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Transition metal (TM) defects in silicon carbide (SiC) are a promising platform for applications in quantum
technology. Some TM defects, e.g., vanadium, emit in one of the telecom bands, but the large ground-state
hyperfine manifold poses a problem for applications which require pure quantum states. We develop a driven,
dissipative protocol to polarize the nuclear spin, based on a rigorous theoretical model of the defect. We further
show that nuclear-spin polarization enables the use of well-known methods for initialization and long time
coherent storage of quantum states. The proposed nuclear-spin preparation protocol thus marks the first step
towards an all-optically controlled integrated platform for quantum technology with TM defects in SiC.
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I. INTRODUCTION

In the so-called “information age” secure communication
is becoming increasingly important. Quantum communication
is a viable option to achieve secure communication via the
protection of quantum channels by virtue of the no-cloning
theorem. To build scalable, real-world quantum networks,
more progress in the domain of related quantum technologies,
such as quantum memories, emitters, and many more [1–4]
needs to be made. The fundamental problem to overcome
is the ability to coherently control and selectively couple
quantum systems, while simultaneously isolating them from
unwanted noise.

A much studied, promising system for quantum technology
is the nitrogen vacancy center in diamond including neighbor-
ing spins [5–17] ([18–20] for reviews). While this system has
a long coherence lifetime and has been used to demonstrate
entanglement over more than 1 kilometer, its optical transition
in the visible domain poses challenges for integration into
photonic devices and requires wavelength conversion, which
adds noise and leads to losses, for long-distance quantum
communication [21–23].

The transition metal (TM) defects in silicon carbide (SiC)
constitute a distinct but similarly promising class of defects.
These defect centers benefit from their host material, which is
well established in the semiconductor industry, and from the
availability of accessible transitions in the telecommunication
bands [24–30]. Recent experiments showed promising char-
acteristics for the control of the nuclear spin of vanadium (V)
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defects in SiC, which has optical transitions in the telecom
O-band, for which high-performance photonic devices are
available and long-distance quantum communication has been
demonstrated over installed optical fiber links [29].

Building upon the current experiments [26–29] and nu-
merical calculations [30,31], as well as using the theoretical
framework we developed in previous works [32,33], in this
article we identify promising qubit subsystems in TM defects
and develop procedures to initialize these defects by nuclear
spin polarization. The initial polarization of the nuclear spin
is a prerequisite for gaining control over a selected subsystem
of levels (e.g., two levels for a qubit) from the multitude of
nuclear spin states.

To optically pump the nuclear-spin polarization, we pro-
pose to use ratchet-type sequential population trapping into
a polarized state. The proposed method shows parallels to
coherent population trapping into a dark state, which is well
established over a wide range of materials from atoms [34],
electrons in quantum dots [35], superconducting artificial
atoms [36], optomechanical systems [37], as well as NV cen-
ters in diamond [8,13–15]. A similar optical pumping was
recently used to polarize erbium nuclear spins [38,39].

This paper is organized as follows. We introduce the phys-
ical model in Sec. II and discuss possible qubit candidates in
Sec. III A. We then propose a protocol to polarize the nuclear
spin in Sec. III B, enabling the initialization of the system.
Next, we briefly discuss the prospect to engineer different
protols based on technical limitations in Sec. III B 1 as well
as a measurement of the polarization success in Sec. III B 2.
Finally, we draw our conclusions in Sec. IV.

II. PHYSICAL MODEL

The TM defects which we will focus on in this pa-
per consist of a positively charged molybdenum (Mo5+) or
a neutral vanadium (V4+) atom substituting a Si atom in
4H- or 6H-SiC. Both of these defect atoms comprise one
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FIG. 1. Structure and energy level diagram of TM defects in SiC. (a) Schematic of a TM defect (purple) substituting a Si atom in SiC,
with its tetragonally arranged nearest-neighbor C atoms (grey). (b) Energy level diagram including selection rules for the electronic structure
of a TM defect in SiC. The dependence of the transitions on the field direction is encoded in the line style in combination with the direction
of the arrow. The blue lines denote allowed transitions for parallel fields Bz and Ez, while the orange lines are allowed for perpendicular
magnetic and electric fields, F⊥ = Fx + iFy (F = E, B). The selection rules for F ∗

⊥ enable the reverse process, in agreement with angular
momentum conservation. Faded lines imply that the transition is only allowed due to spin-orbit mixing. The red solid (dotted) lines are also
for perpendicular fields, but allowed in the leading order for E⊥ (B⊥) and due to spin-orbit mixing of the states B⊥ (E⊥). The line styles,
furthermore, imply the pseudospin selection rules: solid lines are pseudospin conserving transitions, where for the orange and red lines the
direction of the arrow is relevant and implies the matrix elements according to ↑⇒↑ and ↓⇐↓. The blue dotted lines correspond to the spin
flip transition. The orange and red dashed (dotted) correspond to the pseudospin ↓⇒↑ (↑⇒↓) transitions.

active electron in their D-shell [26–30]. In the presence of
the surrounding crystal structure, the defects remain invari-
ant under the transformations of the C3v point group. The
symmetry reduction due to the crystal potential splits the
D-shell into one orbital singlet and two orbital doublets. Due
to the spin-orbit interaction the electronic structure for the
active electron is given by five Kramers doublets (KDs),
which are pairs of states related to each other by time
inversion. We show the nearest-neighbor structure of the de-
fect in Fig. 1(a) and the resulting energy level structure in
Fig. 1(b).

We concentrate on the interaction of the active electron
of the defect with the nuclear spin of the TM atom [33],
which for the main V isotope is I = 7/2 (abundance >99%),
while I = 5/2 for about 25% of the stable isotopes of Mo and
I = 0 for the remaining isotopes [40,41]. In the following, we
mainly focus on the V4+ α defect in 4H-SiC, though we note
that the underlying theory is equally applicable to the other
defects. Polarization protocols and suitable qubit subsystems
in other configurations can be derived analogously with the
appropriately adjusted model parameters.

For simplicity we neglect the nuclear quadrupole inter-
action as well as the hyperfine interaction between different
KDs because both are expected to be small and were indeed
not observed in recent experiments [29,33]. We also neglect
matrix elements between the KDs due to static fields, as
they are suppressed by the large spin-orbit �i

so or crystal-
field splitting �cr for magnetic fields | �B| 	 mini |�i

so/2μB| ≈
6.5 T for the V α defect in 4H-SiC [29]. Using these
approximations we arrive at a block diagonal static Hamil-
tonian. The blocks that describe the different KDs have the
form

Hγ =Eγ + 1
2μB �Bgγ �σγ + 1

2 �σγ Aγ �I + μN gN �B · �I, (1)

where the index γ = (i, R) labels the KD that originates from
the crystal-field orbital i = 1, 2, 3, transforms according to
the representation R = �4, �5/6, and is made up by the pseu-

dospin states |γ , σ =↑,↓〉. The Hamiltonian Hγ for the KD
γ consists of its electronic zero-field energy Eγ , the Zeeman
interaction coupling the pseudospin states of the KD to the
magnetic field �B, the hyperfine interaction coupling the pseu-
dospin to the nuclear spin I , and the nuclear Zeeman term
describing the coupling of the nuclear spin to the magnetic
field.

The precise form of the hyperfine and g-tensors deviate
from a simple spin model and depend on the KD [32,33]; their
explicit form is given in Appendix A and summarized in the
following. We choose the z-axis parallel to the stacking axis
of the crystal and use the Pauli vector �σγ consisting of the
standard Pauli operators σ k

γ (k = x, y, z) acting between the
pseudospin states |γ , σ =↑,↓〉, and the nuclear spin operators
Ik in units of the reduced Planck constant h̄. The g-tensors are
all diagonal, for �5/6 KDs only the z, z-component is allowed,
and for the �4 KDs the x, y components have the same abso-
lute value, with the same sign for the KD originating from the
orbital singlet i = 3 and opposite signs for the doublet KDs
i = j = 1, 2.

We denote the parallel (perpendicular) g-factors of the KDs
with gz(x)

γ . Perpendicular g-factors of the KDs originating from
the orbital ( j = 1, 2) doublets are, however, not considered
since they either vanish due to symmetry (�5/6) or are much
smaller than the parallel component ( j, �4, not experimentally
resolved) [24,28–30,32].

The hyperfine coupling tensors for �5/6 only couple Iz to
σ x

j,�5/6
and σ z

j,�5/6
with the coupling strength ax

�5/6
and az

�5/6
,

respectively. The coupling tensors for �4 KDs are diagonal
and fulfill ay

j,�4
= −ax

j,�4
for the KDs from orbital doublets

and ay
3,�4

= ax
3,�4

for the singlet KD [33], where we denote
the diagonal entries as ak

j,�4
(k = x, y, z). The different forms

of the hyperfine coupling leads to different mixtures of nuclear
and pseudospin levels inside the KDs.

Furthermore, we use the Bohr (nuclear) magneton μB (μN ),
and the nuclear g-factor gN . Here we have |μN gN | 	 |μBgz

i,γ |,
in particular μN gN/μB ≈ 10−4 for V.
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The electronic selection rules derived by the authors
of [32] are summarized and further refined to include the
polarization of the perpendicular field in Fig. 1(b); enabling
simple access to selection rules for circular polarization �F± =
F (cos ωt,± sin ωt, 0) with polarization ±, electric or mag-
netic field strength F = E, B and positive angular frequency
ω. The selection rules in Fig. 1(b) correspond to nonzero
matrix elements for F⊥ = Fx + iFy, which, combined with
the energy ordering, leads to the selection rules for circular
polarization, i.e., F⊥ → F−(F+) for the arrows in Fig. 1(b)
pointing from a lower to a higher (higher to lower) energy.
We stress that the level ordering can depend on the defect
configuration and note that the different forms of the hyperfine
coupling tensors of the KDs [see Eq. (1)] are suited to assign
the irreps to the physical states as was done in [33]. The
depicted ordering in Fig. 1 corresponds to the V4+ α defect
in 4H-SiC.

As an example we consider an optical, resonant drive be-
tween the ground state (GS) g = (1, �4) and the exited state
(ES) e = (2, �5/6) pseudospin manifold, i.e., a drive with an-
gular frequency ωd > 0, leading to a transition matrix element
of the form

〈e,↑ |Hd |g,↑〉 = ei(Ee,↑−Eg,↑ )t/h̄εE⊥(t ) = Eεeiδ±t , (2)

with the dipole matrix element of the transition ε. The de-
tuning δ± = (Ee,↑ − Eg,↑)/h̄ ± ωd of the transition strongly
depends on the polarization “±” of the drive. Within the
rotating wave approximation, only the “−” polarized drives
with δ− = 0 remain. Therefore, the selection rules in Fig. 1(b)
can be interpreted as circular polarization-dependent selection
rules, with the aforementioned mapping. The total angular
momentum for these atom-photon interactions is conserved
because a change of pseudospin goes hand in hand with
a change of electron spin as well as angular momentum
(see [32] for the form of the KD states).

In the following we will use a dipole moment of ε =
1 debye, which was estimated in [31] based on the radiative
lifetime of the defect for all leading-order transitions and es-
timate the transition dipole elements ε̃ ∼ ε�1

so/�cr ≈ 0.002ε

for purely spin-orbit mixing allowed transitions.
To generalize the selection rules to include the nuclear spin,

the simplest approach is to use the admixture of states, given
via the diagonalization of the static KD Hamiltonians. Here
we only present the levels relevant for the protocol introduced
in the following. For the GS we arrive at the unitary transfor-
mation

Tg = exp

(
−

I∑
m=−I+1

θm |g,↑〉 |m〉 〈g,↓| 〈m − 1| − H.c.

)
, (3)

with the nuclear spin state |m〉 = |I, m〉 and the mixing an-

gles θm given by tan(2θm)= ax
g

√
I (I+1)−m(m−1)

(μBgz
g+μN gN )B+az

g(m−1/2) . For the ES

|e, σ 〉 = |2, �5/6, σ 〉, used as an ancillary state manifold in the
following, we find the transformation

Te = exp

(
−

I∑
m=−I

φm |e,↑〉 |m〉 〈e,↓| 〈m| − H.c.

)
, (4)

0 25 50 75 100

−1500

−1000

−500

0

500

1000

1500

E
ne

rg
y

(M
H

z)

σ =↑
σ =↓
m

−7/2

−5/2

−3/2

−1/2

1/2

3/2

5/2

7/2

FIG. 2. Ground state [g = (1, �4)] nuclear energy levels of the
vanadium α defect in 4H-SiC as a function of the magnetic field
strength parallel to the crystal axis. The black solid and red dashed
circles mark two possible zero first-order Zeeman (ZEFOZ) tran-
sitions (see main text). These pairs of levels are suitable qubit
candidates due to their enhanced protection from magnetic noise.
The coupling to perpendicular fields is negligible. Solid (dashed)
lines label states that consist mainly of pseudospin down (up) and the
line color encodes the nuclear spin quantum number m (see legend).

with mixing angles φm given by tan(2φm) = ax
em

μBgz
eB+az

em . The
corresponding energies are

Eg,σ
m−δσ,↓ = σ

μBgz
gB + az

g(m − 1/2) + μN gN B

2 |cos 2θm|

+ az
g

4
+ μN gN B(m − 1/2), (5)

Ee,σ
m = �cr + σ

μBBgz
e + az

em

2 |cos 2φm| + μN gN mB, (6)

where we choose Eg = 0 to lie at zero energy such that the
energy of the ES corresponds to the crystal field splitting
Ee = �cr (the second GS and ES are offset by the spin-
orbit splitting E1,�5/6 = �1

so, E2,�4 = �cr + �2
so). We use the

Kronecker symbol δσ,σ ′ = (1 if σ = σ ′ else 0) for compact
notation. From now on we label the eigenstate pertaining to
Eγ ,σ

m as |γ , σ, m〉 according to the KD γ = g, e, the main
pseudospin component σ =↑,↓, and the main nuclear mag-
netic quantum number m. In Fig. 2 we plot the ground-state
spin multiplet energies of the vanadium α defect of 4H-SiC
as a function of the parallel magnetic field strength B. For
further details, we refer the reader to [33] where the remaining
KDs, higher orders of the hyperfine interaction, as well as the
nuclear quadrupole interaction were considered.

III. QUBIT DESIGN AND STATE PREPARATION

A. Qubit candidates

Based on the outlined theory, we now discuss suitable qubit
candidates. Due to the time-reversal symmetry of the KDs,
electric fields cannot lead to pseudospin flips and dephasing
in the leading order. For temperatures 	|�1

so/kB| ≈ 25 K for
the considered α V (10 K for Mo) transitions to the second
GS (1, �5/6) are suppressed, these would otherwise limit the
decoherence times [28,42]. Furthermore, recent experiments
show that the T1 exceeds seconds below � 1 K [43] (4 K for
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Mo defects [28]), such that we expect the main decoherence
source to be coupling to fluctuations in the magnetic field
due to the spin bath at low temperatures. For this reason,
we discuss two qubit candidates that are protected against
magnetic noise in the following.

To achieve the protection we suggest the use of zero
first-order Zeeman (ZEFOZ) transitions, also known as clock
transitions, or optimal working points or “sweet spots” which
are already established for different transition types and mate-
rials [44–47] including the divacancy defect in SiC [48,49].
Using the state pair belonging to such a transition as the
qubit improves protection from magnetic or nuclear spin bath
noise (by suppressing the first order of the coupling), thereby
offering the opportunity to increase the coherence time. Due
to the large anisotropy of the g-tensor, i.e., its vanishing per-
pendicular component as well as the orders of magnitude
smaller coupling of the nuclear spin to the magnetic field in
comparison to the coupling of the electronic state, we opti-
mize ZEFOZ transitions only via the parallel magnetic field
component. Inspecting the field dependence of the energies
we find two conceptual possibilities of (approximate) ZEFOZ
transitions with different strengths and weaknesses, see Fig. 2.

The first possibility is an electronic spin qubit (transition
marked in black at ≈28 mT in Fig. 2) at the point of an
avoided crossing, using the levels |g,↓, 5/2〉 and |g,↑, 7/2〉.
At this point the Zeeman interaction and the diagonal hy-
perfine coupling are of similar magnitude, leading to a high
degree of mixing of the states. The energy levels of the tran-
sition have an extremum as a function of magnetic field at
this point, implying that they are parallel and constitute a ZE-
FOZ transition. Additionally, their eigenstate characteristics
enable strong microwave driving using a parallel microwave
magnetic field, i.e.,

〈g,↑, I|σ z
g |g,↓, I − 1〉 = − sin(2θI ), (7)

which is −1 at the avoided crossing.
The other possibility are nuclear spin qubits given by

neighboring hyperfine levels within the same pseudospin
manifold at higher magnetic fields. For sufficiently high
bias magnetic field, the field dependence of the transi-
tion frequency becomes negligible (see Fig. 2) because the
Zeeman splitting suppresses the (off-diagonal) hyperfine in-
teraction, leaving only the small nuclear Zeeman term. As
is visible in Fig. 2 there is a regime where the nuclear
levels are approximately parallel (leading to ZEFOZ transi-
tions) and addressable individually due to the large splitting
between the hyperfine levels, as well as the sufficient anhar-
monicity. This enables the possibility of higher-dimensional
encoding in a single defect in this magnetic field domain.
Direct driving between the nuclear levels is only possible
via small terms of the Zeeman Hamiltonian, for example,
for the red transition in Fig. 2 we have the leading ele-
ment 〈g,↓, I − 1|HMW

z |g,↓, I〉 ≈ √
2IμN gN BMW

⊥ (t ) that can
be driven using a perpendicular microwave magnetic field.

To compare the protection from magnetic noise we cal-
culate the leading-order energy fluctuation induced by a
fluctuation of the magnetic field δ�b [50]. In both cases
the immediate influence on the energies stems from bz,
for the electronic ZEFOZ qubit we find δEel ≈ [(μBgz

g +

μN gN )δbz]2/2
√

2Iax
g, i.e., the first order truly vanishes and

the second order is suppressed by the perpendicular hyperfine
interaction. For the nuclear (ZEFOZ like) qubit the leading
order is given by μN gNδbz, i.e., it does simply not include
the much larger electronic term, but it is still linear. Both
are large improvements over a naïve electronic qubit where
the leading term would be μBgz

gδbz. We expect that these
optimized transitions, at low temperature will enable a big
improvement over the T ∗

2 ≈ 0.3 μs measured for Mo at 4 K
in [26].

The optical linewidth prevents pseudospin resolution at the
avoided crossing as well as optical nuclear spin readout. The
combination of larger level splitting and Rabi frequencies of
(non-ZEFOZ) electronic qubits, could make a hybrid of a
electronic qubit, for control and readout, and a nuclear qubit,
for storage, an interesting option. Finally, the hyperfine struc-
ture of all V defects in 4H and 6H-SiC suggests that all have
the (1, �4) KD as the lowest GS, making the above arguments
applicable to all defects in this family [29,33].

B. State preparation via nuclear polarization

For both the electron and nuclear spin qubits it is neces-
sary to polarize the nuclear spin to achieve a well-defined
initial state mandatory for many experiments and potential
technological applications. Due to the multitude of nuclear
spin states for I = 7/2 in the case of V and I = 5/2 for Mo
isotopes with nuclear spin, we develop a dissipative nuclear-
spin polarization protocol. The dissipative nature makes it
possible to use continuous drives, rendering it unnecessary to
measure and then manually choose the correct pulse to make
the process irreversible.

First, we outline the general idea and then discuss one
possible implementation in more detail. The protocol relies on
the different forms of the hyperfine coupling of the KDs (1)
to open different channels via the state mixing. The first-order
nuclear spin polarizing, pseudospin flipping transition, is the
leading one because the leading-order (in spin-orbit coupling)
allowed transitions are all pseudospin conserving, see Fig. 1.
This makes a repump necessary to repopulate the correct
pseudospin manifold. In summary, to polarize the nuclear spin
inside a nuclear spin manifold of a KD, we employ an ancil-
lary KD with a different form of the hyperfine coupling. This
ensures that we can engineer the driving such that the drive
to and decay from the ancillary KD, on average, polarizes the
nuclear spin.

Different ES, different transitions, or different decays can
be employed. For simplicity we concentrate on a purely op-
tical protocol that relies on a qubit transition in the GS KD
g = (1, �4) and using the ancillary ES manifold e = (2, �5/6)
KD to prepare the final state |g,↓, I〉. This corresponds to a
crystal splitting of ≈234 THz (or a wavelength of ≈1.28 μm)
for the V α defect in 4H-SiC. This ES has a short lifetime of
τ = 167 ns [29] in this configuration, making it particularly
suited for a dissipative protocol. We furthermore drive the
polarizing transition due to better control of the drive com-
pared to using a decay channel. Lastly, we rely on the leading
decay process, instead of additional channels due to the hy-
perfine mixing, thereby leading to faster dynamics. Figure 3
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FIG. 3. Schematic of a purely optical (ratchet-type) nuclear po-
larization method. This scheme makes use of the short exited state
lifetime τ . The different forms of the hyperfine coupling make it pos-
sible to use a set of pump fields to increase the nuclear polarization
while exciting from the GS g = (1, �4) pseudospin ↓ manifold to
the ES e = (2, �5/6) ↑. Another set of drives is used to repump the
pseudospin ↓ manifold while conserving the nuclear spin. Here both
of the drive types are implemented using “−” polarization according
to the selection rules depicted in the magnification in Fig. 1(b) in
combination with the hyperfine mixing of the GS and ES. The
repump drives are employed to avoid a bottleneck due to a small
pseudospin relaxation rate 1/T1 and instead rely on the fast decay of
the ES.

illustrates the main processes involved in the polarization
towards the final state |g,↓, I〉.

To avoid unnecessarily populating one of the other KDs
the driving fields E should fulfill |εE | 	 mini |�i

so|, as is also
required for the use of the rotating wave approximation. A
drive exceeding this limit would also exceed the breakdown
electric field of SiC by orders of magnitude [51]. A resonant
optical drive can excite the system from the excited state to
the conduction band, thereby ionizing the defect [27,29]. The
occupation of the excited states should, therefore, be mini-
mal as well. To this end, we conservatively limit the largest
resonant Rabi-frequency to fulfill R 	 1/τ ≈ 6 (μs)−1, i.e.,
significantly below saturation.

Therefore, we can restrict the driving Hamiltonian to the
allowed transitions between GS and ES, see the magnified part
in Fig. 1(b), leading to

Hσ
d ≈ E (t )(ε |e,−σ 〉 + ε̃ |e, σ 〉) 〈g,−σ | + H.c. (8)

in the product basis, where we now use σ = ± =↑,↓ to
indicate the polarization as well as the pseudospin, enabling
a compact encoding of the selection rules. Here, E (t ) is the
time-dependent electric field amplitude in the rotating wave
approximation relevant for the g → e transitions (oscillating
with frequencies close to �cr).

Combined with the hyperfine mixing of the states [see
Eqs. (3) and (4)], where |g,↓〉 |m〉 is mixed with |g,↑〉 |m + 1〉
and |e,↓〉 |m〉 is mixed with |e,↑〉 |m〉, this implies that using
“−” polarization enables the polarizing and repump drives
while suppressing most unwanted transitions. For large Zee-
man splittings, linear polarization can also be used, assuming
that the individual transitions are spectrally resolved, because
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crystal axis. We show the significant difference between the cases
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e) for the driving

frequencies. For drives corresponding to the correct frequencies, the
protocol works in either case. The color shade gives the relative
resonant driving strength 〈e, ↑, m + 1|Hd |g, ↓, m〉 /εE (t ). The jumps
in the frequencies correspond to avoided crossings in the ES and
GS manifolds where the states associated with the main nuclear and
pseudospin components change.

the larger detuning suffices to suppress unwanted transitions.
To achieve fast dynamics the driving field E (t ) =∑ f E f e−iω f t

should consist of a resonant field for each of the transitions
corresponding to circularly polarized drives with amplitudes
E f and rotating with frequencies ω f ). The optimal angular
frequencies of the drives are ωm = (Ee,↑

m+1 − Eg,↓
m )/h̄ with m =

−I, . . . , I − 1 (polarizing) and ω′
m = (Ee,↓

m − Eg,↑
m )/h̄ with

m = −I, . . . , I (repump) using the eigenenergies (5) and (6).
The magnetic field dependence of the polarizing frequencies
ωm can be seen in Fig. 4, including the relative transition
matrix element 〈e,↑, m + 1|Hd |g,↓, m〉/εE (t ) given by the
exact transformation Eqs. (3) and (4). The figure also shows
the important role played by the signs of the hyperfine com-
ponents az

γ (γ = g, e), which give the ordering of the nuclear
states. This ordering is currently unknown, but has a dramatic
effect on the requirements of the polarizing scheme: If az

γ have
opposite signs in the two KDs, a single optical frequency can
be sufficient to drive the pseudospin-flipping transition.

Assuming az
gaz

e > 0, there are 15 different optical tran-
sitions (for V where I = 7/2) that need to be driven to
fully polarize the nuclear spin. Such a complex excitation
spectrum, containing 15 different laser frequencies, can be
produced by direct, external, or combined modulation of a
laser diode [52–54]. We note, however, that in this worst-case
scenario the spin polarization can also be achieved by driving
the system with only two excitation frequencies at any one
time: Once a pair of hyperfine states has been depleted, the
driving frequencies can be shifted to the next step in the polar-
ization ladder since the leakage by decay across two nuclear
states is expected to be negligible. For increased fidelity, an
excitation with four drives can be employed.

Inhomogeneous broadening might appear to be deleteri-
ous for such a scheme since the hyperfine transitions cannot
be addressed individually. While vanadium in SiC presents
a very stable mean frequency, spectral diffusion leads to a
single-transition linewidth of order 400 MHz [29]. In fact,
this setting somewhat simplifies the polarization task since,
for sufficiently large bias fields, the repump and polarization
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transitions are spectrally separated from the spin conserv-
ing transition, while the remaining undesired transitions are
suppressed by the choice of laser polarization [see Eq. (8) and
Appendix C]. Given that the spectral span of the transitions
is ∼1.6 GHz, it will therefore be sufficient to apply four laser
frequencies to address all desired transitions in one branch, or
to sweep the repump and polarization laser frequencies at a
rate slower than the expected nuclear spin transfer.

In this context, we highlight that the only possible un-
wanted transitions accessible with “−” polarization between
the GS and ES are pseudospin conserving, i.e., coupling the
pseudospin manifolds ↑⇔↑ (∝ ε) and ↓⇔↓ (∝ ε̃ax

g and ∝
εax

gax
e). The combination of the spin-orbit mixing and both

hyperfine mixings only leads to a correction of the amplitude
of the polarizing transition from |g,↓, m〉 ⇔ |e,↑, m + 1〉
(∝ ε̃ax

gax
e). Most of these transitions do not drive away from

the final state (discussed later) and therefore at most lead
to a slowdown. The problematic transition is |g,↓, I〉 ⇔
|e,↑, I〉, which can interfere with the final state. But as it
is only allowed due to the combination of spin-orbit and
hyperfine mixing (or the combination of the GS and ES hy-
perfine mixing), it is inefficient compared to the competing
drive |g,↑, I〉 ⇔ |e,↓, I〉 which is independently allowed due
to the hyperfine mixing and spin-orbit mixing.

We model the dynamics imposed by the drive in combina-
tion with the decay of the ES using a Lindblad master equation

ρ̇ = i

h̄
[ρ, H] +

∑
l

�l

(
σlρσ

†
l − 1

2
{σ †

l σl , ρ}
)

, (9)

with the anticommutator {A, B} = AB + BA where we de-
scribe the optical decay with the dissipators σ

op
↑/↓ =

|g,↑ / ↓〉 〈e,↑ / ↓| both at a rate �tot = 1/τ . Moreover, it is
possible to take into account additional dissipation channels,
such as the pseudospin relaxation σrel = |g,↓〉 〈g,↑| with rate
1/T1 and decoherence σph = |g,↑〉 〈g,↑| with rate 1/T2. The
Hamiltonian H = H0 + Hd consists of the static part H0 =⊕

γ Hγ made up by the KD Hamiltonians, as well as the
driving Hamiltonian Hd [see Eq. (8) for the relevant part].

Before discussing the precise dynamics we discuss a sim-
plified model using an effective Hamiltonian treating the
hyperfine interaction as a perturbation using a first order
Schrieffer-Wolff transformation [55] as well as adiabatically
eliminating the dynamics of the ES [56]. The details and
derivation are given in Appendix C. The leading-order rates
between states are

�↑,m→↓,m =�tot

∣∣∣∣∣∣
∑

f

E f e−iω f t

[
ε̃ − εax

em/(2gz
eμBB)

Ee,↓
m

′ − Eg,↑
m

′ − ω f − i�tot
2

− εax
em/(2gz

eμBB)

Ee,↑
m

′ − Eg,↑
m

′ − ω f − i�tot
2

]∣∣∣∣∣∣
2

+ 1

T1
, (10)

�↓,m→↑,m+1 =�tot

(
εax

g

2gz
gμBB

)2

[I (I + 1) − m(m + 1)]

∣∣∣∣∣∣
∑

f

E f e−iω f t

Ee,↑
m+1

′ − Eg,↓
m

′ − ω f − i�tot
2

∣∣∣∣∣∣
2

, (11)

and the rate that needs to be suppressed for efficient nuclear-spin polarization is

�↑,m→↓,m−1 =�tot

(
εax

g

2gz
gμBB

)2

[I (I + 1) − m(m − 1)]

∣∣∣∣∣∣
∑

f

E f e−iω f t

Ee,↑
m

′ − Eg,↑
m

′ − ω f − i�tot
2

∣∣∣∣∣∣
2

, (12)

where the Eγ ,σ
m

′ are the eigenenergies up to second order in
the hyperfine coupling. These rates encode the second-order
processes given by the driving to the ES followed by a decay
to the GS as well as pseudospin relaxation with rate 1/T1

relevant for weak repump drives. We stress that tuning the
driving frequencies ω f to the desired spin flip transitions
minimizes the detuning in the denominator of the first two
rates Eqs. (10) and (11), while leading to a denominator of the
order of the Zeeman splitting in Eq. (12), thus suppressing the
last rate.

With this simplified model we can already understand
a single cycle of the process (see Fig. 3) in terms of the
second-order processes leading to the effective rates. An ar-
bitrary nuclear state of the pseudospin down GS multiplet
|g,↓, m �= I〉 is driven to the pseudospin flipped and nuclear
spin increased ES |e,↑, m + 1〉 (see Fig. 4 for the frequencies
of this transition as a function of the magnetic field) and
subsequently decays to |g,↑, m + 1〉. Because the lifetime T1

of the pseudospin is much longer than τ 	 T1 the repump
drive is used to transfer |g,↑, m + 1〉 back to the ↓ manifold

conserving the nuclear spin via the pseudospin flipped state
|e,↓, m〉 of the ES. In the most likely case after this the state
is |g,↓, m + 1〉. Repeating the cycles (i.e., letting the system
evolve long enough) therefore drives the overall state to the
final state |g,↓, I〉. In addition to the simplified model, we
implemented the proposed protocol in the JULIA programming
language and numerically solved the dynamics of the density
matrix [57]. For the numerical implementation we did not
only use the leading order of the driving but kept all terms
oscillating slower than 2 GHz.

Additionally, we included the intermediate KD
|1, �5/6, σ 〉, and the lifetime, thermal excitation, as well
as decoherence of the pseudospin. If the lifetime of the
intermediate state (IS) is much larger than τ it can slow down
the process. This can be avoided with a repump excitation that
drives back to the ES down state (|1, �5/6, σ 〉 → |e,↓〉). On
the other hand, if either the decay rate to the IS is negligible
or the lifetime of the IS is shorter than of the ES τ , it can
speed up the polarization process by introducing an additional
nuclear spin conserving decay channel.
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FIG. 5. Time evolution of the level occupation probabilities dur-
ing polarization pumping. The states |�〉 = |e/g, σ, m〉 are encoded
in the line style, where blue and green (grey) shades indicate the main
nuclear spin component of GS (ES), the dashed (solid) lines corre-
spond to mainly pseudospin up (down) states, see legend of Fig. 2 for
the GS. For the ES, darker shades correspond to smaller m and the
intermediate state is not visibly occupied. The red line corresponds
to the desired final state |g, ↓, I〉. The dotted red line corresponds to
the analytic approximation (see Appendix C) to the simplified rate
model [Eqs. (10) and (11)]. We only take the resonant parts of the
rates into account, leading to the effective repump and polarizing rate
�eff = 42

r /�tot . For the simulation we chose the drives such that
all wanted transitions (see Fig. 3) have a resonant Rabi frequency
r = 2π × 0.2 MHz. These Rabi frequencies ensure that the ES is
not significantly populated (see inset) because they are much smaller
than the ES relaxation rate �tot = 1/167 ns. See Appendix B for a
discussion of all used parameters.

Using the Kubo-Martin-Schwinger condition for the cou-
pling to a heat bath [58], we can use the detailed balance to
obtain �g,↓→g,↑ = e−gz

gμBB/kBT /T1 ≈ 0.3/T1 for T = 100 mK
and B = 100 mT and using the Boltzmann constant kB. These
cryogenic temperatures are used in current experimental
setups and are most likely necessary in potential applications
for quantum technology. We did not take into account thermal
excitations between KDs because the large spin-orbit and
crystal splitting protect against thermal excitations to higher-
energy KDs. We expect that the pseudospin lifetime (already
measured for Mo [28] and also expected for V [43]) is much
larger at low temperatures compared to the one used in the
simulation. Therefore, the lifetime becomes even less relevant
compared to the fast dynamics due to the short ES lifetime,
see the inset of Fig. 5 for the timescale.

We plot the resulting state occupation probabilities of the
eigenstates of the static Hamiltonian at 100 mT as a function
of time in Fig. 5 (see Appendix B for the remaining parame-
ters). The additional effects we consider in the simulation are
discussed in the following.

After 100 μs the fidelity of the final state
〈g,↓, I|ρ(100 μs)|g,↓, I〉 > 0.999. We also note that a
control field with different amplitudes of the different fields
can achieve faster dynamics while still ensuring charge
stability of the defect because the matrix elements differ for
each of the resonant transitions. Finally, the inset of Fig. 5
shows that the ES does not have significant occupation.

Numerical simulations show that although the approxima-
tions necessary to derive the rates Eqs. (10) to (12) break down
close to the avoided crossing (in our case at 28 mT, see Fig. 2),
the polarization protocol still works. To use the electronic
ZEFOZ transition in this case, nuclear magnetic resonance
(NMR) control can be used to transfer the population of the
final state |g,↓, I〉 to one of the levels involved in the qubit,
i.e., |g,↑, I〉 , |g,↓, I − 1〉.

1. Protocol engineering

While the outlined all-optical protocol relies on the avail-
ability of circular polarization as well as an optical linewidth
sufficiently narrow to resolve pseudospin transitions, similar
protocols using microwaves can be favorable depending on
the technical constraints. For example, if the optical linewidth
is too broad to resolve the pseudospin transitions, using
“−” polarization to mainly drive the pseudospin conserving
transition g,↑⇔ e,↑ (for adequate bias magnetic field) is
still possible. In combination with a microwave with paral-
lel polarization between the states |g,↓, m〉 ⇔ |g,↑, m + 1〉
for m = −I, . . . , I − 1 analogous to Eq. (7), the hyperfine
allowed decay |e,↑, m + 1〉 ⇒ |g,↓, m + 1〉 then leads to the
same final state |g,↓, I〉. We expect this process to be slower
than the outlined protocol as it relies on a decay process
that is only allowed due to the hyperfine interaction and has
competing rates from the ES.

For a protocol that is less reliant upon circular polarization,
the same microwave drives are employed, but now combined
with an optical drive that is pseudospin flipping between
|g,↑, m〉 ⇔ |e,↓, m〉 (the repump drive of the optical pro-
tocol), like the all optical protocol this requires an optical
linewidth that resolves the pseudospins. This protocol also
results in the same final state |g,↓, I〉.

The different available protocols highlight the prospect of
engineering the protocols for these defects; setting this work
apart from studies that only investigated resolved polarization
schemes, such as for erbium [38,39].

2. Polarization measurement

We now briefly outline a measurement protocol to confirm
the nuclear polarization. The strongest optical transitions are
pseudospin conserving ones and we expect the same to hold
for the corresponding ES to GS decay at sufficiently high
magnetic fields, as was confirmed in recent experiments [43].
We therefore expect that the pseudospin state can be read-
out using a cycling transition, used in many platforms for
readout [59–63] between the ES and GS, for example to read-
out the ↓ pseudospin a “+” polarized drive would be used.
However, even at moderate magnetic fields, the frequencies
of these transitions are closely spaced or even overlapping
for different hyperfine ground states. The spectral separation
between electron spin-conserving transitions increases mono-
tonically for bias field strengths greater than ∼40 mT, by
approximately 6 GHz/T. Reading out the electron spin in this
regime would then enable the detection of hyperpolarization
by performing a hyperfine-selective electron spin π rotation,
i.e., a controlled-NOT (CNOT)-like gate: A system that is ini-
tialized in one electronic state, but mixed across all nuclear
spin states therein, would at best present an average contrast
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of 12.5% for V, while the contrast for a perfectly initialized
system would increase eight-fold and approach unity.

IV. CONCLUSION

Based on the current knowledge about TM defects in SiC
we found promising qubit candidates in the GS manifold and
developed the theory to engineer and quantitatively describe
state preparation protocols. We found that using the decay of
an excited state in combination with drives enables dissipative
polarization of the nuclear spin. The main ingredients of our
proposed protocol are a polarizing transition, either a drive or
a decay, enabled due to the different forms of the hyperfine
coupling of the KDs, and a repump drive that is used to
induce pseudospin flips during the polarization process. We
applied this to the particular configuration of α V defects in
SiC using a purely optical protocol for the polarization. Due
to the plethora of nuclear states of these defects, nuclear spin
polarization is essential for experimental implementations and
quantum technology applications.

Considering the different options for the in-detail imple-
mentation of the protocol and the fact that it is not necessary to
address all transitions at the same time but gradually sweeping
two drives is possible instead, we estimate that the polar-
ization can be achieved in state of the art experiments. The
sweep over drive frequencies can also be used to polarize a
subensemble of multiple similar defects. For future research,
it would be interesting to study the difference of the initial-
ization of single defects and ensembles as well as measure
additional rates for the different processes in these defects. We
deem the domain of static magnetic field ∼100 mT to resolve
the pseudospin transitions as favorable. Experiments at tem-
peratures � 1 K where detrimental transitions to intermediate
states and ES are suppressed and the T1 is enhanced ought to
benefit most from the ZEFOZ transitions.
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APPENDIX A: g AND HYPERFINE TENSORS

In this Appendix we give the explicit form of the coupling
tensors used in the KD Hamiltonians (1) of the main text

g j,�4 =
⎛
⎝gx

j,�4
0 0

0 −gx
j,�4

0
0 0 gz

j,�4

⎞
⎠,

g j,�5/6 =
⎛
⎝0 0 0

0 0 0
0 0 gz

j,�5/6

⎞
⎠,

g3,�4 =
⎛
⎝gx

3,�4
0 0

0 gx
3,�4

0
0 0 gz

3,�4

⎞
⎠, (A1)

A j,�4 =
⎛
⎝ax

j,�4
0 0

0 −ax
j,�4

0
0 0 az

j,�4

⎞
⎠,

A j,�5/6 =
⎛
⎝0 0 ax

j,�5/6

0 0 0
0 0 az

j,�5/6

⎞
⎠,

A3,�4 =
⎛
⎝ax

3,�4
0 0

0 ax
3,�4

0
0 0 az

3,�4

⎞
⎠. (A2)

Further details on the derivation can be found in [32,33].

APPENDIX B: MODEL PARAMETERS

In this article we use parameters according to estimates
suited to describe the vanadium α defect in 4H-SiC. Other
defects with the same electronic configuration can be treated
analogously, but the parameters will vary. These parameter
values are based on fits [33] to experimental data [29] for the
GS as well as experimental data for the ES and T1 time [43].
The parameters of the individual KDs can be found in Ta-
ble I and the remaining relevant parameters are the spin-orbit
splitting of the ES KDs �2

so/h = 181 GHz, the nuclear gyro-
magnetic factor μN gN/h = −11.213 MHz/T of vanadium, as
well as the Bohr magneton μB.

To model the dissipative processes we use the measured
lifetime (inverted rates) of the ES (2, �5/6) τ = 1/�tot =
167 ns [29]. Additionally we use a conservative estimate a
spin lifetime T1 = 500 μs, and coherence time T2 = 1 μs,
that the spin-flipping decay from the ES to the GS at
a rate |�1

so/(�crτ )|, and to show that a decay over the
|1, �5/6, σ 〉 does not interfere with the process the rates
�e→1,�5/6 = 2 (μs)−1 and �1,�5/6→g = 10 (μs)−1. As stated in
the main text we also consider the inverted rate �g,↓→g,↑ =
e−gz

gμBB/kBT /T1 ≈ 0.3/T1 at T = 100 mK, with B = 100 mT,
and using the Boltzmann constant kB.

For the drive we used ε = 1 debye [31] for all leading-
order transitions and estimate the transition dipole elements
ε̃ ∼ ε�1

so/�cr ≈ 0.002ε for purely spin-orbit mixing allowed
transitions. The electric field amplitudes are chosen such
that all resonant Rabi frequencies are 2π · 0.2 MHz; this
corresponds to field strength E between 0.28 V/mm and
7.16 V/mm. This ensures that the differences in the dipole
elements (see Fig. 4) do not lead to unnecessary bottlenecks
in the protocol. In the simulation we neglect transition matrix

TABLE I. Model parameters for the relevant KDs for the vana-
dium α defect in SiC. These parameters are based on fits [33] to
experimental data [29] for the GS and experimental results [43] for
the ES. We use az

e < 0 everywhere apart from Fig. 4(a) where we use
the opposite sign.

KD γ E γ /h (GHz) gz
γ az

γ /h (MHz) ax
γ /h (MHz)

1, �4 (g) 0 1.748 −232 165
1, �5/6 529 (�1

so) 2.16 170 210
2, �5/6 (e) 234 432 (�cr) 2.18 ∓213 75
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elements with a frequency above the cutoff frequency 2 GHz
in the rotating frame.

APPENDIX C: DERIVATION OF THE EFFECTIVE
DRIVING HAMILTONIAN

The selection rules (see Fig. 1) imply that the transitions
between the GS (1,�4) and ES (2,�5/6) KDs can be driven
with perpendicular polarization. Assuming a drive tuned to
this transition we can neglect the off-resonant terms that
would drive between other KDs if the dipole element ful-
fills |εE (t )/ mini |�i

so|| 	 1. Furthermore, applying a rotating
wave approximation to neglect terms that oscillate with a fre-
quency of about two times the transition frequency yields the
circular polarization dependent driving Hamiltonian (8) Hσ

d ≈
E (t )(ε |e,−σ 〉 + ε̃ |e, σ 〉) 〈g,−σ | + H.c. where σ = ± =↑
,↓ indicates the polarization as well as the pseudospin,
thereby encoding the selection rules, E (t ) =∑ f E f e−iω f t is
the time-dependent electric field amplitude in the rotating
wave approximation for transitions from the GS to the ES
resulting from circular drives with amplitudes E f and fre-
quencies ω f , and ε (ε̃) the leading-order (spin-orbit mixing
allowed) dipole matrix element of the transition. For simplic-
ity, instead of the analytic diagonalization Eqs. (3) and (4), we
treat the hyperfine interaction as a perturbation compared to a

large Zeeman splitting, i.e., B � maxγ | ax
γ

μBgz
γ
| ≈ 6.7 mT. For

a more compact notation we use the ladder operators S± =
Sx ± iSy with S ∈ I, σ in the following. Then we diagonal-
ize the static Hamiltonian using a first-order Schrieffer-Wolff
transformation [55]

Sg = ax
g(σ+

g I+ − σ−
g I−)

4μBgz
gB

, Se = iax
eσ

y
e Iz

2gz
eμBB

, (C1)

leading to the transformed static Hamiltonian (energies up to
second in ax

γ )

H ′
g = Hg|ax

g=0 + 1

2

[
Sg,

ax
g

4
(σ+

g I+ + σ−
g I−)

]

= Eg + gz
gμBBσ z

g/2 + az
gσ

z
g Iz/2 + μN gN IzB

+ [ax
g

2/(4gz
gμBB

)]
σ z

g

[
I (I + 1) − I2

z

]
, (C2)

H ′
e = He|ax

e=0 + 1

2

[
Se,

ax
e

2
σ x

e Iz

]

= Ee + gz
eμBBσ z

e /2 + az
eσ

z
e Iz/2 + μN gN IzB

+ ax
e

2

4gz
eμBB

σ z
e I2

z , (C3)

and the transformed driving Hamiltonian for a single polariza-
tion σ

Hσ ′
d ≈ E (t ){(ε |e,−σ 〉 + ε̃ |e, σ 〉) 〈g,−σ | + [Sg + Se, (ε |e,−σ 〉 + ε̃ |e, σ 〉) 〈g,−σ |]} + H.c. (C4)

= E (t )

[(
ε + −σ ε̃ax

e

2gz
eμBB

Iz

)
|e,−σ 〉 〈g,−σ | +

(
ε̃ + σεax

e

2gz
eμBB

Iz

)
|e, σ 〉 〈g,−σ |

+ σax
g

2μBgz
gB

I−σ (ε |e,−σ 〉 + ε̃ |e, σ 〉) 〈g, σ |
]

+ H.c. (C5)

In the following we consider driving only with σ = − polarization, two sets of frequencies (one for the polarization and one for
repumping), and neglecting all decays apart from the very fast relaxation from the ES to the GS. We use the theory from [56] to
eliminate the ES dynamics and derive effective dynamics of the GS. For each of the frequencies we have

H f
d eiω f t/E f =ε |e,+〉 〈g,+| +

(
ε̃ − εax

e

2gz
eμBB

Iz

)
|e,−〉 〈g,+| − ax

g

2μBgz
gB

I+ε |e,+〉 〈g,−| (C6)

the part of the driving Hamiltonian that drives from the GS to the ES. The parts can be combined to the total driving Hamiltonian
Hd =∑ f (H f

d + H.c.). In combination with the dissipator L = √
�tot

∑
σ |g, σ 〉 〈e, σ | which is transformed with the Schrieffer-

Wolff transformation to L′ = √
�tot

∑
σ (|g, σ 〉 − σ (

ax
g

2μBgz
gB I−σ + ax

e
2gz

eμBB Iz ) |g,−σ 〉) 〈e, σ |, we find the non-hermitian Hamiltonian

HNH = H ′
e − i

2 h̄L†L where we neglect the terms proportional to (μBgz
γ B)−2. Using this diagonal matrix we can apply [56] and

obtain

Heff =H ′
g − 1

2

⎡
⎣∑

f ′
H f ′

d (t )+
∑
f ,σ,m

(
HNH − Eg,σ

m
′ − h̄ω f

)−1
H f

d (t ) |g, σ, m〉 〈g, σ, m| + H.c.

⎤
⎦, (C7)

Leff =L′ ∑
f ,(σ,m)

(
HNH − Eg,σ

m
′ − h̄ω f

)−1
H f

d (t ) |g, σ, m〉 〈g, σ, m| , (C8)

where Eγ ,σ
m

′ are the diagonal entries of H ′
γ .

In accordance with the previous Schrieffer-Wolff transformation, we neglect terms that are quadratic suppressed by the
Zeeman splitting (either directly or in terms of a rotating wave approximation). We additionally treat ε̃ terms in the same
way and neglect off-diagonal (w.r.t. pseudospin of the KD) of this order because they lead to higher-order contributions. This

033107-9



BENEDIKT TISSOT et al. PHYSICAL REVIEW RESEARCH 4, 033107 (2022)

yields the simplified effective Hamiltonian

Heff ≈ H ′
g −

∑
m

1

2

∑
f ′, f

[
E f ′E f ei(ω f ′−ω f )tε2

Ee,↑
m

′ − Eg,↑
m

′ − h̄ω f − ih̄�tot
2

+ h.c.

]
|g,+, m〉 〈g,+, m| (C9)

and the effective Lindblad operator

L′
eff =

√
�tot

∑
f ,m

E f e−iω f t

⎧⎨
⎩ ε

Ee,↑
m

′ − Eg,↑
m

′ − h̄ω f − ih̄�tot
2

|g,+, m〉 〈g,+, m|

− ax
g

√
I (I + 1) − m(m − 1)

2μBgz
gB

ε

Ee,↑
m

′ − Eg,↑
m

′ − h̄ω f − ih̄�tot
2

|g,−, m − 1〉 〈g,+, m|

+
[

ε̃ − εax
em/(2gz

eμBB)

Ee,↓
m

′ − Eg,↑
m

′ − h̄ω f − ih̄�tot
2

− εax
em/(2gz

eμBB)

Ee,↑
m

′ − Eg,↑
m

′ − h̄ω f − ih̄�tot
2

]
|g,−, m〉 〈g,+, m|

−
εax

g

2μBgz
gB

√
I (I + 1) − m(m + 1)

Ee,↑
m+1

′ − Eg,↓
m

′ − h̄ω f − ih̄�tot
2

|g,+, m + 1〉 〈g,−, m|
⎫⎬
⎭. (C10)

The first term leads to a decoherence of the ES that is irrelevant for our protocol. Because our protocol drives the spin flipping
transitions and the depolarizing term in the second line stems from the (off-resonant) spin-conserving excitation, it is naturally
suppressed in comparison to the terms in the last two terms that lead to the polarization. This suppression is effective because
the detuning Ee,↑

m
′ − Eg,↑

m
′ − h̄ω f is of the same order as the Zeeman splitting, and therefore, this term is much smaller than the

last two terms, where the detuning is small (or zero).
This means in the leading order we have the time-dependent transition rates shown in Eqs. (10) to (12). Here we see that in

the ideal case every term of the sum in the rate (12) is suppressed by the Zeeman splitting to the power of 4. We furthermore
reincluded the inverse lifetime to Eq. (10) to highlight that the finite lifetime of the states does not work against our protocol, but
can enhance its performance for weak repump drives.

For appropriate drives we can neglect the unwanted terms in Eq. (C10) and use that the effective Hamiltonian (C9) is diagonal.
If we additionally neglect all terms oscillating with a frequency bigger than the electronic Zeeman splitting and assume the initial
state is diagonal (in the basis of H ′

γ ) and has its occupation (approximately) only in the GS, e.g., thermal states with cryogenic

temperatures. The dynamics of the reduced density matrix ˙̃ρ = i
h̄ [ρ̃, Heff ] + Leff ρ̃L†

eff − 1
2 {L†

eff Leff , ρ̃} simplify to the dynamics
of the diagonal entries

˙̃ρ↑,m = −�↑,m→↓,mρ↑,m + �↓,m−1→↑,mρ↓,m−1, (C11)

˙̃ρ↓,m = −�↓,m→↑,m+1ρ↓,m + �↑,m→↓,mρ↑,m. (C12)

If the electric field amplitudes are chosen such that the resonant Rabi frequencies are all equal r we can approximate all rates
with �eff = 42

r /�tot. Additionally, assuming that the population of all levels of the GS KD are equal, the analytic solution of the
rate Eqs. (C11) and (C12) can be used to very compactly write the solution for the occupation of the final state (for the nuclear
spin I = 7/2 of vanadium)

ρ̃↓,I ≈ 1 − e−�eff t

16

14∑
k=0

15 − k

k!
�k

efft
k . (C13)

We emphasize that, while these rates and the solution of the system are suited to estimate the timescale of the dynamics and
to explain the final state, to describe the full dynamics, a description involving the full time evolution is better suited as it is
numerically feasible and contains several aspects neglected here for simplicity.
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