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Theory of silicon spin qubit relaxation in a synthetic spin-orbit field
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We develop the theory of single-electron silicon spin qubit relaxation in the presence of a magnetic field gra-
dient. Such field gradients are routinely generated by on-chip micromagnets to allow for electrically controlled
quantum gates on spin qubits. We build on a valley-dependent envelope function theory that enables the analysis
of the electron wave function in a silicon quantum dot with an arbitrary roughness at the interface. We assume
the presence of single-layer atomic steps at a Si/SiGe interface and study how the presence of a gradient field
modifies the spin-mixing mechanisms. We show that our theoretical modeling can quantitatively reproduce the
results of experimental measurements of qubit relaxation in silicon in the presence of a micromagnet. We further
study how a field gradient can modify the EDSR Rabi frequency as well as the quality factor of a silicon spin
qubit. We show that this strongly depends on the details of the interface roughness. Interestingly, for a quantum
dot with an ideally flat interface, adding a micromagnet can give rise to the reduction of the EDSR frequency
within some interval of the external magnetic field strength.
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I. INTRODUCTION

Silicon heterostructures have emerged as a very promising
material platform for spin-based quantum information pro-
cessing [1,2]. Recently two-qubit gates in silicon spin qubits
were demonstrated with an overall fidelity exceeding 99% by
a number of experimental studies [3–6], a very important step
towards realizing fault-tolerant silicon-based quantum com-
putation. The intrinsic spin-orbit coupling (SOC) in silicon
quantum dots is very weak and (largely) originates from the
interface inversion asymmetry [7–9]. While the weakness of
the SOC is convenient as it limits the spin-mixing and thus the
qubit relaxation rate, it also gives rise to slow electric dipole
spin resonance (EDSR). The latter is a standard technique
enabling electrical control of spin qubits. In order to perform
faster EDSR, one possibility is to integrate a micromagnet
in proximity to the quantum dot that generates a position-
dependent magnetic field [10,11]. This, in turn, gives rise to
a synthetic SOC that influences the EDSR Rabi frequency as
well as the qubit relaxation rate [12].

While the spin-mixing due to spin-orbit and spin-valley
couplings in the presence of an external in-plane magnetic
field is studied elsewhere [13,14], in this paper we particu-
larly focus on analyzing the spin mixing, and thus finding
the modified qubit levels, in the presence of a micromagnet.
We quantitatively show that the spin-mixing due to the gradi-
ent field strongly depends on the roughness at the Si/barrier
interface as well as the lateral size of the quantum dot. It
is well known that in the presence of interface steps, the
valley splitting energy Evs is suppressed [15–18]. Moreover,
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the presence of interface steps breaks the inversion symmetry
within the interface plane and therefore, it generally gives
rise to a nonvanishing in-plane dipole matrix elements. A
recently developed valley-dependent envelope function theory
based on the effective mass approximation enables directly
calculating the dipole matrix elements as well the spin-valley
mixing caused by the intrinsic spin-orbit coupling [14]. The
theory also implies that the interface roughness can lead to
strong anisotropic spin-valley mixing and spin relaxation.
This anisotropic behavior has been experimentally found in
both Si/SiGe and CMOS quantum dots [19–21].

Here we build on the valley-dependent envelope function
of Ref. [14] and study in detail the influence of the spin-
mixing terms caused by the magnetic field gradient on the
relaxation rate and the EDSR Rabi frequency of a single-
electron Si/SiGe spin qubit for various configurations of
interface steps. For certain positions for the interface steps,
we show that our theory can qualitatively explain the ex-
perimental data in Ref. [12] for the qubit relaxation time in
the presence of the micromagnet with a minimal set of free
parameters. The work presented here directly yields the dipole
matrix elements, valley splitting energy, and the spin-valley
coupling in the presence of the micromagnet and interface
steps, which are quantities that have previously been treated
by theory as free parameters.

The paper is structured as follows. In Sec. II, we establish
our model for a single-electron spin qubit in Si in the pres-
ence of a micromagnet and interface disorder. In Sec. III, we
discuss the effect of the micromagnet on the qubit relaxation
rate and the EDSR Rabi frequency and consider a crossover
from a disordered interface to a nearly flat interface, and show
that our theory can reproduce the experimental data from
Ref. [12]. In Sec. IV, we summarize the work and present
our conclusions. The appendices contain further details of the
analysis presented in the main part of the paper.
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FIG. 1. (a) Schematic of a disordered quantum dot formed at
a Si/SiGe interface comprising two atomic steps. The top gates
with applied voltages ±V are used to trap and confine a single
electron in the silicon layer. The atomic steps have the width a0/4
where a0 = 0.543 nm denotes the lattice constant. (b) Schematic of
trapped single-electron in a confinement potential in the presence of a
magnetic-field gradient, Bpd(x). In addition, there is an out-of-plane
electric field Fz and a homogeneous magnetic field B0. The angle
between B0 and the ẑ axis is denoted θB. (c) Schematic level diagram
of a single-electron silicon spin qubit in the presence of a micromag-
net. Here, only spin-valley mixing is considered. The qubit ground
(excited) state |g̃〉 (|ẽ〉) is denoted by a green (blue) line. The avoided
crossing happens at the spin-valley hotspot above which there is a
physical state |d̃〉 between the qubit ground and excited state. The
small spin splitting observed in the absence of an external in-plane
magnetic field B|| = 0 is due to the presence of the micromagnet. Dot
arrows denote possible decay channels.

II. MODEL

We consider a single-electron quantum dot inside a
SiGe/Si/SiGe heterostructure grown along the ẑ direction
([001]). The potential offset between the minima of the con-
duction band in Si and SiGe amounts to U0 = 150 meV. An
electric field is applied along ẑ via the top gate electrodes.
We assume that the lower SiGe/Si interface is ideally flat and
located at z = −dt . Taking the realistic value of dt = 10 nm,
neglecting possible interface roughness at the lower interface
is always justified by the fact that for Fz � 2 MV/m, the
amplitude of the wave function at the lower interface becomes
negligible. Throughout this work, we set Fz = 15 MV/m.
At the upper Si/SiGe interface, within our model and for
simplicity, we allow for up to two single-layer interface steps
located at the left and right side of the quantum dot center, xxL

and xxR, see Fig. 1(a).
The electric gates surrounding the quantum dot give rise

to an electrostatic potential leading to the confinement a sin-
gle electron. In order to split up the spin states, an external
in-plane magnetic field B|| = (B||,x, B||,y, 0) is applied. More-
over, we consider a magnetic field gradient, typically caused
by a micromagnet, Bmm. Following the experimental setup
of Ref. [12], we take Bmm = (bx, 0, bz(x)) in which bz(x) =
b0z + cmmx. We therefore write the total magnetic field as a

sum of homogeneous and position-dependent terms,

Bt = B0 + Bpd(x), (1)

in which B0 = (B||,x + bx, B||,y, b0z ) and Bpd = (0, 0, cmmx),
see Fig. 1(b).

The spin qubit Hamiltonian then reads

H = Hc + Hz + Hi-SOC + Hs-SOC, (2)

where Hc is dominant contribution to the total Hamiltonian
and the other terms can be considered as a perturbation. This
dominant term describes the quantum dot confinement in the
presence of interface steps and magnetic field and it can be
written as

Hc = H ′
0 + H|| + Usteps(x, z). (3)

Here H ′
0 is the separable and exactly solvable Hamiltonian

caused by the in-plane and out-of-plane confinements, and it
is given by Eq. (A1) in Appendix A (the prime index (′) used
here indicates that the confinement frequencies are modified
by the magnetic field.) H|| is due to the couplings induced by
the total in-plane magnetic field and it is given by Eq. (A8).
Usteps(x, z) is a change to the offset potential of an ideally flat
interface due to the presence of interface steps and within
our model it reads (note that the offset potential of an ideal
interface is included in H ′

0),

Usteps(x, z) = U0θ (−z)θ
(

z + a0

4

)
θ (xsL − x)

− U0θ (z)θ
(

z − a0

4

)
θ (x − xsR ). (4)

The valley-dependent envelope functions �
j
xyz can be de-

termined from the equation∑
j=±z

a je
ik j z{Hc + Vv (r) − E}� j

xyz = 0, (5)

in which k±z = ±k0, k0 = 0.85 2π
a0

, and the valley cou-
pling Vv (r) = VvSint (x, z) vanishes everywhere except at the
Si/barrier interface [22]. The origin of the quantity Vv has
been explained in detail in [15] and it is modeled in Ref. [14]
as a function of the offset potential U0, the electric field Fz and
details of the periodic parts of the Bloch functions. We show
the form of Vv in Eq. (A9) in Appendix A for completeness.
Within our model for the disordered interface, the interface
function reads

Sint (x, z) = δ
(

z + a0

4

)
θ (xsL − x)+ δ(z)θ (x − xsL)θ (xsR − x)

+ δ
(

z − a0

4

)
θ (x − xsR). (6)

It has been discussed in detail in Ref. [14] how to find the
valley-dependent envelope functions by solving Eq. (5); we
review the solutions in Appendix B.

The term Hz = 1
2 gμBσ · B0 in Eq. (2) is the Zeeman

splitting caused by the homogeneous magnetic field, while
Hi-SOC in the same equation describes the intrinsic spin-
orbit coupling in the silicon quantum well that is caused by
the interface inversion asymmetry and contains Rashba and
Dresselhaus-like terms. For a disordered quantum dot, Hi-SOC
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can be written as [14]

Hi-SOC = HR + HD, (7)

in which

HR = 1

2
γR{pyσx − pxσy,Sint (x, z)}, (8)

HD = 1

2
γD cos

(
4πz

a0

)
{pxσx − pyσy,Sint (x, z)}, (9)

where {A, B} = AB + BA denotes the anticommutator of the
two operators A and B. Note that the factor of cos(4πz/a0) in
the Dresselhaus term is due to the fact that the coefficient of
the Dresselhaus spin-orbit interaction changes sign when en-
countering a single-layer atomic step at the interface [23–25].

Finally, the last term in Eq. (2) is the synthetic spin-orbit
coupling which originates from the Zeeman splitting due to
position-dependent part of the magnetic field,

Hs-SOC = 1
2 gμBσ · Bpd (x). (10)

A. Modified qubit levels due to spin-valley mixing

Having reviewed our model for a single-electron spin qubit
in the presence of interface steps and magnetic field-gradient,
we now turn to study the modified qubit levels. We begin by
considering a case where the orbital splitting is the dominant
energy scale so that we can neglect the higher orbital states.
In this case, the qubit levels are modified due to spin-valley
mixing (SVM). In the absence of the spin-orbit coupling, we
can then only consider the unperturbed states,

|1〉 = |ν (q=0),↓〉, |2〉 = |ν (q=0),↑〉,
|3〉 = |ν (q=1),↓〉, |4〉 = |ν (q=1),↑〉, (11)

in which the ground (q = 0) and excited (q = 1) valley-orbital
states read,

|ν (q=0)〉 = 1√
2
{| + z(0)〉 − e−iφv | − z(0)〉}, (12)

|ν (q=1)〉 = 1√
2
{| + z(1)〉 + e−iφv | − z(1)〉}, (13)

where φv is the valley phase and

| ± z(q)〉 =e±ik0zu±z(r)�±z,(q)
xyz , (14)

where u±z(r) are the periodic part of the wave function and
�

±z,(q)
xyz is the valley-dependent envelope function that can be

found by solving Eq. (5), see Appendix B.
The spin-orbit terms, Hi-SOC and Hs-SOC, give rise to the

coupling between the unperturbed states and mix the spin
states. In general we can write for the matrix elements of the
spin-valley coupling,


i j = 〈i|Hs-SOC + Hi-SOC| j〉 = 
s-SOC
i j + 
i-SOC

i j . (15)

The matrix elements of the intrinsic spin-orbit interaction

i-SOC

i j can be readily found using Eqs. (8) and (9) as well
as the valley-dependent envelope function Eq. (B1), as dis-
cussed in detail in Ref. [14]. Here we take the matrix elements
of 
i-SOC

i j as given quantities, and focus on the matrix el-
ements of the synthetic spin-orbit interaction. By defining

cc = 1
2 gμBcmm and xi j = 〈ν (q=i)|x|ν (q= j)〉, we find


s-SOC
21 = ccx00σ

↑↓
z , 
s-SOC

32 = ccx10σ
↓↑
z ,


s-SOC
41 = ccx10σ

↑↓
z , 
s-SOC

43 = ccx11σ
↑↓
z . (16)

Note that the Pauli matrix σz is defined with respect to
the lattice crystallographic axes whereas the spin states are
defined with respect to the direction of B0. It is easy to verify
that σ ↑↓

z = σ ↓↑
z = − sin θB in which θB is the angle between

B0 and the ẑ axis, as shown in Fig. 1(b). Furthermore, as we
see from Eq. (16), the matrix elements of the synthetic spin-
orbit interaction are proportional to the dipole matrix elements
which, in turn, strongly depend on the interface roughness.
Indeed, for an ideally flat interface, all in-plane dipole mo-
ments vanish due to the in-plane inversion symmetry. In that
case, Eq. (16) reveals that the presence of the micromagnet
does not affect the qubit levels via the spin-valley mixing
(however, as we show in Sec. II B, the qubit levels in this
case are still changed by the presence of the micromagnet
due to the spin-orbit mixing). The valley-dependent envelope
function theory developed in Ref. [14] enables us to directly
calculate all dipole moments shown in Eq. (16) for an arbitrary
configuration of interface steps.

In the absence of intravalley spin-valley couplings,

21,
43 = 0, it is easy to find an analytical relation for the
modified qubit levels, as explicitly shown in Refs. [14,26],
by simply diagonalizing a 2 × 2 matrix. As we consider
the presence of the intravalley spin-valley couplings, here we
numerically diagonalize a 4 × 4 matrix enabling us to find
the modified qubit ground and exited states, |g̃〉 and |ẽ〉, due to
the SVM, see the schematic energy level diagram Fig. 1(c).

B. Modified qubit levels due to spin-orbit mixing

We now consider the effects that arise due to the cou-
pling to the higher orbital states. As already shown before
in Refs. [13,27], in a disordered quantum dot the spin-orbit
mixing (SOM) becomes the dominant mixing mechanism at
high magnetic fields above the spin-valley hotspot. In this
case, for simplicity we neglect the excited valley state and find
the modified qubit levels due to the SOM within our model
read

|g̃〉 � |0,↓〉 + c′
1|1x,↑〉 + ci-SOC

2 |1y,↑〉, (17)

|ẽ〉 � |0,↑〉 + c′
3|1x,↓〉 + ci-SOC

4 |1y,↓〉, (18)

in which c′
1(3) = ci-SOC

1(3) + cs-SOC
1(3) . The contributions that are

due to the intrinsic spin-orbit coupling are explicitly given in
Ref. [14]. Here we find the additional terms that are due to the
synthetic spin-orbit coupling read

cs-SOC
1 = − 1√

2

ccx′
0

Ez + h̄ω′
x

σ ↑↓
z , (19)

and cs-SOC
3 is found from the above equation by replacing

Ez → −Ez (note that σ ↑↓
z = σ ↓↑

z .) Here Ez is the Zeeman
splitting and h̄ω′

x = h̄2/mt x′2
0 is the in-plane orbital splitting

modified by the magnetic field, see Eq. (A4).
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C. Relaxation rate and EDSR Rabi frequency

Given the modified qubit levels in the presence of SVM and
SOM that we presented earlier in this section, we now review
the qubit relaxation rate and the EDSR Rabi frequency. The
relaxation rate due to any source of an electric noise can be
written as

1

T1
= 4πe2

h̄2 SE (ω)
∑

j

|〈ẽ|r j |g̃〉|2, (20)

in which the forms of the excited, |ẽ〉, and ground, |g̃〉, qubit
states depend on whether we consider SOM or SVM. Here
SE (ω) is the electric noise power due to combination of
electron-phonon interaction, Johnson noise and 1/ f charge
noise, evaluated at the qubit frequency ω = (Eẽ − Eg̃)/h̄. The
electron-phonon interaction is studied in several other pub-
lications for Si quantum dots [13,14,16,27,28] (as well as
for GaAs quantum dots in Refs. [29,30]). The corresponding
electric noise power in silicon is given by, e.g., Ref. [28].
The electric noise power of the Johnson noise due to a lossy
transmission line is also given by Ref. [28], and we consider
the general form for the 1/ f noise power

S1/ f
E (ω) = S0

ωα
, (21)

where S0 determines the power spectral density at 1 Hz and the
exponent α is device-dependent and it is typically reported to
be between 0.5 and 2 for silicon quantum dots [31]. We note
that the fluctuations in the electric field can be mapped into
the voltage fluctuations by the phenomenological relation

SE (ω) = SV (ω)

(el0)2
, (22)

where l0 is a phenomenological length describing the distance
between the spin qubit and the trapped fluctuating two-level
system [28]. Very often the 1/ f voltage noise power at 1 Hz
is measured in the experiment [12], and we use the above
relation to connect it to the electric noise power.

One promising way to electrically manipulate the states of
spin qubits is via electric dipole spin resonance (EDSR). This
has been performed in GaAs and Si [10] spin qubits. In both
cases, the spin manipulation is made possible by applying
an ac electric field Eac cos(ωt ), which, at the leading order,
enables controlled qubit transition via electric dipole moment.
For GaAs, the dipole moment between the qubit states is
caused due the SOM. For Si spin qubits, in addition to the
SOM, the dipole moment can be caused by the SVM in the
presence of interface roughness.

In general the EDSR Rabi frequency can be written as

R = eEac|〈g̃|r|ẽ〉|/h̄ (23)

in which, as discussed earlier in this section, the modified
qubit ground |g̃〉 and excited |ẽ〉 states depend on whether
SVM or SOM are the dominant mixing mechanism, and
r = (x, y, z) denotes the electron position operator. In either
case, the presence of a micromagnet leads to additional terms
to the spin-orbit interaction and therefore can give rise to a
faster EDSR. We stress again here that when the Si/barrier
interface is ideally flat, the in-plane dipole matrix elements
due to SVM vanish. As such, placing a micromagnet on top
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FIG. 2. Qubit relaxation rate 1/T1 as a function of external in-
plane magnetic field B|| in the presence of a micromagnet. Here the
step positions are assumed to be at xsL = −0.9x0, xsR = 0.275x0.
The violet solid curve describes the total calculated spin relaxation
rate 1/T1, whereas the other curves indicate the contributions due
to electron-phonon interaction (yellow dot-dahsed and dotted) and
the 1/ f charge noise (red dashed and dot-dashed). Experimental
data points from Ref. [12] are shown as blue circles. Following
Ref. [12], we set the azimuthal angle of the magnetic field φB = π/4,
Tel = 115 mK, cmm = 1.8 T/μm, and S0 = 3μeV/

√
Hz. We also set

bx = 92 mT and b0z = 15 mT. (Inset) Comparison of the relaxation
rate in the presence (violet solid curve) and in the absence (red
dotted) of the micromagnet.

of a quantum dot with an ideally flat interface does not affect
SVM-induced EDSR whereas it still affects the SOM-induced
EDSR as we show in the following section.

Through this work, we neglect potential interference be-
tween SVM and SOM contributions so that both the relaxation
rate and the EDSR Rabi frequency are taken equal to contri-
butions that separately originate from SVM and SOM mixing.
This simplification is justified due to the fact that, except
within a narrow interval for the magnetic field, either SVM
or SOM give rise to the dominant contribution to the qubit
levels so that possible interference between them is negligible.
In the next section, we present our results on qubit relaxation
and modified ESDR in the presence of a micromagnet.

III. DISCUSSION

In Fig. 2, we show our theoretical prediction for the qubit
relaxation rate 1/T1 for a specific configuration of interface
steps and compare our findings with experimental measure-
ments from Ref. [12]. In order to arrive at our theoretical
prediction, we first searched for a set of positions for the
interface steps that gives rise to the same valley splitting
as observed in the experiment (Evs � 80.4 μeV). Among a
number of possibilities, we find that setting xsL = −0.9x0 and
xsR = 0.275x0 leads to the best fit to the experimental data.
With this configuration for interface steps, using the valley-
dependent envelope function theory of Ref. [14], we find for
the dipole matrix elements |x10| � 1.40 nm, x00 � 5.71 nm
and |x11| � 5.15 nm. We note that by considering only a single
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atomic step at the interface, we could find the same valley
splitting energy as obtained in the experiment. However, we
could not quantitatively explain the experimental data around
the hot spot. In the next step, we consider high magnetic fields
above the spin-valley hotspot where, within our model, the
relaxation rate is determined by the in-plane orbital splitting
along x̂ direction. We find that setting h̄ωx = 3.1 μeV can
fit the experimental data (we note here that in the original
publication [12] the in-plane orbital splitting is reported to
be 2 μeV. This discrepancy could be an indication that the
quantum dot in the experiment is elliptical).

We then also consider the range of low magnetic fields be-
low the spin-valley hotspot. Similar to Ref. [14] here we found
that considering only the Johnson noise could not explain the
low B-field behavior of the relaxation rate. The amplitude
of voltage noise at 1 Hz is reported from the experiment
to be 3μeV/

√
Hz [12]. Having fixed this, the fit shown in

Fig. 2 is achieved by setting l0 = 26.3 nm and α = 1.9. For
the coefficients of the intrinsic spin-orbit coupling, we use the
same values found in Ref. [14] by fitting the theory to the
experimental data for 1/T1 in the absence of a micromagnet.

With this set of parameters for a disordered quantum dot,
in the inset of Fig. 2, we compare the relaxation rate 1/T1

in the presence of the micromagnet (so that the spin-orbit
interaction is due to both intrinsic and synthetic terms) with
the case in the absence of the micromagnet (so that only the
intrinsic spin-orbit interaction is present). We observe that in
the presence of the micromegnet, due to the additional spin-
orbit mixing caused by the synthetic spin-orbit interaction,
the relaxation rate is significantly increased particularly at
low magnetic fields at which SVM determines the modified
qubit levels. We also note here that for the SVM-induced
contribution to the relaxation rate, there is an additional decay
channel |ẽ〉 → |d̃〉 above the spin-valley hotspot, see Fig. 1(c).
We take into account this decay relaxation channel in finding
all the results presented in Fig. 2.

As discussed in Sec. II B, the spin-valley mixing
caused by the synthetic spin-orbit interaction is propor-
tional to the intravalley and intervalley dipole moments,
see Eq. (16). These dipole matrix elements strongly de-
pend on the interface roughness [18], and they vanish in
an ideally flat interface due to the in-plane inversion sym-
metry. In Fig. 3, we show the qubit relaxation rate in
the presence and in the absence of the micromagnet for
a number of different configurations for the disordered
interface. For simplicity, here we assumed there is only one
single interface step located at xsR. At xsR = 0, we observe
that the behavior of the relaxation rate is qualitatively similar
to what is shown in Fig. 2, and within the range of the mag-
netic fields shown in Fig. 3, the relaxation rate increases in the
presence of the micromagnet.

However, noticeably for xsR � 0.5x0, where the quantum
dot approaches being flat, we observe a nonmonotonic be-
havior for the relaxation rate below the spin-valley hotspot
in the presence of the micromagnet. This happens due to the
fact that the dipole moments introduced in Eqs. (16) quickly
decay when the single interface step is located further away
from the quantum dot center so that in this case the spin
mixing due to SVM becomes very small. On the other hand,
the presence of the micromagnet substantially enhances the
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FIG. 3. The qubit relaxation rate 1/T1 as a function of the ex-
ternal in-plane magnetic field B|| for various positions of a single
interface step, xsR. The solid lines are obtained in the presence of the
magnetic field and the black dotted lines are obtained in the absence
of the micromagnet. All the other parameters are the same as given
by the caption of Fig. 2.

spin mixing due to SOM at low magnetic fields. As such,
there is a competition between contributions of SOM, 1/ f
and SVM, 1/ f to the total relaxation rate. Indeed, the qubit
decay rate in the presence of the micromagnet at the magnetic
fields below the minimum of 1/T1 is dominated by SOM and
1/ f charge noise which decreases by increasing the magnetic
field. At higher fields closer to the hotspot, the SVM finally
becomes the dominant mixing mechanism giving rise to the
observed nonmonotonic behavior.

We also note that in the limit where the quantum dot
is nearly flat (xsR � x0), the presence of the micromegnet
hardly changes the behavior of the relaxation rate for magnetic
fields above the minima of the relaxation rate. This is due to
the fact that, as the single interface step is moved away from
the dot center, the effective (spatially averaged) strength of the
intrinsic spin-orbit interaction is greatly enhanced due to the
behavior of the Dresselhaus term, see Eq. (9), so that, within
the realistic parameters considered here for the micromag-
net, the SOM becomes dominated by the intrinsic spin-orbit
interaction. We finally note here that Fig. 3 shows that at
high magnetic fields the relaxation rate at xsR = 0.5x0 and x0

is slightly larger in the absence of the micromagnet. This is
attributed to the interference between i-SOC and s-SOC con-
tributions to the SOM as one can realize for the coefficients c′

1
and c′

3 introduced by Eqs. (17) and (18).
We now turn to study how the presence of the micromag-

net can enhance the EDSR Rabi frequency. In Fig. 4(a), we
consider a quantum dot with disorder interface (with steps’
locations the same as in Fig. 2) as well as with an ideally flat
interface and show the EDSR Rabi frequency in the presence
of the micromagnet normalized to the EDSR frequency in
the absence of the micromagnet as a function of the external
in-plane magnetic field. For the disordered quantum dot, the
rapid change of the behavior of the plot at B|| ∼ 0.7 T is due
to the fact that the spin-valley hotspot, at which the dipole
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FIG. 4. (a) EDSR Rabi frequency in the presence of the mi-
cromagnet relative to the EDSR frequency in the absence of the
micromagnet as a function of the external magnetic field for both
disordered and ideally flat quantum dot. (b) The SVM-induced
contribution to the EDSR frequency relative to the SOM-induced
contribution to the EDSR frequency for a disordered quantum dot.
The gray area marks the region where SOM is the dominant mixing
mechanism. (Inset) The quality factor Q = EDSRT1 for a disordered
quantum dot in the presence and in the absence of the micromagnet.
Here we assumed Eac = 10 kV/m. All quantum dot parameters are
the same as given by the caption of Fig. 2.

moment between the qubit states given in Eq. (23), happens at
slightly smaller external in-plane magnet field B|| in the pres-
ence of the micromagnet, see the definition of B0 in Sec. II. We
observe that adding a micromagnet can substantially enhance
the EDSR Rabi frequency for a disordered quantum. For an
ideally flat interface, on the other hand, adding a micromagnet
can only enhance the EDSR frequency within some narrow
interval at low magnetic fields.

In the absence of a micromagnet, the dipole moment be-
tween the qubit states tends to vanish as the magnetic field
goes to zero due to the time-reversal symmetry. As such,
adding the micromagnet, that breaks the time-reversal sym-
metry, greatly enhance the EDSR frequency at low magnetic
fields. As the magnetic field is increased for a quantum dot
with an ideally flat interface, the intrinsic spin-orbit coupling
quickly becomes the dominant mixing mechanism (within
the realistic parameters for the micromagnet considered here)
so that the synthetic spin-orbit coupling only plays a minor
role in modifying the EDSR frequency. We note that within
some interval of B||, we observe that EDSR frequency is in
fact slower in the presence of a micromagnet for an ideally
flat interface. This behavior is again due to the interference

between i-SOC and s-SOC contributions to the SOM that was
mentioned earlier.

In Fig. 4(b), we consider the same disordered quantum
dot as in Fig. 2 and study how the SVM and SOM contri-
butions to the total EDSR frequency compare for the cases in
the presence and in the absence of the micromagnet. While
it is generally expected that at high magnetic fields for a
disordered quantum dot, the SOM becomes the dominant
mixing mechanism, we observe that this happens at a higher
B|| in the presence of the micromagnet. Furthermore, we
observe that within some narrow interval at low magnetic
fields B|| � 0.16 T the dominant mixing mechanism in the
presence of the micromagnet is the SOM.

Finally, in the inset of Fig. 4(b), we show the qubit quality
factor Q = EDSRT1 as a function of the external magnetic
field for a disordered quantum dot, and we also observe how
the presence of the micromagnet influence the quality factor.
In general, we find that the additional spin mixing due to the
presence of the micromagnet gives rise to a suppression of
the quality factor. We emphasize again that the effect of the
micromagnet on the spin mixing depends on the microscopic
details of Si/barrier interface. In Ref. [14] certain conditions
for the position of interface steps are numerically found that
give rise to the disappearance of the intervalley dipole moment
x01. In this case, we expect that the effect of the micromagnet
on the qubit properties should be minimal for the range of ex-
ternal magnetic fields in which SOM is the dominant mixing
mechanism.

IV. SUMMARY AND OUTLOOK

Silicon-based heterostructures and quantum dots are a
very promising platform for quantum information process-
ing. While the relatively weak spin-orbit interaction enables
long relaxation times, exceeding one second at low magnetic
fields [12], it also gives rise to (relatively) slow qubit gates. A
typical technique to achieve faster qubit gates is to fabricate a
micromagnet in proximity to the quantum dot. The magnetic
field gradient due to the micromagnet gives rise to a synthetic
spin-orbit interaction that can boost the EDSR Rabi frequency.
In this work we studied in detail how the presence of a micro-
magnet can modify the qubit levels in a single-electron silicon
spin qubit in Si/SiGe quantum dot. Finding the modified qubit
levels is indeed the key to the quantitative analysis of the
behavior of the spin relaxation and EDSR Rabi frequency,
and we showed that the roughness at the Si/barrier interface
is a crucial parameter that determines the influence of the
micromagnet to the qubit levels.

We build on the valley-dependent envelope function theory
from our earlier work Ref. [14] that enables us to find the elec-
tron wavefunction in a quantum dot with an arbitrary interface
roughness. In Sec. II, we summarize the essential aspects of
the valley-dependent envelope function theory in the presence
of interface steps and present how we can model the synthetic
spin-orbit interaction. We also discuss the modified qubit lev-
els caused by the micromagnet due to both spin-valley mixing
and spin-orbit mixing. We find that the interface roughness
strongly affects how a micromagnet can alter the qubit levels
due to the SVM. Indeed, for an ideal quantum dot and as
long as SVM is concerned, the micromagnet does not change
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the qubit levels at all. However, the modifications due to
the SOM is (at the leading order) independent on the interface
roughness and it only depends on the quantum dot lateral
size (that determines the in-plane orbital splitting). In
Sec. II C, we have reviewed the qubit relaxation rate and
EDSR Rabi frequency. Finally, in Sec. III, we have pre-
sented and discussed our results on the spin qubit relaxation
rate and EDSR Rabi frequency. We showed that our mod-
eling can quantitatively reproduce and explain experimental
measurements for the qubit relaxation time in the presence of
a micromagnet for all ranges of magnetic field.

Building on the valley-dependent envelope function theory
used here, future work can also analyze the effect of electric
noise on the phase coherence time T2 of spin qubits in silicon
in the presence of a micromagnet-generated magnetic field
gradient.
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APPENDIX A: QUANTUM DOT CONFINEMENT
HAMILTONIAN

In Eq. (3), we show the general form of the quantum dot
confinement Hamiltonian in the presence of interface steps
and an in-plane magnetic field. The contribution H ′

0 in Eq. (3)
reads,

H ′
0 = p2

x

2mt
+ 1

2
mtω

′2
x x2 + p2

y

2mt
+ 1

2
mtω

′2
y y2

+ p2
z

2ml
− eFzz + U (z), (A1)

in which mt = 0.19 me and ml = 0.98 me are the transverse
and longitudinal effective mass, and the out-of-plane potential
profile for a SiGe/Si/SiGe reads

U (z) = U0θ (−z − dt ) + U0θ (z) + U∞θ (z − db), (A2)

where U0 = 150 meV is the energy offset between the minima
of the conduction band in Si and SiGe, dt is the thickness of
the silicon layer (located between −dt � z � 0) and db is the
thickness of the upper SiGe barrier.

In the absence of a magnetic field, we can write for the
confinement frequencies ωx = h̄/mt x2

0 and ωy = h̄/mt y2
0 in

which x0(y0) is the radius of the quantum dot along x̂(ŷ). The
presence of a magnetic field further compresses the electron
wave function. Let us first define the cyclotron frequency and
magnetic length induced by the components of an in-plane
magnetic field Bx(y) by

x(y) = eBx(y)√
mt ml

, lx(y) =
√

h̄

eBx(y)
. (A3)

We can then write

ω′
x = ωx

(
1 + 2

y

ω2
x

)1/2

, ω′
y = ωy

(
1 + 2

x

ω2
y

)1/2

. (A4)

We note that the homogeneous magnetic field B0 also has
an out-of-plane component, b0z. However, given the ex-
perimental setups for the integrated micromagnet, we have
b0z � 0.02 T [12]. In this case, we find the confinement length
due to b0z becomes lz � 180 nm which is far larger than
other confinement lengths. As such, we can safely ingnore the
out-of-plane component of B0 and only consider the in-plane
magnetic field.

Equation (A1) clearly gives rise to a separable envelope
function in which the in-plane envelope functions are simply
given by the harmonic-oscillator wave functions. The out-of-
plane envelope functions are discussed in detail in Ref. [18].
While the excited states ψz,n can be found from numerical
calculations [18], we find the approximate solution for the
ground state read

ψz,0(z̃) � z−1/2
0

Ai′(−r0)

{
Ai(−ε̃z,0)e

− Ai′ (−ε̃z,0 )

Ai(−ε̃z,0 ) z̃
, z̃ > 0

Ai(−z̃ − ε̃z,0) . z̃ � 0
, (A5)

while the (normalized) ground state energy reads

ε̃z,0 � r0 − Ũ −1/2
0 . (A6)

Here Ai is the Airy function, Ai′ its first derivative, and
−r0 � −2.338 its smallest root (in absolute value). We used
here normalized position, z̃ = z/z0, energy, ε̃z,0 = εz,0/ε0, and
potential Ũ0 = U0/ε0 for which the length and energy scales
are given by,

z0 =
(

h̄2

2mleFz

)1/3

, ε0 = h̄2

2mlz2
0

. (A7)

The term H|| in Eq. (3) is due to the couplings caused by
the in-plane components of B0 reading (Bx = B||,x + b0x and
By = B||,y),

H|| = −Bx
e

ml
ypz + By

e

ml
xpz − BxBy

e2

ml
xy. (A8)

Given the confinement Hamiltonian Eq. (3), the valley-
dependent envelope functions can be found by solving Eq. (5),
as discussed in detail in Ref. [14]. The valley-coupling param-
eter Vv (r) = VvSint (x, z) is also modeled in Eq. (5) to be

Vv = −iC0
z0Ũ0eFz

2k0

[
1 −

(
1 − 1

2Ũ0
+ i

k0z0√
Ũ0

)−1]
, (A9)

where C0 � −0.2607 originates from the lattice-periodic parts
of the Bloch function [14,18], and the interface function
Sint (x, z) is given by Eq. (6).

APPENDIX B: THE VALLEY-DEPENDENT
ENVELOPE FUNCTIONS

Without going into details, we review from Ref. [14] the
general solution for the valley-dependent envelope functions
for the ground (q = 0) and excited (q = 1) valley-orbital
states in the presence of an in-plane magnetic field, interface
steps and valley coupling. One finds

�±z,(q)
xyz = ψxyz,0 + ψ|| + ψ

±z,(q)
st , (B1)
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in which the contribution due to the presence of in-plane
magnetic field reads

ψ|| = −iBxψx,0ψy,1

∑
n=1

αnψz,n

+ iByψx,1ψy,0

∑
n=1

βnψz,n − BxByηψx,1ψy,1ψz,0 , (B2)

and the contribution due to the presence of interface steps and
valley coupling read

ψ
±z,(q)
st = ψy,0

∑
(m,n)�=(0,0)

c±z,(q)
m,n ψx,mψz,n. (B3)

The coefficients used above are the following (see Ref. [14]
for details):

αn = −1

2
h̄

e

ml

y′
0

z0

〈ψz,0|∂/∂ z̃|ψz,n〉
εz,0 − εz,n − h̄ω′

y

, (B4)

βn = −1

2
h̄

e

ml

x′
0

z0

〈ψz,0|∂/∂ z̃|ψz,n〉
εz,0 − εz,n − h̄ω′

x

, (B5)

η = −1

4

e2

ml
x′

0y′
0

1

h̄ω′
x + h̄ω′

y

, (B6)

c+z,(q)
m,n = (−1)qe−iφvFm,n − Pm,n

εm,n − ε0
, (B7)

where φv is the valley phase and where we defined

Fm,n =
∫

e−2ik0zψx,mψz,nHsψx,0ψz,0d3r, (B8)

Pm,n =
∫

ψx,mψz,nHsψx,0ψz,0d3r, (B9)

and Hs = VvSint (x, z) + Usteps(x, z).
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