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Complete positive operator-valued measure description of multichannel quantum
electro-optic sampling with monochromatic field modes
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We propose a multichannel version of quantum electro-optic sampling involving monochromatic field modes.
It allows for multiple simultaneous measurements of arbitrarily many X̂ and Ŷ field quadratures for a single
quantum-state copy, while independently tuning the interaction strengths at each channel. In contrast to standard
electro-optic sampling, the sampled midinfrared (MIR) mode undergoes a nonlinear interaction with multiple
near-infrared pump beams. We present a complete positive operator-valued measure description for quantum
states in the MIR mode. The probability distribution of the electro-optic signal outcomes is shown to be related
to an s-parametrized phase-space quasiprobability distribution of the indirectly measured MIR state, with the
parameter s depending solely on the quantities characterizing the nonlinear interaction. Furthermore, we show
that the quasiprobability distributions for the sampled and postmeasurement states are related to each other
through a renormalization and a change in the parametrization. This result is then used to demonstrate that two
consecutive measurements of both X̂ and Ŷ quadratures can outperform eight-port homodyne detection.
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I. INTRODUCTION

Understanding simultaneous measurements of incompat-
ible observables is key to differentiate quantum mechanics
from classical physics. That a quantum theory must inevitably
be of a statistical nature was already recognized in the early
days of quantum mechanics and led to Heisenberg’s uncer-
tainty principle [1–3]. As a consequence thereof, it is not
possible to prepare an ensemble with dispersion-free conju-
gate variables such as position and momentum. The quantum
states of a system in conventional quantum mechanics thus
cannot be represented as points in phase space, unlike in
classical mechanics, but require instead a description that
captures this fundamental limitation. Here the question could
arise whether the quantum-mechanical expectation value can
be calculated as an ensemble average over a phase-space
function, as in classical statistical mechanics. One of the most
widely known attempts to formulate quantum mechanics in
terms of phase-space distributions was made by Wigner [4].
Although the quantum-state phase-space function proposed
by Wigner gives the correct probabilities for the position
and momentum as marginal distributions, it can take negative
values and does not allow for an interpretation as a proba-
bility distribution; for this reason, it is often referred to as
a quasiprobability distribution. However, the Wigner func-
tion is not the only phase-space distribution which, together
with a properly chosen phase-space function representing the
observable, gives the same expectation value as von Neu-
mann’s trace formula (see [5], p. 207). In fact, there is a large
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family of distributions fulfilling this condition, as shown by
Cohen [6].

Wigner later proved that there is no positive phase-space
distribution, which is linear as a function of the den-
sity operator, with the correct quantum-mechanical marginal
distributions [7]. Thus, if we want to directly sample a
quasiprobability distribution and obtain the marginal distribu-
tion thereof, there will be some additional uncertainty. Arthurs
and Kelly [8,9] obtained the same result by applying von
Neumann’s indirect measurements (see [5], Chap. VI.3) to
a (specific) simultaneous measurement. Werner [10] formal-
ized this notion by distinguishing between preparation and
measurement uncertainty and derived uncertainty relations for
those.

Simultaneous measurements were realized for various
physical systems, such as a transmon qubit in a microwave
cavity [11,12], an optical qubit [13–15], or a single mode
of light [16,17]. In the case of the quantized electromagnetic
field, the vector potential assumes the role of the generalized
coordinate. For monochromatic field modes, the vector poten-
tial is proportional to the X̂ = 1

2 (â + â†) quadrature, in which
â is the bosonic annihilation operator of the field mode, and
the corresponding canonical conjugate is the electric-field-
related Ŷ = i

2 (â† − â) quadrature (see [18], p. 94, and [19]).
This allows one to describe a single-mode quantum state of
the electromagnetic-field mode using quasiprobability distri-
butions. There are several optical methods to sample specific
quasiprobability distributions, such as the many variants of
homodyne detection to measure the quadratures either sep-
arately [20–29] or simultaneously [16,17,30–32]. One such
possibility is to use eight-port homodyne detection, in which
the sampled mode is split into two modes using a beam
splitter and then the two quadratures can be measured si-
multaneously using a four-port homodyne detection scheme
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[17]. Another possibility to measure the field quadratures is
provided by quantum electro-optic sampling (EOS) [33–43].
Electro-optic sampling is an indirect measurement of low-
frequency modes, usually in the midinfrared (MIR), mediated
by higher-frequency modes, usually in the near infrared
(NIR). For this to happen, modes in the two frequency ranges
are correlated by an interaction in a nonlinear crystal [44,45].
Subsequently, all the high-frequency modes are sampled by
a single detection stage, which limits this configuration to
the measurement of a single quadrature at a time. How-
ever, the simultaneous measurement of two noncommuting
quadratures is of great interest to many applications in quan-
tum information technologies, such as quantum metrology
[46–49], continuous-variable quantum teleportation [50,51],
and continuous-variable quantum key distribution [52,53]. A
particular example consists in the case of a double quantum-
dot charge qubit where it was shown that cross correlations
between simultaneously measured charge-detector signals al-
low for the improvement of the signal-to-noise ratio [54].

In this paper we show that a multichannel version of
(continuous-wave-driven) electro-optic sampling can be uti-
lized to sample quasiprobability distributions of a monochro-
matic MIR quantum state and thus overcome the limitation
of EOS to measurements of a single quadrature. We ex-
plicitly demonstrate this by calculating the count-probability
distribution (12). Differently from the standard approach to
electro-optic sampling, multiple monochromatic NIR modes
assigned to different channels are sampled by different de-
tection stages. This allows one to simultaneously measure
multiple quadratures of a single MIR state and to tune the
interaction strength between the MIR and each NIR mode
individually. Thus, the model presented in this paper is ap-
plicable to arbitrary many measurements of X̂ and/or Ŷ
quadratures. Furthermore, we derive the postmeasurement
quasiprobability distributions for arbitrary combinations of
X̂ - and/or Ŷ -quadrature measurements [Eq. (24)] and use
this result to show that additional measurements on the
postmeasurement state can outperform eight-port homodyne
detection.

In Sec. II the proposed measurement scheme and the
respective theoretical model are presented. In Sec. III the
count-probability distribution is derived and some special
cases are discussed. In Sec. IV we show how the quasiprob-
ability distribution for the postmeasurement state relates to
the initial states one. In Sec. V the different measurement
schemes based on electro-optic sampling are compared and
it is shown that two consecutive measurements of the same
state can outperform eight-port homodyne detection.

II. MODEL

As is the case for any quantum-mechanical indirect mea-
surement, electro-optic sampling makes use of an ancillary
system (in the present case, the high-frequency NIR modes
of the electric field), which becomes correlated with the
low-frequency mode of the field (here the MIR) through in-
teractions in a nonlinear crystal [33–44]. We consider the
specific case of an optical parametric oscillator consisting of
a zinc-blende-type nonlinear crystal in a cavity, labeled as (i)
in Fig. 1(a). The details about the geometrical arrangement

FIG. 1. Schematic representation of the proposed measurement
setup. The first step in (a) is a nonlinear interaction between the NIR
pump beams with amplitudes αi and the MIR mode ρ̂� in the optical
parametric oscillator (i). Then the z-polarized components of the NIR
cavity frequencies are filtered out and replaced by z-polarized probe
beams βi using the polarizing beam splitter (ii). Subsequently, the
quadratures of the NIR modes are measured using the ellipsometry
scheme depicted in (b). The ellipsometer consists of the φi waveplate
(iii) rotated by θi, a polarizing beam splitter (iv) to separate the s- and
z-polarized photons of the NIR frequencies, and two photon detectors
to count the photon number of each polarization. The difference
between the s- and z-polarized photon numbers �n̂i = n̂i,s − n̂i,z

constitutes the signal.

of the nonlinear crystal are given in [35]. In the crystal, the
coherent z-polarized pump beams in the NIR cavity modes
i ∈ I = {1, 2, . . .}, with amplitudes αi, drive the entanglement
between the s-polarized NIR modes, corresponding to the
bosonic operator âi,s, and the s-polarized MIR mode, related
to â�,s. This nonlinear interaction is described by the multi-
mode squeezing operator (see [18], pp. 276–281)

ÛNL = exp

(
ζ ∗â�,s

∑
i∈I

α̃iâi,s − H.c.

)
, (1)

where ζ is the dressed squeezing parameter and α̃i =
αi/(

∑
i∈I |αi|2)1/2 the normalized pump amplitude. The time-

evolution operator (1) is therefore an effective two-mode
squeezing operator between â�,s and

∑
i∈I α̃iâi,s. This ef-

fective two-mode description is achieved by absorbing the
normalization constant of the αi into the undressed squeezing
parameter ζ0.
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After the nonlinear interaction, the z-polarized NIR pump
beams are filtered out by the polarizing beam splitters (ii)
and coherent NIR probes of amplitudes βi are introduced
as replacements. The z-polarized NIR modes are therefore
displaced by D̂i,z(βi ) = exp(βiâ

†
i,z − H.c.). This allows for an

additional, tunable set of parameter. If a setup without this
filtering is considered, the pump amplitudes αi can be set
equal to the probe amplitudes βi.

The quadratures of the (s-polarized) NIR field modes are
then measured using ellipsometers [33,35,55]. The first step
of the ellipsometry scheme, (iii) in Fig. 1(b), is the change
in the ellipticities of the joint-polarization NIR modes due to
a φi waveplate rotated by an angle θi relative to the z axis,
Ûi,WP = exp(iφiâ

†
i,θi

âi,θi ). Here âi,θi = cos(θi )âi,s + sin(θi )âi,z

are the annihilation operators of the modes the waveplate acts
on. The total time-evolution operator is thus

Û = ÛWPD̂z(�β )ÛNL. (2)

To allow for a compact notation we have introduced the total
waveplate operator ÛWP = ⊗

i∈I Ûi,WP and the total displace-
ment operator D̂z(�β ) = ⊗

i∈I D̂i,z(βi ).
In a second step, denoted by (iv) in Fig. 1(b), the photons at

each NIR cavity frequency i are split spatially into s-polarized
and z-polarized contributions with the aid of a polarizing beam
splitter. Finally, the photons of each polarization are counted
using photon detectors and the number of z-polarized counts
is subtracted from the s-polarized ones. The corresponding
observables are thus the difference between the respective
photon-number operators at each cavity frequency i,

�n̂i = n̂i,s − n̂i,z =
∞∑

�ni=−∞
�niP̂�ni . (3)

In order to obtain a description in terms of positive operator-
valued measures (POVMs), the observables are decomposed
into the projectors on the subspace of states with photon-
number difference �ni between the s-polarized and the
z-polarized NIR counts at frequency i,

P̂�ni =
∞∑

ni=ñi

|ni + �ni〉i,s i,s〈ni + �ni| ⊗ |ni〉i,z i,z〈ni|, (4)

where the summation starts at ñi = max{0,−�ni} to avoid
negative photon-number occupations. These are the necessary
components to calculate the count probability of the photon-
number differences {�ni} = {�ni | i ∈ I}.

III. COUNT-PROBABILITY DISTRIBUTION

The probability distribution

p({�ni}) = tr(P̂{�ni}Û ρ̂� ⊗ |0〉ω ω〈0|Û †) (5)

to measure the set of photon-number differences {�ni} is
the expectation value of the projector P̂{�ni} = ⊗

i∈I P̂�ni with
respect to the time-evolved state Û ρ̂� ⊗ |0〉ω ω〈0|Û †. The
density operator ρ̂� corresponds to the initial state of the
s-polarized MIR mode of the electromagnetic field and |0〉ω =⊗

i∈I |0〉i,s ⊗ |0〉i,z is the vacuum of the NIR modes. The den-
sity operator is expressed in the coherent-state basis |z〉� =
D̂�(z)|0〉� of the MIR Hilbert space [which is generated

by displacing the vacuum with D̂�(z) = exp(zâ†
�,s + H.c.)]

using the Glauber-Sudarshan quasiprobability distribution
ρ(z; s = 1) of the sampled MIR state [56,57],

ρ̂� =
∫

ρ(z; 1)|z〉� �〈z|d2z. (6)

The same is done with the projector P̂�ni , defined in Eq. (4).
The probability distribution in Eq. (5) is therefore expressed
completely in the coherent-state basis, resulting in convolu-
tions of the Glauber-Sudarshan distributions with the matrix
elements of the evolution operator in the coherent-state ba-
sis (cf. Appendix A). Furthermore, it can be shown that
this is equivalent to a convolution of the MIR Glauber-
Sudarshan distribution and the Skellam distribution, which
is the probability distribution of the difference �ni between
two Poissonian counting events. This is the statistics expected
from the ellipsometry scheme in Fig. 1(b), since the signal
is the difference between two (predominantly) Poissonian
photon-number counting events (because the modes at the
photon detectors are dominated by the coherent-probe am-
plitudes βi and the photon-number distribution for coherent
states is Poissonian).

We want the electro-optic signal to be balanced, which
means that the signal is on average zero as long as the MIR
mode is in a state for which all quadrature expectation val-
ues vanish (e.g., the vacuum). This way, noise affecting both
polarizations of the NIR frequencies cancel out in the ellip-
sometry scheme. We achieve this by choosing the rotation
angle of the φi waveplate as

θi = (−1)k1
1

2
arccos

{
(−1)k2

√
1

2

[
1 − cot2

(
φi

2

)]}
, (7)

which has solutions for π
2 � φi � 3

2π and k1, k2 ∈ Z. With
this choice, the complex phase determining the interference at
the ith ellipsometry is given by

ϕi =
{

(k1 + k2 + 1)π + (−1)k2 arcsin

[√
2 cos

(
φi

2

)]

+ arg(ζ ) − arg(α̃i ) − arg(βi )

}
mod2π (8)

as can be seen from Eqs. (A12), (A14), and (A16). Choosing
the signal to be balanced additionally allows us to approxi-
mate the Skellam distribution by a Gaussian, as long as the
probe amplitudes |βi| are large compared to the average pho-
ton number of the MIR state (see Appendix B for details). This
enables an analytical calculation of the convolution.

Before the count-probability distribution is presented,
we have to introduce a special family of quasiprobability
distributions. The standard s-parametrized quasiprobabil-
ity distribution ρ(z; s) = 1/π2

∫
exp(zγ ∗ − z∗γ )χ (γ ; s)d2γ

with the s-parametrized characteristic function χ (γ ; s) =
exp(s|γ |2)〈D̂(γ )〉 (see [58,59] and [18], p, 128) is not suffi-
cient to capture all the different cases our model describes.
This is why we have to introduce the (sX , sY )-parametrized
quasiprobability distribution

ρ(z; sX , sY ) = 1

π2

∫
ezγ ∗−z∗γ χ (γ ; sX , sY )d2γ , (9)
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defined in terms of the (sX , sY )-parametrized characteristic
function

χ (γ ; sX , sY ) = χ (γ ; 0)e(sY /2)Re2(γ )+(sX /2)Im2(γ ). (10)

This is a special case of the generalized quasiprobability dis-
tribution using a Cohen function f (γ ) = exp[sX Re2(γ )/2 +
sY Im2(γ )/2] [6].

For sX , sY < 1, the two-parameter quasiprobability distri-
bution can be expressed as a Weierstrass transform of the
Glauber-Sudarshan distribution

ρ(z; sX , sY ) = 1

π

2√
(1 − sX )(1 − sY )

∫
ρ(y; 1)

× exp

(
− 2

1 − sX
Re2(y − z)

− 2

1 − sY
Im2(y − z)

)
d2y. (11)

We can cast the count-probability distribution after applica-
tion of the Gaussian approximation to the Skellam distribution
[cf. Eq. (A19)] into the form of the (sX , sY )-parametrized
quasiprobability distribution in Eq. (11) if we partition the set
of all NIR frequencies into two disjoint sets IX and IY , with
I = IX

⋃
IY and IX

⋂
IY = ∅. If the angles of the waveplates

are then chosen such that eiϕiX = 1 for all iX ∈ IX and eiϕiY = i
for all iY ∈ IY , then the count-probability distribution

p({�ni}) ≈ N ({�ni})ρ(z({�ni}); s̃X , s̃Y ) (12)

is given in terms of the two-parameter quasiprobability dis-
tribution ρ(z({�ni}); s̃X , s̃Y ), as well as a renormalization
envelope

N ({�ni}) = π

√
(1 − s̃X )(1 − s̃Y )

2
√

1 + AX
√

1 + AY

∏
i∈I

e−�n2
i /2|βi|2√

2π |βi|2

× exp

{
−2 Re2[z({�ni})]

1 + s̃X
− 2 Im2[z({�ni})]

1 + s̃Y

}
,

(13)

with μ = cosh(|ζ |), ν = exp[i arg(ζ )] sinh(|ζ |), and the
rescaled, combined pump strength AQ = 2|ν|2 ∑

iQ
|α̃iQ |2,

where Q is from now on used as a placeholder for both X
and Y . As will become clear later, the set IX (IY ) corresponds
to X̂ - (Ŷ -)quadrature measurements.

The parameters

s̃Q = 1 − 2

1 − (1 + AQ)−1
, (14)

with Q = X,Y , solely depend on quantities characterizing the
interaction between the NIR and MIR modes. If the sum of
the probe amplitudes for the X̂ measurements equals that for
the Ŷ measurements AX = AY = |ν|2, the parameter s̃ = s̃X =
s̃Y is a function of the squeezing parameter |ζ |, as depicted
in Fig. 2. The argument of the quasiprobability distribution
in Eq. (12) is related to the photon-number differences {�ni}

FIG. 2. Parameter s̃ for a measurement with equal probe ampli-
tudes AX = AY as a function of the squeezing strength |ζ |.

via

z({�ni}) = − |ν|
(

1 + s̃X

2

∑
iX ∈IX

|α̃iX |
|βiX |�niX

+ i
1 + s̃Y

2

∑
iY ∈IY

|α̃iY |
|βiY |�niY

)
. (15)

The distribution in Eq. (12) is the main result of this work and
corresponds to the most general form of the count-probability
distribution for the setup in Fig. 1.

Let us highlight the special case with one X̂ measure-
ment and one Ŷ measurement, i.e., |IX | = |IY | = 1, and equal
combined pump amplitudes (AX = AY ) for the X̂ and Ŷ
measurements. We will call this measurement a symmet-
ric XY measurement from now on. For this configuration,
the renormalization envelope N ({�ni}) = (2|ν|2|β1||β2|)−1 is
constant. An example of the corresponding count-probability
distribution, with a three-photon Fock state as an MIR input,
can be seen in Fig. 3.

For weak squeezing ζ = 0.1 the distribution is domi-
nated by the vacuum in the NIR modes, while for stronger
squeezing ζ = 1 the contribution of the MIR state becomes
much clearer. This setup is similar to eight-port homodyne
detection as considered by Freyberger et al. [17]. The ap-
proximation used in [17] is a special case of the Gaussian
approximation for the Skellam distribution. While the two
approximations coincide for the symmetric XY measurement,
the former breaks down for a simultaneous measurement of
more than two quadratures. The approximation of the Skellam
distribution, on the other hand, is valid for arbitrarily many
measurements. On top of that, it gives physical intuition of the
processes at the ellipsometry stage, as explained in Sec. III. In
eight-port homodyne detection, the probability distribution is
related to the Husimi function ρ(z; s = −1) [60], as long as
perfect detectors are considered. This corresponds to the limit
of infinite squeezing: lim|ζ |→∞ s̃ = −1. If the detectors have
a quantum efficiency η < 1 or the first beam splitter in the
eight-port homodyne setup is replaced by a down-conversion
process, the parameter s̃ of the sampled quasiprobability dis-
tribution can also be smaller than −1 [27,30,31]. In contrast
to homodyne detection, electro-optic sampling is an indirect
measurement. This allows us not only to tune the strength of
the measurement (so that backaction on the sampled MIR state
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FIG. 3. Example of the count-probability distribution
p(�nX ,�nY ) corresponding to a symmetric XY measurement
with equal pump strengths |α̃X | = |α̃Y | = 1/

√
2 and probes

βX = βY = 10 of a three-photon MIR Fock state n� = 3. In (a) the
squeezing strength is assumed to be ζ = 0.1 and in (b) it is assumed
to be ζ = 1. Although the photon-number differences are discrete,
the distribution is broad enough to justify the use of a continuous
surface plot.

can be kept at a desired level [61]), but also to investigate the
postmeasurement state in the MIR, since the indirect sampling
is by nature nondestructive. The two measurement schemes
are compared further in Sec. V.

A. Ensemble limit

The probability distribution (12) can be used to calculate
the expected photon-number differences 〈�ni〉, as well as the
corresponding variances σ 2

�ni
. Let us consider the symmetric

XY measurement from the preceding section. The expectation
value for, e.g., the first photon-number difference is then

〈�nX 〉 =
∞∑

�nX ,�nY =−∞
�nX p(�nX ,�nY ). (16)

For a strong probe, such that |βi||ν| is large, the
sum can be approximated by an integral: 〈�nX 〉 ≈√

2|ν||βX | ∫ Re(z)ρ(z; s)d2z. This is a phase-space average
and can thus be related to the (ensemble) expectation val-
ues of the MIR X̂ quadrature, so for X̂� = 1

2 (â� + â†
�) and

Ŷ� = i
2 (â†

� − â�) one has

〈�nQ〉 ≈
√

2|ν||βQ|〈Q̂�〉, (17)

with Q = X,Y . Similarly, the (root-mean-square) variances
of the photon-number differences can be related to the

variances of the quadratures, σ 2
X̂

= 〈X̂ 2
�〉 − 〈X̂�〉2 and σ 2

Ŷ
=

〈Ŷ 2
�〉 − 〈Ŷ�〉2, according to

σ 2
�nQ

≈ 2|ν|2|βQ|2(σ 2
Q̂ − s̃

4

)
. (18)

While the probe amplitudes βQ rescale the quasiprobability
distribution, the Weierstrass transform smoothes it, result-
ing in additional noise. The variance in Eq. (18) consists
of two contributions scaled by the same factor

√
2|ν||βQ|

as the quadrature expectation value in Eq. (17): The first
contribution comes from the unperturbed variance of the MIR-
state quadratures σ 2

Q̂
, so the product σ 2

X̂
σ 2

Ŷ
� 1

16 is limited by
Robertson’s uncertainty relation [62]; the second contribution
is proportional to the parameter s̃ and is independent of the
sampled state. Thus the first contribution can be attributed
to the preparation uncertainty, while the second term relates
to the measurement uncertainty. As shown by Werner [3,10],
these uncertainty relations coincide. In this case, they are
both bounded by 1

16 , i.e., s̃2/16 � 1
16 and σ 2

X̂
σ 2

Ŷ
� 1

16 . This
bound is optimal for the simultaneous measurement of a single
observable, which is a function of generalized position and
momentum [3]. The relation (σ 2

X̂
− s̃/4)(σ 2

Ŷ
− s̃/4) � 1

4 also
agrees with the result from Arthurs and Goodman [9] about
balanced homodyne detection.

B. Marginal distributions

The marginal distributions of the Wigner function ρ(z; s =
0) give the correct quantum mechanical probabilities for the
generalized coordinate and conjugate momentum [4]. Thus,
we express the (sX , sY )-parametrized quasiprobability distri-
bution for sX , sY < 0 as

ρ(z; sX , sY ) = 1

π

2√
sX sY

∫
ρ(y; 0)

× e2 Re2(y−z)/sX +2 Im2(y−z)/sY d2y. (19)

If only X̂ (Ŷ ) measurements are considered, the opposite-
quadrature parameter s̃Y (s̃X ) goes to −∞ as the pump
amplitude for the Ŷ (X̂ ) measurement vanishes: |α̃iY | → 0
(|α̃iX | → 0). Thus, the probability distribution of sole X̂ mea-
surements is related to the marginal distribution of the Wigner
function �〈x|ρ̂�|x〉�,

p({�ni}) ≈ NX ({�ni})
∫

�〈x|ρ̂�|x〉�

× e(2/s̃X ){x−Re[z({�ni})]}2

dx, (20)

with the renormalization envelope

NX ({�ni}) =
√

1 − s̃X /
√−s̃X

μ2
√

1 − μ4/|ν|4
∏
i∈I

e−�n2
i /2|βi|2√

2π |βi|2

× exp

{[
1 + 2

ν2 + μ2

1 − s̃X

]
2 Re2[z({�ni})]

1 − s̃X

}
.

(21)

Analogously, the probability distribution for only Ŷ mea-
surements is related to the quantum-mechanical distribution
of the Ŷ quadrature, �〈y|ρ̂�|y〉�, with the roles of X and
Y interchanged and Re[z({�ni})] replaced by Im[z({�ni})].
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The count-probability distribution is not directly given by
the quantum-mechanical distribution, but by its Weierstrass
transform, resulting in a distribution smoothing that manifests
itself as additional noise.

IV. POSTMEASUREMENT QUASIPROBABILITY
DISTRIBUTION

The state in the MIR mode after the measurement is

ρ̂ ′
� = 1

p({�ni})

∑
{ni}

M̂{ni,�ni}ρ̂�M̂†
{ni,�ni}, (22)

with the measurement operator

M̂{ni,�ni} =
⊗
i∈I

i,s〈ni + �ni| i,z〈ni|Û |0〉ω. (23)

The summation over the photon numbers ni of the z-polarized
modes in Eq. (22) is necessary because EOS is a (partially)
nonselective measurement. It is only selective with respect to
the photon-number differences between the s- and z-polarized
output channels, but not with respect to the actual photon
numbers in each polarization. Using again the approximation
of the Skellam distribution as already done for the count-
probability distribution (see Appendix C for details), the
(sX , sY )-parametrized postmeasurement quasiprobability dis-
tribution

ρ ′(z; sX , sY )

= 1

π2

∫
ezγ ∗−z∗γ exp

(
1 + sY

2
Re2(γ )

+1 + sX

2
Im2(γ )

)
χ ′(γ ; −1)d2γ

≈ N ′(z; sX , sY )ρ(z′(z); s′
X , s′

Y ), (24)

with sQ < 2μ2/(1 + AQ) − 1 and Q = X,Y , is given by the
(s′

X , s′
Y )-parametrized quasiprobability distribution of the ini-

tial state ρ̂� and a renormalization envelope

N ′(z; s′
X , s′

Y ) =
√

1 − s′
X

√
1 − s′

Y

2

(∏
i∈I

e−�n2
i /(2|βi|2 )√

2π |βi|2

)

×
[
μ2

√
μ2

1 + AX
− 1 + sX

2

×
√

μ2

1 + AY
− 1 + sY

2
p({�ni})

]−1

× exp

{
2 Re2[z′(z)]

1 − s′
X

+ 2 Im2[z′(z)]

1 − s′
Y

+ |z̃|2

− Re2(z − z̃)

(
μ2

1 + AX
− 1 + sX

2

)−1

− Im2(z − z̃)

(
μ2

1 + AY
− 1 + sY

2

)−1
}

.

(25)

FIG. 4. Parameter s′ = s′
X = s′

Y of Eq. (24) for a setup with AX =
AY as a function of the squeezing strength |ζ | for different parameters
of the postmeasurement quasiprobability distribution s = sX = sY .
Among these are the Wigner function with s = 0 and the Husimi
function with s = −1.

Note that this envelope is different from the one in Eq. (13).
The parameters of the pre-measurement distribution are

s′
Q = 1 − 2μ2

[
|ν|2 +

(
μ2

1 + AQ
− 1 + sQ

2

)−1
]−1

. (26)

The parameters sQ can be freely chosen [as long as sQ <

2μ2/(1 + AQ) − 1 is fulfilled] and are not related to s̃Q from
Sec. III. The restrictions on the sQ are necessary to ensure
convergence of all integrals. Furthermore, the argument of the
quasiprobability distribution ρ of the initial state in Eq. (24)
is rescaled and displaced according to

z′(z) = 1 − s′
X

2μ
Re

(
z̃ + z − z̃

μ2/(1 + AX ) − (1 + sX )/2

)

+ i
1 − s′

Y

2μ
Im

(
z̃ + z − z̃

μ2/(1 + AY ) − (1 + sY )/2

)
,

(27)

where the displacement is related to the measurement out-
comes {�ni} through z̃ = |ν|

μ
ỹ with

ỹ =
∑
iX ∈IX

|α̃iX |
|βiX |�niX + i

∑
iY ∈IY

|α̃iY |
|βiY |�niY . (28)

For a configuration with AX = AY the parameter s′ = s′
X = s′

Y
is shown in Fig. 4 as a function of the squeezing strength
for different values of the postmeasurement quasiprobability
distributions parameter s = sX = sY . At the limit of very weak
squeezing, s′ tends to s-dependent plateaus due to the van-
ishing coupling between the MIR and the NIR modes. In the
limit of strong squeezing, s′ tends to −1 independently of the
s value of the postmeasurement quasiprobability distribution;
this means that the stronger the squeezing is, the more pos-
itive the quasiprobability distribution ρ ′(z, s′

X , s′
Y ) becomes,

because it tends towards the Husimi function ρ(z; s = −1).
In fact, for infinite squeezing, the postmeasurement

quasiprobability distribution gives

lim
|ζ |→∞

ρ ′(z; 0)

= 2

π
exp[−2e2rRe2(z − ỹ) − 2e−2rIm2(z − ỹ)] (29)
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and corresponds to a displaced squeezed state |ỹ, r〉 with
squeezing parameter r = 1

2 ln(
∑

iX ∈IX
|α̃iX |2/∑

iY ∈IY
|α̃iY |2).

This happens as a consequence of the monotonic depen-
dence of the ρ broadening on the squeezing parameter:
lim|ζ |→∞ z′(z) = 0. For AX = AY in Eq. (29), r = 0, resulting
in a coherent state. If only X̂ (Ŷ ) measurements are performed,
r → ∞ (−∞) and Eq. (29) describes a X̂ - (Ŷ -)quadrature
eigenstate; in either case, the state defined by Eq. (29) does
not explicitly depend on the initial quasiprobability distribu-
tion, but it does depend on the measurement outcomes {�ni},
which are conditioned by the choice of an initial state. This
is in accordance with the results obtained by Arthurs and
Kelly for an ideal measurement [8,63] as well as for a weak
Arthurs-Kelly measurement [64].

The same reasoning applies for the case of infinitely many
consecutive measurements. A consecutive measurement is
defined as an EOS of the postmeasurement MIR state us-
ing a copy of the setup in Fig. 1. With every consecutive
measurement, the argument of the quasiprobability distribu-
tion is rescaled by a factor μ−1(1 − s′)/(1 − s), which is
smaller than 1 for s < 1 and |ζ | > 0. Thus, in the limit of
infinitely many consecutive measurements, the argument of
the quasiprobability distribution z′(z) tends to zero and the
resulting quasiprobability distribution only depends on the
renormalization envelopes. For a series of symmetric XY mea-
surements, the final state seems to always tend to a coherent
state if the measurement outcomes are not exceedingly small,
as can be seen in Fig. 5 for a cat state. This is also known
to happen for continuous, weak Arthurs-Kelly measurements
of a harmonic oscillator [65] and for a harmonic oscillator
weakly coupled to a thermal bath [66].

V. COMPARISON OF DIFFERENT
SIMULTANEOUS MEASUREMENTS

As a benchmark, the following problem is considered: Let
us assume that the state of the MIR field is already cate-
gorized (e.g., squeezed, displaced, thermal, etc.) and can be
parametrized with the parameters {λ j}. If, for example, it is
known that the MIR mode is in a coherent state |α�〉� with
an unknown α�, the task would be to determine the parameter
λ1 = α�. The probability distribution of these undetermined
parameters, p({λ j}|{�ni}), can be directly obtained from the
count probability p({�ni}) = p({�ni}|ρ̂�) = p({�ni}|{λ j}),
since the latter is defined as the distribution of conditional
probabilities to measure the photon-number difference �ni

given that the MIR mode is in the state ρ̂�. Hence, the param-
eter probability distribution can be calculated using Bayes’
theorem (see [67] and [68], p. 42)

p({λ j}|{�ni}) = p({�ni}|{λ j})p({λ j})∫
p({�ni}|{λ j})p({λ j})

∏
j dμ j (λ j )

, (30)

where μ j is an appropriate measure for the parameter λ j .
Since there is no a priori information about the parameters
{λ j}, the initial parameter distribution p({λ j}) is assumed to be
uniform, in accordance with the indifference principle. With
this assumption, the parameter distribution can be expressed

FIG. 5. (a) Wigner function ρ(z; 0) of the cat state proportional
to |α�〉 + | − α�〉 with α� = 3. (b) Wigner function ρ ′(z; 0) of the
cat state after a symmetric XY measurement is performed, with
ζ = 1, βX = βY = 10, and measurement outcomes �nX = 10 and
�nY = 0. (c) Wigner function after yet another measurement with
the outcomes �n′

X = 40 and �n′
Y = 0. The outcomes of all mea-

surements are not exceedingly small with p1(10, 0) = 0.000 012 and
p2(40, 0) = 0.000 64.

as

p({λ j}|{�ni}) = ρ(z, s̃X , s̃Y )∫
ρ(z, s̃X , s̃Y )

∏
j dμ j (λ j )

. (31)

A simple, but for our purposes sufficient, reconstructed state
reads [67]

ρ̂rec =
∫

p({λ j}|{�ni})ρ̂{λ j}
∏

j

dμ j (λ j ), (32)

where ρ̂{λ j} is the state parametrized by {λ j}. For additional
measurements, the Bayesian update can be repeated by re-
placing p({λ j}) with p({λ j}|{�ni}) as a better estimate of
the actual distribution of the parameters (see [68], p. 48).
We will denote the count-probability distribution of the first
EOS measurement as p1({�ni}|{λ j}). The count-probability
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distribution of the second EOS measurement will be denoted
by p2({�n′

i′ }|{λ j}), where �n′
i′ are the measurement outcomes

of the second EOS with the NIR frequencies i′ ∈ I ′. Hence,
applying Bayes’ law again will update the parameter distribu-
tion to

p({λ j}|{�ni}, {�n′
i′ })

= p2({�n′
i′ }|{λ j})p1({λ j}|{�ni})∫

p2({�n′
i′ }|{λ j})p1({λ j}|{�ni})

∏
j dμ j (λ j )

. (33)

The reconstructed state is thus

ρ̂rec =
∫

p({λ j}|{�ni}, {�n′
i′ })ρ̂{λ j}

∏
j

dμ j (λ j ). (34)

The fidelity F (ρ̂�, ρ̂rec) can be used to quantify how close the
reconstructed state is to the initial state [69]. However, this
fidelity depends on the measurement outcomes {�ni}. To get a
quantity independent of the measurement outcomes, the aver-
age fidelity 〈F (ρ̂�, ρ̂rec)〉 = ∑

{�ni} F (ρ̂�, ρ̂rec)p({�ni}) can
be used.

Similarly, the effect of the measurement on the MIR mode
is quantified by the fidelity F (ρ̂�, ρ̂ ′

�) between the initial
and the postmeasurement state. If the initial state is pure, the
fidelity

F (ρ̂�, ρ̂ ′
�) = π

∫
ρ(z; 0)ρ ′(z; 0)d2z (35)

can be expressed using the Wigner function of the initial state
ρ(z; 0) and postmeasurement state ρ ′(z; 0). Once again, to
get a measurement-outcome independent quantity, the average
fidelity is considered.

Numerical results for the average fidelities between the
initial and the reconstructed states of a symmetric XY mea-
surement and a symmetric XY XY measurement can be seen
in Fig. 6(a), while the corresponding average fidelities be-
tween the initial and postmeasurement states is shown in
Fig. 6(b). A symmetric XY XY measurement is a simulta-
neous electro-optic measurement of two X̂ quadratures and
two Ŷ quadratures with equal combined pump strength for
both observables, AX = AY . The initial states are considered
to be the vacuum, a coherent state with α� = 3, and two Fock
states with photon numbers n� = 1 and 3. For the fidelity
between an initially coherent state and the reconstructed state,
an approximate analytical solution has also been derived (cf.
Appendix D). The fidelities between initial and reconstructed
states obtained from electro-optic sampling converge in the
limit of infinitely strong squeezing to the fidelities correspond-
ing to eight-port homodyne detection. This agrees with the
limit lim|ζ |→∞ s̃ = −1 discussed in Sec. III. The same holds
for the symmetric XY XY measurement. In fact, the fidelities
of the two measurement schemes coincide for the coherent
states. For the Fock states there is a small deviation, not
enough to overcome the limit set by eight-port homodyne
detection; this happens because the renormalization envelope
(13) restricts the pair (�nX1 ,�nY1 ) of one XY measurement to
an area close the pair (�nX2 ,�nY2 ) of the other XY measure-
ments. This agrees with the results obtained by Braunstein
et al. [70]. The small deviation could originate from the
fact that the quasiprobability distribution is only sampled
discretely and thus different z({�ni}) could lead to different

FIG. 6. (a) Numerical evaluation of the average fidelity between
the initial MIR state and the reconstructed state in Eq. (32) for
various squeezing parameters. The initial state was assumed to be
the vacuum, a coherent state with α� = 3, and two Fock states with
n� = 1 as well as n� = 3 photons. Also two different measurement
setups were considered: a symmetric XY measurement and a sym-
metric XY XY measurement. The dashed horizontal lines indicate
the fidelity if eight-port homodyne detection would be used in place
of electro-optic sampling. The solid line is the approximate solution
from Appendix D. (b) Average fidelity between the initial and the
postmeasurement state of the MIR field. The initial states are the
same as in (a).

fidelities. If one realized an XY XY measurement using beam
splitters, the minimal number of optical components (without
filtering) would be greater than for electro-optic sampling,
because the nonlinear interaction is inherently multimode. For
an XY measurement, the minimal number of optical com-
ponents is the same for both setups. As a general trend, the
fidelities between the initial and the postmeasurement states
are close to one for small squeezing and drop to zero for
stronger squeezing, as expected because stronger measure-
ments tend to disturb the measured state to a higher extent.
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FIG. 7. Numerical evaluation of the average fidelity between the
initial and the reconstructed state for various squeezing parameters.
The initial state was assumed to be the vacuum, a coherent state with
α� = 3, and two Fock states with n� = 1 as well as n� = 3 photons.
Also two different measurement setups were considered: a symmet-
ric XY measurement and a consecutive measurement XY → XY
(a second XY electro-optic measurement on the postmeasurement
state). The dashed horizontal lines indicate the fidelity if eight-
port homodyne detection would be used in place of electro-optic
sampling. The solid lines represent the approximate solution from
Appendix D.

Furthermore, the fidelities for Fock states drop faster than the
ones for coherent states.

There is another way to obtain two X̂ - and two Ŷ -
quadrature measurements. First a symmetric XY measure-
ment is performed and then the same measurement is done
on the postmeasurement state of the first EOS (i.e., a consec-
utive measurement). We will denote this by XY → XY . To
obtain the parameter distribution, and therewith the fidelity
corresponding to the reconstructed state, the Bayesian update
has to be initially performed with the probability distribu-
tion of the first measurement p1({�ni}|{λ j}) and then again
with the probability distribution of the second measurement
p2({�n′

i′ }|{λ j}), resulting in Eq. (33). A numerical evalua-
tion of these fidelities can be seen in Fig. 7. One can see
that the fidelities between the initial and the reconstructed
states exceed the limits set by eight-port homodyne detec-
tion. Thus, eight-port homodyne detection is not optimal and
can, at least in principle, be outperformed by our proposed
measurement scheme based on electro-optic sampling. The
experimental implementation of consecutive measurements
is of course more complex and thus might diminish the ad-
vantage, which could be offset by further optimization. To
conclusively quantify the advantage under realistic condi-
tions, further analysis is needed. For an XY measurement of
a coherent state, the asymptote of the approximate solution
is 1

3 , while for the consecutive case it improves to 2
5 . This

asymptotic behavior might appear to be inconsistent with the
postmeasurement state in the strong squeezing limit [Eq. (29)]
since the quasiprobability distribution after the measurement

seems to be independent of the initial state; however, while the
postmeasurement quasiprobability distribution does not de-
pend on the quasiprobability distribution of the initial state, it
does depend on the outcomes {�ni} of the first measurement,
which are conditioned to the initial state and its phase-space
representations. Hence, the ζ → ∞ postmeasurement state
is not completely independent of the initial state and al-
lows the consecutive-measurement fidelity between the initial
and the reconstructed states to exceed the limit of an XY
measurement.

VI. CONCLUSION

Considering the recent progress in quantum electro-
optic sampling of the quantum vacuum and squeezed
vacuum [34,36,39,65,71], we proposed a quantum tomogra-
phy scheme based on continuous-wave driven electro-optic
sampling, paving the way towards tomography of ultrabroad-
band quantum states in the time domain. In this work, we
proposed a multichannel version of electro-optic sampling
involving monochromatic modes and described such measure-
ments within the framework of the POVM formalism. In this
scheme, the MIR mode interacts with multiple NIR pump
modes, allowing for arbitrary combinations of X̂ - and/or Ŷ -
quadrature measurements. The count-probability distribution
was shown to be determined by a quasiprobability distribu-
tion together with a renormalization envelope. The parameters
s̃X and s̃Y of this quasiprobability distribution only depend
on the parameters associated with the nonlinear interaction.
These parameters s̃X and s̃Y , and thus the nonlinear interac-
tion, determine an extra noise term on top of the quadrature
variances (i.e., the shot noise), while the probe only rescales
the distribution. If only X̂ (Ŷ ) measurements are performed,
the count probability is related to the Weierstrass transform
of the quantum-mechanical quadrature distribution 〈x|ρ̂�|x〉
(〈y|ρ̂�|y〉).

For the postmeasurement quasiprobability distributions,
the effect of the measurement is a change in the quasiprob-
ability distributions parameters, a renormalization and shift
of both the quasiprobability distribution and its argument. In
the limit case of an infinitely strong nonlinear interaction, the
quasiprobability distribution represents a displaced squeezed
state; if the sum of all NIR pump amplitudes of the X̂ mea-
surements equals that of all Ŷ measurements, it represents a
coherent state, while the postmeasurement state is squeezed
into a quadrature eigenstate as either the X̂ or Ŷ quadrature
measurements prevail over the other.

Finally, we compared several variants of multichannel
electro-optic sampling with the well-established eight-port
homodyne detection. No significant difference was found be-
tween the XY measurement and the (simultaneous) XY XY
measurement. This can be explained by correlations between
the first X̂ and Ŷ pair and the second one. In the limit of infinite
squeezing, the fidelity between the reconstructed state and the
initial MIR state asymptotically tends to the value set by eight-
port homodyne detection. Nevertheless, the multichannel EOS
can exceed this limit and therefore eight-port homodyne mea-
surements by using two consecutive measurements of both
quadratures, as we showed for a diverse selection of quantum
states (see Fig. 7).
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The fidelity between the initial and reconstructed states
could potentially be further optimized by varying all the pa-
rameters allowed by the present description. For example, a
consecutive measurement with different squeezing strengths
for each measurement could be considered, to minimize the
measurement backaction. Additionally, the fidelity could be
improved by simultaneously measuring an additional interme-
diate quadrature different from the X̂ or the Ŷ quadratures.

The main significance of our results lies in the insight that
eight-port homodyne measurements are not necessarily opti-
mal for optical quantum tomography and can be outperformed
by our proposed measurement scheme based on electro-optic
sampling. Furthermore, we have provided a concrete realiza-
tion of an Arthurs-Kelly measurement at arbitrary interaction
strengths between the system and detectors. On the theoretical
side, we have developed a formalism based on POVMs to
describe the count-probability distribution and the postmea-
surement state in phase space.
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APPENDIX A: COUNT-PROBABILITY DISTRIBUTION

In this Appendix we will use an alternative representation
for the action of the waveplate on the NIR mode i using the
matrix notation

Ûi,WP

(
âi,s

âi,z

)
Û †

i,WP = e−iφi/2

(
(Wi )11 (Wi )12

(Wi )21 (Wi )22

)(
âi,s

âi,z

)
, (A1)

with the matrix elements

(Wi )11 = (Wi )
∗
22 = cos(φi/2) + i sin(φi/2) cos(2θi ), (A2)

(Wi )12 = (Wi)21 = i sin(φi/2) sin(2θi ). (A3)

Starting from Eq. (5) and using the Glauber-Sudarshan dis-
tributions ρni+�ni (ηi,s; 1) and ρni (ηi,z; 1) for the Fock states
|ni + �ni〉i,s and |ni〉i,z,

P̂�ni =
∫∫ ∞∑

ni=ñi

ρni+�ni (ηi,s; 1)ρni (ηi,z; 1)

× |ηi,s〉i,s i,s〈ηi,s| ⊗ |ηi,z〉i,z i,z〈ηi,z|d2ηi,sd
2ηi,z, (A4)

as well as for the MIR state [Eq. (6)], we can express the
count-probability distribution as a convolution of the Glauber-
Sudarshan distributions with some matrix elements of the
time-evolution operator,

p({�ni}) =
∏
i∈I

∞∑
ni=ñi

∫∫∫∫
ρ(γ ; 1)ρni+�ni (ηi,s; 1)

× ρni (ηi,z; 1)| �〈γ ′| i,s〈ηi,s| i,z〈ηi,z|Û |0〉i,z|0〉i,s

× |γ 〉�|2d2γ d2γ ′d2ηi,sd
2ηi,z. (A5)

We rewrite the total time-evolution operator defined by Eq. (2)
as

Û = ÛWPD̂z(�β )ÛNL

= ÛWPD̂z(�β )Û †
WPÛWPÛNLÛ †

WPÛWP. (A6)

This can later be simplified using ÛWP|0〉ω = |0〉ω, with the
vacuum NIR state |0〉ω = ⊗

i∈I |0〉i,s|0〉i,z, and

ÛWPD̂i,z(βi )Û
†
WP

= D̂i,s
[(

W −1
i

)∗
21βi

] ⊗ D̂i,z
[(

W −1
i

)∗
22βi

]
. (A7)

The squeezing operator can also be simplified. First, we de-
compose it using μ = cosh(|ζ |) and ν = ζ

|ζ | sinh(|ζ |) (see
[18], p. 100):

ÛNL = exp

(
ζ ∗â�,s

∑
i∈I

α̃iâi,s − H.c.

)

= exp

(
− ν

μ
â†

�,s

∑
i∈I

α̃∗
i â†

i,s

)

×
(

1

μ

)â†
�,sâ�,s+(

∑
i∈I α̃i âi,s )† ∑

i∈I α̃i âi,s+1

× exp

(
ν∗

μ
â�,s

∑
i∈I

α̃iâi,s

)
. (A8)

Now all terms with âi,s|0〉ω = 0 or âi,s|0〉ω = 0 vanish when
applied to the vacuum:

ÛNL|0〉ω = exp

(
− ν

μ
â†

�,s

∑
i∈I

α̃∗
i â†

i,s

)(
1

μ

)â†
�,sâ�,s+1

|0〉ω.

(A9)

Finally, the matrix elements of the total time-evolution
operator (2) in the coherent-state basis, using |η〉ω =⊗

i∈I |ηi,s〉i,s|ηi,z〉i,z, can be calculated:

�〈γ ′| ω〈η|Û |0〉ω|γ 〉�

= 1

μ
e−|γ |2/2−|γ ′|2/2+γ (γ ′ )∗/μ

{∏
i

× i,s〈ηi,s|D̂i,s
[(

W −1
i

)∗
21βi

]
e−(ν/μ)α̃∗

i (γ ′ )∗(W −1
i )∗11âi,s |0〉i,s

× i,z〈ηi,s|D̂i,z
[(

W −1
i

)∗
22βi

]
e−(ν/μ)α̃∗

i (γ ′ )∗(W −1
i )∗12âi,z |0〉i,z

}

= e
∑

i −(ν/μ)α̃∗
i (γ ′ )∗(W −1

i )∗11(ηi,s−(W −1
i )∗21βi )−|ηi,s−(W −1

i )∗21|2/2

× e
∑

i −(ν/μ)α̃∗
i (γ ′ )∗(W −1

i )∗12[ηi,z−(W −1
i )∗22βi]−|ηi,z−(W −1

i )∗22|2/2

× 1

μ
e−|γ |2/2−|γ ′|2/2+γ (γ ′ )∗/μ

= e−(ν/μ)α̃∗
i (Wi )11(γ ′ )∗η∗

i,s−|ηi,s−(Wi )21βi|2/2

× e−(ν/μ)α̃∗
i (Wi )12(γ ′ )∗η∗

i,z−|ηi,z−(Wi )22βi|2/2

× 1

μ
exp[−|γ |2/2 − |γ ′|2/2 + γ (γ ′)∗/μ]. (A10)
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In the last equality, we used (W −1
i )∗11(W −1

i )21 + (W −1
i )∗12(W −1

i )22 = 0. Since the matrix elements are Gaussian functions, the
convolutions give the Weierstrass transforms of ρni+�ni (ηi,s; 1) and ρ�ni (ηi,z; 1) [i.e., the Husimi function ρni+�ni (

√
m̃i,1; −1)

and ρni (
√

m̃i,2; −1)]. The count distribution can thus be written as

p({�ni}) = π

μ2
exp

(
−

∑
i∈I

|βi|2
)∫

ρ(γ ; 1)e−|γ |2
∫

exp

(
−|γ ′|2 + 2

μ
Re(γ ′γ ∗) +

∑
i∈I

m̃i,1 + m̃i,2

)

×
∏
i∈I

∞∑
ni=ñi

ρni+�ni (
√

m̃i,1; −1)ρni (
√

m̃i,2; −1)d2γ ′d2γ , (A11)

with

m̃i, j =
∣∣∣∣(Wi )

∗
2 jβi − ν

μ
α̃∗

i (Wi)1 j (γ
′)∗

∣∣∣∣
2

. (A12)

The last line in Eq. (A11) can be expressed using the Skellam distribution [72]

ps(�ni; m̃i,1, m̃i,2) =
∞∑

ni=ñi

ρni+�ni (
√

m̃i,1; −1)ρni (
√

m̃i,2; −1)

= e−(m̃i,1+m̃i,2 )

(
m̃i,1

m̃i,2

)�ni/2

I�ni (2
√

m̃i,1m̃i,2), (A13)

with the modified Bessel function I , which is the probability distribution of the difference �ni between two Poissonian counting
events with expectation values m̃i,1 and m̃i,2.

To get a balanced signal (as described in the main text), the expectation value m̃i,1 − m̃i,2 of the argument of the Skellam
distribution has to be proportional to γ ′ [terms proportional to |βi|2 would lead to a shift of �ni, as will become clear from
Eqs. (A17) and (A19) later]. All the unwanted terms cancel if the matrix elements describing the effect of the waveplates are
restricted to (Wi )11/(Wi )21 = −(Wi )12/(Wi )22, leading to Eq. (7). For π

2 � φi � 3
2π , the fraction

(Wi )11

(Wi )21
= (−1)k1+k2

[√
− cos(φi ) − (−1)k2 i

√
2 cos

(
φi

2

)]

= exp{(−1)k2 i arcsin[
√

2 cos(φi/2)] + iπ [k1 + k2 + 1]} (A14)

is a complex phase [because |(Wi)21(Wi)22| = 1
2 and |(Wi)21|/|(Wi )22| = 1] and the count-probability distribution can be ex-

pressed as

p({�ni}) = π

μ2
exp

(
−

∑
i∈I

|βi|2
)∫

ρ(γ ; 1)e−|γ |2
∫

exp

(
−|γ ′|2 + 2

μ
Re(γ ′γ ∗) +

∑
i∈I

mi,1 + mi,2

)

×
∏
i∈I

ps(�ni; mi,1, mi,2)d2γ ′d2γ , (A15)

with

mi, j = 1

2

∣∣∣∣|βi| + (−1) j−1eiϕi
|ν|
μ

|α̃i|(γ ′)∗
∣∣∣∣
2

. (A16)

The expectation values of the arguments of the Skellam distributions ps(�ni; mi,1, mi,2) [73],

mi,1 − mi,2 = 2
|ν|
μ

|α̃i||βi|Re[eiϕi (γ ′)∗], (A17)

are proportional to γ ′. The variances

mi,1 + mi,2 = |βi|2 + |ν|2
μ2

|α̃i|2|γ ′|2 ≈ |βi|2, (A18)

on the other hand, are approximately given by the probe amplitudes. The latter are assumed to be much stronger than the
contribution from the nonlinear interaction. Since the variances (A18) are large, the Skellam distributions can be approximated
as normal distributions with the same expectation values and variances,

ps(�ni; mi,1, mi,2) ≈ 1√
2π |βi|

e−{�ni−2(|ν|/μ)|α̃i||βi|Re[eiϕi (γ ′ )∗]}2/2|βi|2 . (A19)

This approximation is derived in Appendix B.
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APPENDIX B: SKELLAM DISTRIBUTION

Let us assume that ρ(γ ; 1) ≈ 0 for large γ ; thus only small values for γ contribute. Using that exp(−|γ ′ − γ /μ|2) ≈ 0 for
large γ ′ and small γ , we can conclude that only small γ ′ are relevant and therefore mi,1 and mi,2 are large if βi is large, which is
the case for strong probe amplitudes. This allows us to approximate the Husimi function by a Gaussian distribution

πρni+�ni (
√

mi,1; −1) = |mi,1|ni+�ni

(ni + �ni )!
e−|mi,1| ≈ 1√

2πmi,1
e−(ni+�ni−mi,1 )2/2mi,1 (B1)

πρni (
√

mi,2; −1) = |mi,2|ni

ni!
e−|mi,2| ≈ 1√

2πmi,2
e−(ni−mi,2 )2/2mi,2 . (B2)

Inserting this in the definition of the Skellam distribution from Eq. (A13), it takes the form

ps(�ni; mi,1, mi,2) = π2
∞∑

ni=ñi

ρni+�ni (
√

mi,1; −1)ρni (
√

mi,2; −1)

≈ 1

2π
√

mi,1mi,2
e−mi,2/2−(�ni−mi,1 )2/2mi,1ϑ3

(
1

2iπ
(2 − �ni/mi,1),− 1

π i

mi,1 + mi,2

2mi,1mi,2

)

= 1√
2π (mi,1 + mi,2)

e−(mi,1−mi,2−�ni )2/(2mi,1+2mi,2 )ϑ3

(
(�ni − 2mi,1)mi,2

mi,1 + mi,2
, π i

2mi,1mi,2

mi,1 + mi,2

)
, (B3)

where ϑ3(z; τ ) = ∑
n∈Z eπ in2τ+2πniz = 1 + 2

∑∞
n=1 eπ in2τ cos(2πnz) is the Jacobi theta function. In the last step of Eq. (B3), the

identity ϑ3(z; τ ) = 1√−iτ
e−π iz2/τϑ3( z

τ
; −1

τ
) was used. This justifies the approximation ϑ3(z; τ ) ≈ 1 of the theta function, because

for strong probe amplitudes, the second argument of the theta function is τ = π i 2mi,1mi,2

mi,1+mi,2
∼ i|βi|2.

APPENDIX C: POSTMEASUREMENT QUASIPROBABILITY DISTRIBUTION

To calculate the (sX , sY )-parametrized quasiprobability distribution, with sQ < 2μ2/(1 + AQ) − 1, the antinormally ordered
characteristic function of the postmeasurement state is needed:

χ ′(ξ ; −1) = tr(ρ̂ ′
�e−ξ∗â�eξ â†

� ) = 1

π p({�ni})

∫
ρ(γ ; 1)

∫
e2i Im[ξ (γ ′ )∗]

∑
{ni}

| �〈γ ′|M̂{ni,�ni}|γ 〉�|2d2γ ′d2γ . (C1)

Expressing the Fock states again using the Glauber-Sudarshan distribution, as done in Appendix A, the characteristic function is

χ ′(ξ ; −1) = 1

π p({�ni}
∫

ρ(γ ; 1)
∫

e2i Im[ξ (γ ′ )∗]
∑
{ni}

∫∫
| �〈γ ′| i,s〈ηi,s| i,z〈ηi,z|Û |0〉i,z|0〉i,s|γ 〉�|2

× ρni+�ni (ηi,s; 1)ρni (ηi,z; 1)d2ηi,sd
2ηi,zd

2γ ′d2γ . (C2)

The matrix elements are already known from the count-probability distribution and thus the problem can be solved by applying
the same approximation of the Skellam distribution as before. With this approximation, the characteristic function is

χ ′(ξ ; −1) ≈
(

p2({�ni})(1 + AX )(1 + AY )
∏

i

2π |βi|2
)−1/2

exp

(
−

∑
i

�n2
i /2|βi|2

)∫
ρ(γ ; 1) exp

{
− |γ |2

+
[

Re(γ )

μ
+ i Im(ξ ) + |ν|

μ

∑
i∈IX

|α̃i|
|βi|�ni

]2
μ2

1 + AX
+

[
Im(γ )

μ
− i Re(ξ ) + |ν|

μ

∑
i∈IY

|α̃i|
|βi|�ni

]2
μ2

1 + AY

}
d2γ .

(C3)

The (sX , sY )-parametrized quasiprobability distribution can then be calculated from the antinormally ordered characteristic
function using the Fourier transformation:

ρ ′(z; sX , sY ) = 1

π2

∫
ezξ∗−z∗ξ exp

(
1 + sY

2
Re2(ξ ) + 1 + sX

2
Im2(ξ )

)
χ ′(ξ ; −1)dξ

≈ N ′(z; sX , sY )ρ(z′(z); s′
X , s′

Y ). (C4)

This is also where the restrictions sQ < 2μ2/(1 + AQ) − 1 originate from, because only for those values do the integrals in the
above equation converge.
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APPENDIX D: APPROXIMATION OF THE FIDELITY

Since the coherent states |α�〉 are overcomplete
∫

ρα�
(z; sX , sY )d2α� = 1, the parameter distribution is just

p(α�|{�ni}) = ρα�
(z; sX , sY ) (D1)

and hence the reconstructed state is

ρ̂rec =
∫

ρα�
(z; sX , sY )|α�〉� �〈α�|d2α�. (D2)

Now we can calculate the fidelity between the initial and reconstructed states

F (ρ̂�, ρ̂rec) =
∫

ρα�
(z; sX , sY )|〈α|α�〉|2d2α�

= 2

√
(1 − sX )(1 − sY )√

[2/(1 − sX ) + 1][2/(1 − sY ) + 1]
exp

[
Re2

(
2

1 − sX
z + α�

)/(
2

1 − sX
+ 1

)

+ Im2

(
2

1 − sY
z + α�

)/(
2

1 − sY
+ 1

)
− 2

1 − sX
Re2(z) − 2

1 − sY
Im2(z) − |α�|2

]
. (D3)

To calculate the average fidelity between the initial and reconstructed states, the same approximation for the sum as in Sec. III A
is applied. Using this approximation, the average fidelity for a XY measurement, as well as for a XY XY measurements of a
coherent state |α�〉�, is

〈F (ρ̂�, ρ̂rec)〉 =
∑

�nX ,�nY

p(�nX ,�nY )F (ρ̂�, ρ̂rec) ≈ π

∫
ρα�

(z; s)F (ρ̂�, ρ̂rec)d2z = 1

π

1

s − 2
= [2 coth2(|ζ |) + 1]−1, (D4)

which can be seen in Fig. 6(a) as a function of the squeezing |ζ |. The limit of this function for |ζ | → ∞ is 1
3 .

For consecutive XY → XY measurements of a coherent state |α�〉� the parameter distribution is

p(α|{�ni}, {�n′
i}) = ρα�

(z; sX , sY )ρα�
(z′; s′

X , s′
Y )∫

ρα�
(z; sX , sY )ρα�

(z′; s′
X , s′

Y )d2α�

, (D5)

with ∫
ρα�

(z; sX , sY )ρα�
(z′; s′

X , s′
Y )d2α� = 1

π

(1 − s)(1 − s′)
2/(1 − s) + 2/(1 − s′)

exp

(∣∣∣∣∣ 2

1 − s
z + 2

1 − s′ z
′
∣∣∣∣∣
2

×
(

2

1 − s
+ 2

1 − s′

)−1

− 2|z|2
1 − s

− 2|z′|2
1 − s′

)
. (D6)

The fidelity for consecutive XY → XY measurements of a coherent state |α�〉� is therefore

F (ρ̂�, ρ̂rec) =
∫

ρα�
(z; s)ρα�

(z′; s)|〈α|α�〉|2d2α∫
ρα�

(z; sX , sY )ρα�
(z′; s′

X , s′
Y )d2α�

=
(

2

1 − s
+ 2

1 − s′

)(
2

1 − s
+ 2

1 − s′ + 1

)−1

e|α�|2

× exp

[∣∣∣∣ 2

1 − s
z + 2

1 − s′ z
′
∣∣∣∣
2( 2

1 − s
+ 2

1 − s′

)−1

+
∣∣∣∣ 2

1 − s
z + 2

1 − s′ z
′ + α�

∣∣∣∣
2( 2

1 − s
+ 2

1 − s′ + 1

)−1
]
. (D7)

The average fidelity can then be obtained using the same approximation as for the single EOS measurement [z1 = 1√
2|ν||β| (�nX +

i�nY ) and z2 = 1√
2|ν||β| (�n′

X + i�n′
Y )]:

〈F (ρ̂�, ρ̂rec)〉 =
∑

�nX ,�nY ,�n′
X ,�n′

Y

p1(�nX ,�nY )p2(�n′
X ,�n′

Y )F (ρ̂�, ρ̂rec) ≈ 4π2|β|4|ν|4
4π |β|4|ν|2

1

π2

|ν|4
μ4

1

|ν|2/μ2 + 1

×
∫∫

exp

(
− |ν|2(|z1|2 + |z2|2 − |z1 + z2|2/2) − |ν|2

μ2
|α� − (z1 + z2)/

√
2|2 − |ν|2

2μ2
|z1 + z2|2 − |α�|2
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+ |α� − |ν|2
μ2

(z1 + z2)/
√

2|2(|ν|2/μ2 + 1)−1

)
d2z1d2z2

= 1

π

sinh2(|ζ |)
2 cosh6(|ζ |)

[
1 + sinh2(|ζ |) + 1

2
sinh4(|ζ |)

]
. (D8)

See Fig. 7 for a plot as a function of the squeezing |ζ |. The limit of this function for |ζ | → ∞ is 2
5 . This is above the limit for

the simultaneous measurement.
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