω;a− N̂00

ω̃;b¼
Z

ω̃þΔω=2

ω̃−Δω=2
dωðα�zðωÞâ0ω;se−iϕþ â0†ω;sαzðωÞeiϕÞ;

ðF10Þ

where we have defined αzðωÞjαzðωÞi ¼ âω;zjαzðωÞi. By
rearranging the coordinates, we can set t0 ¼ 0, giving
αzðωÞ ≈ αzðω̃Þ for a sufficiently small Δω. Considering
Eq. (60), this approximation leads to

N̂00̃
ω;a þ N̂00

ω̃;b ≈ j
ffiffiffiffiffiffiffi
Δω

p
αzðω̃Þj2; ðF11Þ

N̂00̃
ω;a−N̂00

ω̃;b≈
ffiffiffiffiffiffiffi
Δω

p
ðû0̃

ω;sα
�
zðω̃Þe−iϕþû0†

ω̃;sαzðω̃ÞeiϕÞ: ðF12Þ

By noting that the Minkowski vacuum state is unaffected
by phase rotation, we can arbitrarily set the phase of the
strong coherent signal; thus by setting αzðω̃Þ ¼ jαzðω̃Þj, we
have:

hN̂00̃
ω;a − N̂00

ω̃;biffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hN̂00̃

ω;a þ N̂00
ω̃;bi

q ¼
�
α�zðω̃Þ
jαzðω̃Þj

û0̃
ωe

−iϕ þ αzðω̃Þ
jαzðω̃Þj

û0†
ω̃e

iϕ

	

ðF13Þ

¼ hû0̃
ωe

−iϕ þ û0†
ω̃e

iϕi: ðF14Þ

This gives an identical result to (65).
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