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Theory of qubit noise characterization using the long-time cavity transmission

Philipp M. Mutter * and Guido Burkard †

Department of Physics, University of Konstanz, 78457 Konstanz, Germany

(Received 21 October 2022; accepted 17 January 2023; published 1 February 2023)

Noise-induced decoherence is one of the main threats to large-scale quantum computation. In an attempt to
assess the noise affecting a qubit, we go beyond the standard steady-state solution of the transmission through
a qubit-coupled cavity in input-output theory by including dynamical noise in the description of the system. We
solve the quantum Langevin equations exactly for a noise-free system and treat the noise as a perturbation. In
the long-time limit the corrections may be written as a sum of convolutions of the noise power spectral density
with an integration kernel that depends on external control parameters. Using the convolution theorem, we invert
the corrections and obtain relations for the noise spectral density as an integral over measurable quantities.
Additionally, we treat the noise exactly in the dispersive regime and again find that noise characteristics are
imprinted in the long-time transmission in convolutions containing the power spectral density.
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I. INTRODUCTION

In the absence of quantum error correction [1], fluctuations
from the environment severely impair the performance of
quantum hardware, as such external noise leads to decoher-
ence, i.e., the permanent loss of quantum coherence [2]. Even
with quantum error correction at hand, the presence of noise
can force the system to exceed the critical error threshold
of fault-tolerant quantum computation [3–7], thereby render-
ing large-scale computations impossible [8]. To mitigate the
effects of the environment, it can be advantageous to have
precise knowledge of the form of the temporal fluctuations. As
a consequence, the determination of noise characteristics is an
important task in present-day quantum information processing
units.

All qubit realizations suffer from noise in one way or the
other, either directly or indirectly. This holds especially for
solid-state qubits which are surrounded by a macroscopic
number of atoms that make up the host crystal [9–12]. Semi-
conductor charge qubits in quantum dots suffer from charge
noise stemming from fluctuating gate voltages [13–15], spin
qubits suffer from effective random magnetic fields due to the
interaction with the host atomic nuclei [16–19], and super-
conducting circuits can be affected by magnetic flux noise,
quasiparticles, and two-level fluctuators [20–23]. Via the spin-
orbit interaction, charge noise can affect the spin degree of
freedom as well [24–26]. Hybrid systems such as flopping
mode qubits or other spin qubits that rely on the spin-orbit
interaction for gate operations, e.g., hole systems in germa-
nium [27–32], may even suffer from both magnetic and charge
noise [33]. In general, enhanced qubit performance from an
extended control parameter space typically comes at the price
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of additional decoherence channels and increased susceptibil-
ity of the logical two-level system to noise.

Here we address the problem of characterizing fluctuations
in a quantum bit (qubit), which represents the fundamental
building block of a quantum computer. To obtain informa-
tion about the noise power spectral density, we propose a
scheme based on the long-time transmission through an elec-
tromagnetic cavity interacting with the qubit (Fig. 1). The
steady-state transmission through a resonator-qubit system
has become an important tool in extracting system param-
eters such as valley splittings [34,35] and in qubit readout
[36–41]. The cavity transmission signal has played an im-
portant role in providing evidence for the achievement of the
strong-coupling regime of cavity quantum electrodynamics
for superconducting coplanar microwave cavities coupled to
either superconducting qubits [42] or semiconducting qubits
[43–46] and has been used to experimentally characterize
charge noise in a semiconductor double quantum dot [47].
Recent studies have investigated theoretically the effect of
general dynamical noise on the transient cavity transmission
in the dispersive regime [48], as well as the effect of quantum
noise [49]. Here we study the effect of dynamical noise on
the long-time transmission. We complement the analysis in
Ref. [48] in the dispersive regime and in addition obtain re-
sults that are valid for arbitrary qubit-photon detunings given
that the decay rates in the system are sufficiently large to allow
for a quickly converging perturbation series in the dynamical
noise parameter. In both regimes we find that the averaged
transmission probability contains measurable information on
spectral features of the noise in the system.

The remainder of the paper is structured as follows. Sec-
tion II introduces the theoretical model and displays the
quantum Langevin equations that we aim to solve in different
regimes in the subsequent sections. We treat the noise as a
perturbation in Sec. III and distinguish between two cases: In
Sec. III A we work in the regime where the matrix L appearing
in the system of differential equations is diagonalizable, while
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FIG. 1. The system under consideration consists of a cavity-
coupled qubit (green circle) with fluctuating energy separation ωq

due to noise δX (t ) affecting its control parameters. The cavity mir-
rors (gray) allow for an input field bin at the left port and an output
field bout at the right port, thereby creating a measurable transmis-
sion signal A(t ). We find that the averaged transmission probability
〈〈|A|2〉〉 receives noise corrections in the form of sums over convo-
lutions C = S � K of the power spectral density S(ω) of δX with an
integration kernel K . As a result, the spectral density can be extracted
from the averaged transmission probability by using the convolution
theorem.

we focus on the special parameter regime in which L becomes
nondiagonalizable in Sec. III B. In both cases we find that the
long-time transmission receives noise corrections which can
be expressed as convolutions of the spectral density with inte-
gration kernels depending on system parameters. We discuss
and compare our findings in Sec. III C and show how the noise
power spectral density can be extracted in real measurements
by using the convolution theorem in Sec. III D. Additionally,
we investigate the long-time limit in the dispersive regime
in Sec. IV and thereby complement the results on the tran-
sient transmission in Ref. [48]. Again, we find that the cavity
transmission contains information on the fluctuations affect-
ing the qubit in terms of convolutions containing the noise
power spectral density. Section V provides a summary and an
outlook on possible future research directions.

II. SYSTEM AND TRANSMISSION

We study a generic noisy two-level system with
fluctuating qubit energy separation ωq + δωq(t ) and
total noise-independent intrinsic decoherence rate
γ = coth(ωq/2T )γ1/2 + γϕ , where T is the temperature, γ1

is the relaxation rate at zero Kelvin, γϕ is the dephasing rate,1

and we work in units where h̄ = kB = 1. The fluctuations

1The intrinsic decoherence rate γ used here is taken to be half the
rate used in Ref. [48] for consistency with the relation γ ≡ T −1

2 =
(2T1)−1 + T −1

ϕ in Bloch-Redfield theory.

may be written in leading order as δωq = λδX (t ), where
λ = ∂X ωq|δX=0 is the noise sensitivity of the qubit, X is the
noise-affected qubit control parameter, and δX (t ) describes
the time-dependent classical random fluctuations of this
parameter. We remark that fluctuations of the coupling
constant g may also be present in the system but can be
controlled externally, e.g., via the detuning in a charge qubit
(discussed below), and we focus on the regime where they
may be neglected. The qubit is allowed to interact with a
single cavity mode of frequency ωc, and the qubit-cavity
coupling is assumed to be linear with coupling strength g
(Fig. 1). The cavity decay rate is given by κ = κ1 + κ2 + κint,
where κ j is the decay rate at port j ∈ {1, 2} and κint the
intrinsic photon loss rate, and in the following we choose a
classical input field of amplitude 〈bin〉 and frequency ωp to be
present at port 1, while no input field is assumed to be present
at port 2. In a frame corotating with the probe frequency ωp

and within the rotating-wave approximation, the quantum
Langevin equations for the expectation values of the spin
ladder operator σ− and the photon annihilation operator a
take the form

d

dt

(〈σ−〉
〈a〉

)
+ [L + δL(t )]

(〈σ−〉
〈a〉

)
=

(
0√

κ1〈bin〉
)

,

L =
(

i�q + γ /2 −i〈σz〉g
ig i�c + κ/2

)
, (1)

δL(t ) =
(

iλδX (t ) 0
0 0

)
,

where we introduce the probe-qubit (probe-cavity) detuning
�q = ωq − ωp (�c = ωc − ωp). The dynamics of the opera-
tors under consideration are governed by the non-Hermitian
system matrix L and the noise corrections appearing in the
dynamical matrix δL(t ). We remark that 〈σz〉 ≡ 〈σ (0)

z 〉 is taken
to be the zeroth-order term in the photon-qubit coupling g
while higher orders are neglected, a standard assumption in
input-output theory [34,41,50], which is justified as follows:
The only equation featuring 〈σz〉 is the one for 〈σ−〉 in the term
g〈σza〉, which to leading order in g reads g〈σ (0)

z 〉〈a〉 with exact
〈a〉 for separable initial qubit-cavity states. As the solution
of 〈σ−〉 is only required to first order in g in the expansion
of 〈σz〉 to calculate the transmission via the exact Langevin
equation for 〈a〉, the procedure is consistent. Physically this
means that the level populations are assumed to be unaffected
by the interaction with the photons. In the remainder of this
paper we assume a constant thermal distribution of the qubit
energy levels, 〈σz〉 = − tanh(ωq/2T ) < 0. This is justified at
the level of the differential equation (1) by the fact that the
time dependence of 〈σz〉 will decay due to relaxation processes
in the long-time limit even in the presence of noise. A proof is
given in Appendix A.

While the model is general and describes any two-level
system with fluctuating energy separation, we discuss the
potential tunability of the noise couplings by considering
the example of a charge qubit, i.e., a qubit that encodes
the logical states into the bonding and antibonding orbital
states of a charge in a double quantum dot. The qubit split-
ting is given by ωq = √

ε2 + 4t2
c , where ε is the detuning

between the two dots and tc is the tunnel matrix element
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[51,52]. In the presence of charge noise due to imperfect
gate voltages, the detuning fluctuates in time, ε → ε + δε(t ),
and we find λ = ∂εωq|δε=0 = ε/ωq. On the other hand, the
qubit-photon coupling strength has the parameter dependence
g ∝ tc/

√
ε2 + 4t2

c and hence may also be affected by noise.
To leading order the noise couples to g with strength given
by λ′ = ∂εg|δε=0 = −gε/ω2

q, and the ratio λ′/λ = −g/ωq ∝
1/ε2 for ε 
 tc can be controlled via the detuning. There-
fore, if the system is operated at sufficiently large detunings,
the assumption that only the energy separation is affected
by noise is valid. Additionally, the prefactor of higher-order
noise terms δX n�2 in the expansion of the qubit energy fluc-
tuations δωq(t ) = λδX + ∑∞

n=2 λ(n)δX n/n! is suppressed in
this regime. Specifically, one has λ(n) = ∂n

ε ωq|δε=0 ∼ 1/εn+1,
while the first-order term λ is asymptotically constant at large
detunings.

Finally, we turn to the general framework for the de-
scription of the resonator transmission. The input field
〈bin〉 appears in the Langevin equations (1), and standard
input-output theory states the simple relation for the out-
put field 〈bout(t )〉 = −√

κ2〈a(t )〉 [53–55]. Consequently, the
time-dependent transmission amplitude A through the cavity
is found to be

A(t ) = 〈bout(t )〉
〈bin〉 = −√

κ2
〈a(t )〉
〈bin〉 . (2)

In order to compute the transmission amplitude A, it is there-
fore necessary to solve the system of coupled differential
equations (1) for the expectation value of the photon anni-
hilation operator 〈a(t )〉. Since the dimension of the matrix
L is larger than one, a general solution for arbitrary time-
dependent noise can only be given as a time-ordered series.
To obtain tractable expressions that can lead to physical in-
sights and allow us to extract noise characteristics, we apply
time-dependent perturbation theory. In Secs. III A and III B
the perturbation parameter is the ratio of the maximum value
of the noise taken until measurement and the smaller of the
two decay rates κ and γ . Hence, this approach is expected to
be applicable in open cavities or in cavities containing quickly
relaxing qubits. In Sec. IV, on the other hand, we expand
the exact solution in the parameter |g|/max{|δ0|, |κ − γ |},
where δ0 = ωc − ωq is the noise-free qubit-cavity detuning.
The results obtained in this fashion are expected to be valid
in the dispersive regime |δ0| 
 |g| or when there is a large
discrepancy in the qubit and cavity decay rates.

III. PERTURBATION THEORY IN THE NOISE

The system of differential equations in (1) may not be
solved exactly for generic noise. In this section we obtain
an approximate analytical solution by treating the noise as
a perturbation, deriving the conditions of validity of the ap-
proach as we go along. Since the zeroth-order transmission
amplitude may then be obtained by exponentiating the matrix
L, we distinguish between the cases where L is diagonaliz-
able (Sec. III A) and where it is not (Sec. III B). We discuss
and compare our findings in Sec. III C and finally propose a
scheme for extracting noise characteristics from the measured
average transmission probability in Sec. III D.

A. Diagonalizable system matrix

For δ0 = 0 or δ0 = 0 while (κ − γ )2 = −16〈σz〉g2, the
non-Hermitian matrix L is diagonalizable with eigenvalues

l± =  + i� ± �, � = 1
4

√
(κ − γ + 2iδ0)2 + 16〈σz〉g2,

(3)

where  = (κ + γ )/4 and � = (�c + �q)/2. In the absence
of noise the differential equations (1) can be decoupled by ex-
pressing the matrix L in its eigenbasis. Treating the matrix δL
and therefore λδX (t ) as a perturbation then allows us to solve
for 〈a(t )〉 order by order in the noise (Appendix A). Going up
to quadratic order and using the limiting cases discussed in
Appendix B, we find for the transmission amplitude as given
by (2) at long times Re(l±)t 
 1,

A(t )

A0
= 1 + 〈σz〉g2

�(i�q + γ /2)

(
i

2
[ f+(t ) − f−(t )]

+
∑
±

γ − κ − 2iδ0 ± 4�

16�
[ f±±(t ) − f∓±(t )]

)
, (4)

where

A0 = −
√

κ1κ2

i�c + κ/2 − 〈σz〉g2/(i�q + γ /2)
,

fp(t ) = λe−lpt
∫ t

0
dt1δX (t1)elpt1 , (5)

fpq(t ) = λe−lpt
∫ t

0
dt1δX (t1)elpt1 fq(t1).

Here A0 is the zeroth-order transmission, which would be
the steady state in a noise-free system, and the functions fp

and fpq, with p, q ∈ {±}, are the first- and second-order noise
corrections, respectively. They depend on time and hence a
true steady state is not reached for a single noise realization.
While it may appear that the limit � → 0 could lead to diver-
gences, a closer analysis reveals that the expressions f+ − f−
and

∑
± ±( f±± − f∓±) only have terms �n with n � 1, i.e.,

no constant term, and the expression
∑

±( f±± − f∓±) only
has terms �n with n � 2. These are precisely the powers
needed to cancel the negative powers of � in (4) and hence the
limit � → 0 exists and is well behaved (Appendix C). Note,
however, that at � = 0, the matrix L is nondiagonalizable and
must be treated in a different approach (Sec. III B).

As can be seen from Eq. (4), the noise integrals serve as the
perturbation parameters and at long times Re(l±)t 
 1 they
are bounded by

| fp| �
∣∣ f max

p

∣∣ = λ|δXmax|
 + p Re(�)|δ0=0

,

| fpq| �
∣∣ f max

pq

∣∣ = ∣∣ f max
p

∣∣∣∣ f max
q

∣∣, (6)

where |δXmax| = |max{δX (τ ) : τ ∈ [0, t]}| is the maximal
value taken by the noise until measurement at time t . The
regime in which the perturbation expansion is valid is there-
fore characterized by | f max

p | � 1 for p ∈ {±}. Note that this
condition is independent of the probe frequency ωp and the
qubit-cavity detuning δ0, which are the control parameters of
choice in transmission experiments. Physically, the condition
| f max

p | � 1 can be understood as follows: In time-dependent
perturbation theory the quality of the expansion is a function
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of time as the dynamical noise will move the solution away
from a steady state. At long times the accuracy is determined
solely by the interplay of noise and decay rates and inde-
pendent of any oscillatory processes. The decay rates must
then be large enough to tame the deviations from the (by then
time-independent) zeroth-order solution induced by the noise.

Relevant quantities in input-output measurements include
the transmission |A| and the transmission probability |A|2.
In the literature both |A| and |A|2 are used and there is no
universal convention as to which of the two quantities is used
to characterize cavity transmission. Clearly, this is justified
by the very simple relation between the two quantities in
noise-free systems. However, when a noise average 〈〈·〉〉 is
involved, one must be cautious and include the variance of
|A|, 〈〈|A|2〉〉 = 〈〈|A|〉〉2 + Var(|A|). In Ref. [48] and Sec. IV
of the present paper the variance vanishes to the order of
interest in perturbation theory and the transmission and trans-
mission probability can be used interchangeably. In contrast,
the variance does not vanish in general when performing a
perturbation expansion in the noise parameter as we do in
this section. Hence, we must decide on using one figure of
merit and we choose the averaged transmission probability
〈〈|A|2〉〉. This is because we aim to extract noise features
from measurable convolutions of the noise power spectral
density with an integration kernel and we find that the mean
〈〈|A|〉〉 and variance Var(|A|) of the transmission both contain
a term that cannot be written as a sum over such convolutions
(Appendix D), while this problematic term is not present in
the averaged transmission probability.

Squaring the transmission and averaging over many noise
configurations is a cumbersome task and it contains the ad-
ditional complication that the radicand in � has both real
and imaginary parts. If the random process governing the
noise dynamics is assumed to be weak-sense stationary, the
mean of the noise is time independent and the autocorrelator
〈〈δX (t )δX (0)〉〉 is invariant under time translations. In this
case the general solution has the form

〈〈|A|2〉〉
|A0|2 = 1 + 〈σz〉g2

4�2
q + γ 2

⎛
⎝λ�〈〈δX 〉〉 + λ2

5∑
j=1

ψ jC j (�)

⎞
⎠,

(7)

where |A0| is the absolute value of the well-known steady-
state transmission amplitude (5) in the absence of noise. The
corrections to the noise-free steady-state solution are twofold.
The term linear in the qubit-noise coupling strength λ is only
present for biased noise, i.e., fluctuations with nonzero mean
〈〈δX 〉〉. The effect of a nonzero noise mean can be thought of
as a shift in the qubit energy splitting ωq → ωq + λ〈〈δX 〉〉, as
can be shown by expanding |A0|2 to leading order in λ〈〈δX 〉〉,
and hence we set 〈〈δX 〉〉 = 0 in the remainder of this paper.
On the other hand, the term quadratic in λ is present even
for zero-mean noise and describes the effect of the noise
correlations. The functions � and ψ j depend on the system
parameters in a rather complicated fashion and are displayed
in Appendix E. We will discuss their form and parameter
dependence in more detail in Sec. III D. Finally, the quantities
C j (�) are convolutions

C j (�) = (S � Kj )(�) = 1

2π

∫ ∞

−∞
S(ω)Kj (� − ω)dω. (8)

Here S(ω) is the noise power spectral density defined as the
Fourier transform of the noise autocorrelator, and the integra-
tion kernels read

K1(�) =
∏
±

1

[ ± Re(�)]2 + [� ± Im(�)]2
,

K2/3(�) = 1

[ ± Re(�)]2 + [� ± Im(�)]2
, (9)

K4/5(�) = � ± Im(�)

[ ± Re(�)]2 + [� ± Im(�)]2
,

where the positive (negative) sign belongs to the even (odd)
index in the latter two equations. A notable special case is
δ0 = 0 and (κ − γ )2 > −16g2〈σz〉 for which Im(�) = 0. The
kernel K1 can then be written as a linear combination of the
kernels K2 and K3 by means of a partial fraction decomposi-
tion. Since the coefficients are independent of �, we find for
the sum of convolutions

5∑
j=1

ψ jC j (�) =
5∑

j=2

ψ̃ jC j (�), (10)

where the functions ψ̃ j relate to the original functions ψ j via

ψ̃2/3 = ψ2/3 ∓ 〈σz〉g2

Re(�)
, ψ̃4/5 = ψ4/5. (11)

Reducing the number of convolutions in this way can ease
their experimental extraction as we detail in Sec. III D.

B. Nondiagonalizable system matrix

For δ0 = 0 and (κ − γ )2 = −16g2〈σz〉 one has � = 0 and
the eigenvalues of L become degenerate, l+ = l− ≡ l . Since
in this case the algebraic multiplicity exceeds the geometric
multiplicity, the matrix is no longer diagonalizable and may
only be brought into Jordan normal form

LJ =
(

l/g 1
0 l/g

)
, l =  + i�, (12)

where now � = �c = �q. In the generalized eigenbasis, the
system of differential equations is then only partially decou-
pled with one equation still mixing the dependent variables.
Nevertheless, the Langevin equations (1) can be solved within
perturbation theory and the transmission amplitude up to
quadratic order in the noise δX (t ) reads

A(t )

A0
= 1 − 〈σz〉g2

i� + γ /2

(
iI1(t ) + I2(t ) + κ − γ

4
I3(t )

)
, (13)

with the noise integrals

I1(t ) = λe−lt
∫ t

0
dt1

∫ t1

0
dt2δX (t2)elt2 ,

I2(t ) = λ2e−lt
∫ t

0
dt1

∫ t1

0
dt2δX (t2)

∫ t2

0
dt3δX (t3)elt3 ,

I3(t ) = λe−lt
∫ t

0
dt1

∫ t1

0
dt2δX (t2)elt2 I1(t2). (14)

The zeroth-order transmission A0 is simply the standard
steady-state solution (5) evaluated at the critical parameter
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settings. As before, the noise integrals are the perturbation
parameters and in the long-time limit t 
 1 they are bound
by

|I1| � Imax = λ|Xmax|


,

|I2| � I2
max, 2|I3| � I2

max, (15)

and hence we require  
 |δXmax|, motivated by the same
physical considerations as in Sec. III A. Again assuming the
noise process to be weak-sense stationary, the averaged long-
time transmission probability reads

〈〈|A|2〉〉
|A0|2 = 1 + 〈σz〉g2

4�2 + γ 2

⎛
⎝λ�〈〈δX 〉〉 + λ2

3∑
j=1

ψ jC j (�)

⎞
⎠,

(16)

where we include a nonzero mean only for completeness and
where in contrast to Sec. III A the functions � and ψ j have
compact forms, reading � = −ψ3, ψ1 = 4〈σz〉g2,

ψ2 = 8�2 − 2(2 − �2)γ

(2 + �2)2
, ψ3 = 8�(γ + 2 − �2)

(2 + �2)2
.

(17)

Finally, the convolutions C j are as defined in Eq. (8) and the
integration kernels read

K1(�) = 1

(2 + �2)2
, K2(�) = κ2 + γ�2

(2 + �2)2
,

K3(�) = �
2 + �2 + (κ2 − γ 2)/8

(2 + �2)2
. (18)

We now turn to discuss and compare our findings of
Secs. III A and III B.

C. Discussion

The expressions (7) and (16) are two of the main analyti-
cal results of this paper. They describe the noise corrections
to the long-time transmission probability for diagonalizable
and nondiagonalizable system matrices L, respectively. A few
remarks applying to both results are in order. (i) While the
transmission probability for a single noise realization depends
on time, this time dependence vanishes upon averaging over
many measurements. Thus, the averaged transmission proba-
bility resembles a steady state. (ii) In contrast to the transient
transmission discussed in Ref. [48], the signature of the noise
is washed out at high temperatures, 〈σz〉t→∞ → 0, i.e., when
the thermal energy strongly exceeds the qubit splitting. (iii)
On the other hand, in contrast to the transient signal, prepa-
ration of a coherent superposition with 〈σ−〉t=0 = 0 as an
initial state is not required here. (iv) The assumption that
the random process is weak-sense stationary and the condi-
tion δXmax �  are the only restrictions on the noise in this
section. We note that fluctuating level separations governed
by nonstationary random processes can be used to model
out-of-equilibrium behavior, and such systems have been in-
vestigated in Refs. [56,57]. However, in this case it is not
possible to write the averaged transmission probability as a
sum of convolutions containing the power spectral density,

and the main aim of this paper, the general characterization
of spectral noise features, cannot be achieved in the present
formulation. Still, the results obtained for the transmission are
general in the sense that we do not have to make any assump-
tions on the form of the noise apart from the requirement
that the Fourier transform of the correlator, i.e., the spectral
density must exist. In particular, we do not have to make the
Gaussian approximation. This can be advantageous since the
assumption that the random variable is normally distributed
can be violated for noise types relevant to quantum informa-
tion processing systems, as in the case of 1/ f noise [58] or for
qubits perturbed by a single charge fluctuator [59]. One should
note, however, that the underlying random process may not be
characterized completely by the spectral density S if the Gaus-
sian approximation is not valid, and higher-order polyspectra
must be taken into account. (v) The functional form of the
second-order correction terms is a sum of convolutions of the
spectral density with an integration kernel. By measuring any
of these convolutions, one may use the convolution theorem to
extract the power spectral density S. In Sec. III D we elaborate
on this scheme.

To illustrate the procedure and the validity of our ex-
pressions, we consider quasistatic noise, i.e., noise which is
constant within one measurement but fluctuates between mea-
surements and appears, e.g., in spin qubits coupled to the host
nuclear spin bath in semiconductors [60]. This choice does not
restrict our general analysis and is made solely to facilitate
the numerical study. The noise autocorrelator for quasistatic
noise is constant and as a result one has S(ω) = 2πδX 2

rmsδ(ω),
where δXrms =

√
〈〈δX 2〉〉 is the root mean square of the noise

and δ(ω) is the Dirac-delta distribution. We remark that in this
case one may alternatively solve the Langevin equation for a
single measurement exactly, and in the long-time limit one
finds A0(�q) → A0(�q + λδX ), with A0 as given in (5). To
average the transmission probability, one can expand the ex-
pression in orders of λδX/, and we find that both approaches
agree. A comparison between the numerical results obtained
by averaging over 103 solutions to the exact Langevin equa-
tions allowing for up to 12 photons in the resonator and the
analytical results [Eqs. (7) and (16)] is displayed in Fig. 2.

The figure shows the dependence of the normalized aver-
aged long-time transmission probability on the experimentally
relevant parameters ωp, ωq, and T . As can be seen from
Fig. 2(a), the fingerprints of the noise are most prominent
along the resonance line �q = 0, i.e., when the probe fre-
quency matches the qubit frequency, a direct consequence
of the common prefactor of the correction terms in Eqs. (7)
and (16). We generally find excellent agreement between our
analytical expressions and numerical results [Fig. 2(b)]. In
Fig. 2(c) we show the transmission as a function of temper-
ature and the probe frequency at the qubit-cavity resonance
δ0 = 0. At high temperatures ωqT � 1, the noise features
are washed out, a common feature of all long-time noise
corrections to the averaged transmission probability (see also
Fig. 4 in Sec. IV) and in contrast to the transient case [48].
In Fig. 2(d) we compare the analytical and numerical re-
sults at the critical parameter settings δ0 = 0 and (κ − γ )2 =
−16g2〈σz〉, where the system matrix becomes nondiagonal-
izable, and we find excellent agreement also in this case.
Finally, Fig. 2(e) shows the transmissions in a region around
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FIG. 2. Normalized averaged long-time transmission probability. Noise corrections are visible whenever 〈〈|A|2〉〉/|A0|2 = 1. (a) Plot of
〈〈|A|2〉〉/|A0|2 as a function of the qubit frequency ωq and the probe frequency ωp. The effect of the noise is most pronounced at the qubit-probe
resonance ωq = ωp. (b) Line cuts at different detunings as indicated by the dashed lines in (a). Analytical results (solid lines) are drawn
according to Eq. (7), while the numerical results are obtained by averaging over 103 solutions of the Lindblad master equation that corresponds
to the exact Langevin equations. We include normally distributed quasistatic noise with zero mean and standard deviation σ = δXrms and
allow for up to 12 photons in the cavity. (c) Temperature dependence of the averaged transmission probability. At high temperatures the noise
corrections are washed out. (d) Plot of 〈〈|A|2〉〉/|A0|2 at the critical parameter settings � = 0, i.e., κc = γ ± 4g

√−〈σz〉 for κ ≷ γ . Analytical
results (solid lines) are drawn according to Eq. (16), while the numerical results (squares) are obtained as in (b). (e) Comparison between
the cases of a diagonalizable and nondiagonalizable system matrix L. We find that the transmissions for κ = κc smoothly transition to the
transmission at κ = κc (dashed line). The parameters are γ t = 103, λδXrms = 10−3ωc, g = 0.01ωc, γ1 = 0.01ωc, γϕ = 0.005ωc, and κint = 0
and (a), (b), (d), and (e) ωq/T = 10, (a)–(c) κ = 0.01ωc, and (c)–(e) δ0 = 0.

the critical parameter settings. The two distinct solutions from
Secs. III A and III B transition into each other smoothly, and
this statement is proven in Appendix C. Hence, the critical
point in the parameter space is only of mathematical nature
and does not possess any distinct physical properties in the
long-time solution. Instead, the critical behavior is expected
to be present in the transient curve, the investigation of which
is beyond the scope of this paper. Still, the results of Sec. III B
are valuable as they represent a simple special case in which
the reported results can be cast in clear and relatively simple
expressions.

D. Extracting noise characteristics

In Secs. III A and III B we demonstrated that the averaged
long-time transmission probability receives second-order
noise corrections in the form of convolutions of the power
spectral density with an integration kernel. The aim of this
section is to investigate how the power spectral density can
be extracted from these measurable convolutions and how
experiments should be designed in terms of the parameter
settings to simplify the procedure.

Given the existence of the Fourier transforms of the func-
tions S and Kj , a convolution of the form C j (�) = (S �

Kj )(�) as displayed in Eq. (8) may be formally inverted by
using the convolution theorem. Let

F̃ (τ ) = 1

2π

∫ ∞

−∞
F (�)e−i�τ d� (19)

denote the Fourier transform of a given function F (�) with
respect to the conjugate variable τ . The convolution theorem
then states C̃ j (τ ) = S̃(τ )K̃j (τ ) and hence one may recover the
power spectral density at the frequency � by returning to the
frequency domain with the Fourier backtransform,

S(ω) =
∫ ∞

−∞
C̃ j (τ )K̃−1

j (τ )eiωτ dτ. (20)

The Fourier transforms K̃j (τ ) of the integration kernels ap-
pearing in Eq. (9) of Sec. III A and Eq. (18) of Sec. III B exist
and may be computed explicitly using the residue theorem
as shown in Appendix F. As a result, the spectral density
can be obtained from (20) once the convolutions C j (�) with
� = ωc − ωp − δ0/2 have been extracted from experiment.
Since the probe frequency ωp and the qubit-cavity detuning
δ0 are tunable control parameters in transmission experiments,
one may record C j (�) by sweeping one of these parameters.
Note, however, that in order to compute the Fourier transform
C̃ j (τ ), the range of � must be sufficiently large to guarantee a
predetermined degree of accuracy.

It is clear that, given Eq. (20) and our knowledge of the
kernels Kj and their Fourier transforms, the extraction of
noise characteristics boils down to extracting the convolu-
tions C j as a function of �. The expression for the averaged
transmission probability is rather complicated and the ex-
perimental extraction of the convolutions is a challenging
task. Some special cases can simplify the expressions for the
functions ψ j (see Appendix E): If κ = γ then the real part
of � vanishes, Re(�) = 0. The same is true for δ0 = 0 and
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(κ − γ )2 < −16〈σz〉g2. On the other hand, when δ0 = 0 and
(κ − γ )2 > −16〈σz〉g2, the imaginary part of � vanishes,
Im(�) = 0. In this case the number of convolutions in the
noise corrections to the transmission can be reduced from
five to four, as was shown in Sec. III A. Note that at δ0 = 0
one can still vary � by changing the probe frequency ωp. In
general, when either Re(�) = 0 or Im(�) = 0, the expres-
sions simplify considerably, the simplest case being Re(�) =
Im(�) = 0 as discussed in Sec. III B, in which the number of
convolutions is reduced from five to three. To further simplify
matters, one may note that |ψ1C1|, |ψ2C2| � |ψ3C3| for all
� except near the resonance at � = 0. Outside this narrow
region, ψ3C3(�) can to a good approximation be extracted
directly from the measured transmission.

When � = 0, it would be elegant to extract the convolu-
tions C j by recording for every value of � the sum Mi ≡
M(ξi ) = ∑N

j=1 ψ j (ξi)C j (ξi ) appearing in Eq. (7) at N ∈ {4, 5}
different parameter settings ξi and solve the system of linear
equations

Mi =
N∑

j=1

ψi jC j, ψi j ≡ ψ j (ξi ), i ∈ {1, . . . , N}, (21)

for C j . Specifically, the parameter settings ξi are sets of given
values for the experimentally relevant control parameters ωq,
ωp, κ , γ , and g on which the functions ψ j and the convolutions
C j depend. There are two requirements on the set of distinct
parameter configurations {ξi} for the extraction to be possible.
(i) First, it must be chosen such that the convolutions are un-
changed, i.e., C j (ξk ) = C j (ξl ) for all j, k, l ∈ {1, . . . , N}. (ii)
Second, the parameters must be chosen such that the matrix
ψi j is invertible, i.e., det ψ = 0. Unfortunately, it is impossi-
ble to satisfy both these conditions given the dependence of
the functions ψ j and C j on the system parameters. To see this,
note that the convolutions (9) can only be kept constant as
required in (i) by varying the parameters such that � is con-
stant. However, in this case the functions ψ j will be at most
quadratic in the control parameter, e.g., in the detuning δ0.
The equation

∑
j α jψ j = 0, with ψ j = (ψ j (ξ1), . . . , ψ j (ξN )),

then only imposes three constraints on the N > 3 constants
α j , resulting in an underdetermined homogeneous system of
linear equations which always has a nontrivial solution ac-
cording to the Rouché-Capelli theorem. Hence, the vectors
ψ j are linearly dependent and the determinant det ψ vanishes,
violating condition (ii).

As a consequence, one must resort to fitting the data to
the expression (7). One can record the transmission at fixed
� as a function of δ0, choosing the parameters such that the
convolutions are constant when δ0 is varied. This corresponds
to condition (i) above and is possible if in addition to the
independent control over � and δ0 the qubit-photon coupling
strength g is tunable as well (Appendix G 1). One may then fit
the data to our expressions using the C j as fit parameters and
repeat this for many values of �. A schematic of the procedure
is shown in Fig. 3.

While the approaches of extracting information on the
noise affecting the qubit detailed in this section are labori-
ous and challenging experimentally, this does not come as a
surprise. The goal is to record an entire function, the power

FIG. 3. Schematic of the procedure to determine the power spec-
tral density S. In the first phase, the averaged squared transmission
is recorded for fixed � as a function of the detuning δ0 to extract
the convolutions C j . After repeating this for many values of �,
the second phase is initiated. The Fourier transform of any of the
convolutions is computed and finally the spectral density by applying
the convolution theorem.

spectral density S, over the whole positive real axis or at least
over a large frequency domain. Obtaining such a vast amount
of information will always be demanding. Nevertheless, the
schemes presented in this section are expected to be realizable
in state-of-the-art experiments.

IV. PERTURBATION THEORY IN
THE QUBIT-PHOTON COUPLING

Finally, we work in the regime |g| � max{|δ0|, |κ − γ |} in
which one may treat the noise exactly. We now extend the
results in Ref. [48] by studying the long-time limit which is
expected to be more easily accessible in experiment. After
calculating the general long-time transmission in Sec. IV A,
we discuss the analytically solvable case of white noise in
Sec. IV B and propose a way of extracting the power spectral
density S for arbitrary Gaussian noise in Sec. IV C.

A. Long-time transmission

By treating ε ≡ g/max{|δ0|, |κ − γ |} as a small perturba-
tion parameter, the system of differential equations (1) can be
decoupled and solved within perturbation theory. To leading
order one has at long times t 
 max{1/κ, 1/γ },

A(t )

A∞
= 1 + 〈σz〉g2N (t ), (22)

where A∞ = −√
κ1κ2/(i�c + κ/2) is the long-time transmis-

sion through an empty cavity and where we introduce the
noise integral

N (t ) = e−i�ct−κt/2
∫ t

0
dt2ei(�c−�q )t2+(κ−γ )t2/2

×
∫ t2

0
dt1ei�qt1+γ t1/2e−iλX (t1,t2 ), (23)

022601-7



PHILIPP M. MUTTER AND GUIDO BURKARD PHYSICAL REVIEW A 107, 022601 (2023)

containing the stochastic phase in the interval [t1, t2],

X (t1, t2) = X (t2) − X (t1) =
∫ t2

t1

δX (s)ds. (24)

It is shown in Appendix H that the results for the transmission
in Eq. (4) of Sec. III and Eq. (22) of this section agree in the
appropriate limit, i.e., to second order in both δX and g. In
order to obtain a measurable quantity, we proceed to square
the transmission amplitude (22) and average over many noise
realizations. Since the term in the transmission linear in g
vanishes at long times, one has 〈〈|A(t )|2〉〉 = 〈〈|A(t )|〉〉2 up to
and including quadratic order in g (Appendix D) and we find

〈〈|A(t )|〉〉 = |A∞|
√

1 + 2〈σz〉g2Re〈〈N (t )〉〉, (25)

where 〈〈N (t )〉〉 is the averaged noise integral (ANI)

〈〈N (t )〉〉 = e−i�ct−κt/2
∫ t

0
dt2ei(�c−�q )t2+(κ−γ )t2/2

×
∫ t2

0
dt1ei�qt1+γ t1/2〈〈e−iλX (t1,t2 )〉〉. (26)

One may most clearly see the noise signatures by considering
the normalized deviation from the empty cavity transmission
probability,

δ〈〈|A|2〉〉
|A∞|2 = 〈〈|A|2〉〉 − |A∞|2

|A∞|2 = 2〈σz〉g2Re〈〈N (t )〉〉. (27)

In contrast to the transient transmission, the effect of the noise
on the long-time transmission does not depend on the initial
qubit state and is washed out at high temperatures, a feature
we also observed in Sec. III. If the integration time exceeds
the time in which the noise correlations decay, the central-
limit theorem predicts that the stochastic phase X (t1, t2) will
be normally distributed at long times and we find

〈〈e−iλX (t1,t2 )〉〉 = e−λ2〈〈X 2(t1,t2 )〉〉/2

=exp

(
−λ2

2π

∫ ∞

0

sin2[ω(t2 − t1)/2]

(ω/2)2
S(ω)dω

)
.

(28)

Equation (28) is an obvious variant of the well-known ex-
pression describing the averaged qubit coherence 〈〈〈σ−(t )〉〉〉
[10,11,13,61] with the integration time t being replaced by the
time difference �t = t2 − t1.

B. White noise

White noise is characterized by a constant spectral density
S(ω) = S0 with noise amplitude S0. In this case an exact solu-
tion for the real part of the ANI (26) appearing in Eq. (25) may
be obtained. For long times t 
 max{1/κ, 1/γ } one finds

Re〈〈N 〉〉w = 4κ (γ + λ2S0) − 16�c�q(
4�2

c + κ2
)[

4�2
q + (γ + λ2S0)2

] . (29)

At S0 = 0, Eq. (29) reduces to the expression for the noise-
free case and the squared transmission agrees with the
expansion of the exact noise-free steady-state solution to sec-
ond order in g. The Markovian white noise only renormalizes
the decoherence rate from the Lindblad formalism, which is

FIG. 4. Normalized deviation from the empty cavity transmis-
sion probability δ〈〈|A|2〉〉/|A∞|2. Here δ〈〈|A|2〉〉/|A∞|2 is plotted as a
function of the cavity-probe detuning �c and temperature T (a) in the
noise-free case and (b) in the presence of white noise of amplitude
S0 = 0.1δ0. The noise affects the transmission features at the qubit
frequency �c = δ0, but not at the cavity frequency �c = 0. At high
temperatures T � ωq, the noise signatures are washed out. (c) Line
cuts at T = 0.5δ0 as indicated by the horizontal lines in (a) and
(b). The parameters are g = κ = 0.05δ0, κint = 0, γ1 = 0.05δ0,
γϕ = 0.025δ0, and λ = 0.9.

also a Markovian theory, γ → γ + λ2S0. As in Sec. III we
note that while the transmission in a single-shot measure-
ment will be a function of time, the averaged transmission is
time independent, thus resembling a steady state. In Fig. 4
we compare the normalized deviation from the empty cavity
transmission probability in the presence of white noise to the
noise-free case. As can be seen from the figure, the noise
washes out the transmission features around the qubit-probe
resonance ωp = ωq, while it does not affect the features at
the cavity-probe resonance ωp = ωc, a consequence of the
noise only affecting the two-level system. In the same
figure we show that the noise traces disappear at high tem-
peratures. This is a general observation in the long-time
transmission and in stark contrast to the transient transmis-
sion, which to leading order is temperature independent in
signal strength.

C. Extracting noise characteristics

For generic noise types the ANI cannot be evaluated ana-
lytically. It is possible, however, to extract information about
the power spectral density S for arbitrary fluctuations if one
works in the regime |g| � |κ − γ |. Assume that the real part
of the ANI has been recorded as a function of the noise
coupling strength λ (in a semiconductor charge qubit λ can
be controlled by the detuning) and the qubit-probe detuning
�q by transmission measurements from (27). One may then
consider the second derivative of the ANI in the long-time
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limit with e−γ t , e−κt � 1,

D2
N := −d2Re〈〈N 〉〉

dλ2

∣∣∣∣
λ=0

= 2

π
Re

(∫ ∞

0

S(ω)

I (ω)
dω

)
,

I (ω) =
(

i�c + κ

2

)(
i�q + γ

2

)[(
i�q + γ

2

)2

+ ω2

]
.

(30)

Note that one may obtain the second derivative by record-
ing Re〈〈N 〉〉 for three values of λ close to zero and fitting
a parabola. Our aim in the following is to manipulate the
expression (30) such that noise characteristics can be extracted
from the quantity D2

N . By noting that(
i�q + γ

2

)2

+ ω2 =
∏
±

(
i(�q ± ω) + γ

2

)
, (31)

employing a partial fraction decomposition, and using the
symmetry of the spectral density for classical fluctuations in
ω, the expression (30) may be brought into the form

D2
N (�q) =

[
κ
(
γ 2 − 4�2

q

) − 8γ�q�c
]
Re[C(�q)](

κ2 + 4�2
c

)(
γ 2 + 4�2

q

)2

+
[
2�c

(
γ 2 − 4�2

q

) − 4κ�qγ ]Im[C(�q)](
κ2 + 4�2

c

)(
γ 2 + 4�2

q

)2 .

(32)

Here C(�q) = (S � K )(�q) is a convolution as defined in
Eq. (8) of the power spectral density with the kernel K (�q) =
1/(i�q + γ /2). The real and imaginary parts of C(�q) can
be extracted by recording D2

N at fixed �q but for two distinct
values of �c (this can be achieved by varying both ωp and
ωq) and solving the resulting system of linear equations (Ap-
pendix G 2). The Fourier transform of the kernel is found
analytically by applying the residue theorem

K̃ (τ ) = 1

2π

∫ ∞

−∞
K (�q)e−i�qτ d�q =

{
eγ τ/2, τ < 0
0, τ > 0.

(33)

Here K̃ (τ ) is discontinuous at τ = 0 because K (�q) is not
absolutely integrable. However, it is square integrable, and
so the Fourier transform exists. Finally, we may once again
use the convolution theorem to solve for the power spectral
density

S(ω) = 2
∫ 0

−∞
C̃(τ ) cos(ωτ )e−γ τ/2dτ, (34)

where the inherited symmetry of S̃(τ ) allows us to integrate
only over negative τ , avoiding a zero denominator when in-
serting the expression in Eq. (33). Equation (34) is the main
result of this section. It states that it is possible to obtain the
power spectral density for arbitrary noise from transmission
measurements in the long-time limit by determining the con-
volution C(�q) via (32) and calculating its Fourier transform
C̃(τ ). The range of the qubit-probe detuning �q sets the accu-
racy with which C̃(τ ) may be computed.

It ought to be noted that the quantity (30) which forms
the basis of our noise extraction scheme in this section re-
quires knowledge of the ANI close to λ = 0, a point at
which corrections due to a fluctuating qubit-photon coupling

g parametrized by the coupling strength λ′ may become im-
portant, for instance, in a charge qubit at low detunings (see
Sec. II). In this case, the result in Eq. (34) is only valid when
the fluctuations in g are absent or weak at λ ∼ 0. On the other
hand, when λ is tuned via the tunnel coupling tc, the condition
tc 
 ε needed to obtain values of λ close to zero yields the
scaling λ′/λ ∼ 1/tc and hence guarantees λ′/λ � 1. In this
case, spectral features can be inferred from the curvature of
the real part of the ANI.

V. CONCLUSION

In summary, we have developed a comprehensive theory
describing the effect of dynamical noise affecting a gen-
eral two-level system placed in a cavity on the long-time
transmission. By solving the quantum Langevin equations in
time-dependent perturbation theory, we demonstrated that the
averaged long-time transmission probability receives noise
corrections and that these corrections may be written as sums
over convolutions containing the noise power spectral density
S. We inverted these relations using the convolution theorem
and obtained integral expressions for S containing only mea-
surable quantities. Within our model we were able to treat
random fluctuations that lead to corrections in the long-time
transmission of a few percent of the well-known steady-state
transmission through a noise-free system. This effect is ex-
pected to be large enough to be resolvable in state-of-the-art
experiments and hence our results suggest the possibility of
extracting noise characteristics from long-time transmission
measurements.

Future research could explore the effect of gain in the
cavity, e.g., pumping schemes realized by pulses applied to the
system via the input field 〈bin(t )〉. While such modifications
complicate the experimental setup, they have the potential
of revealing noise characteristics in cleaner functional forms.
Additionally, to have a more complete description of the sys-
tem and to enlarge the regime of validity of the model, one
may take into account a fluctuating qubit-photon coupling
constant g. Finally, it would be worthwhile to investigate the
fingerprints of non-Gaussian noise on the cavity transmis-
sion and devise possible schemes to characterize the noise
polyspectra.
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APPENDIX A: PERTURBATION THEORY FOR
DIFFERENTIAL EQUATIONS AND THE TIME

DEPENDENCE OF 〈σz〉
1. General perturbation theory

Consider a general system of inhomogeneous coupled dif-
ferential equations in matrix form

Dt x(t ) + Lx(t ) = b(t ), (A1)
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where Dt is an unspecified operator containing derivatives
with respect to the independent variable t , L is a square
matrix, and b(t ) is an inhomogeneity. The goal is to solve
for the vector of dependent variables x within perturbation
theory. To this end, assume that we may separate the matrix
L into a part L, which we may diagonalize (or bring into
Jordan normal form), and a part δL, which is of the order
of a small perturbation parameter ε � 1, L = L + δL. With
the similarity transformation L̄ = V LV −1, where L̄ is L in its
(generalized) eigenbasis, we obtain, for V = V (t ),

Dt x̄(t ) + L̄x̄(t ) + V δLV −1x̄(t ) = b(t ), (A2)

where x̄ = V x and b = V b. The solution to the transformed
equation may be written as a perturbation series

x̄(t ) =
∞∑

n=0

x̄n(t ), (A3)

where x̄n is of the order n in the small parameter ε. Substitut-
ing the ansatz (A3) into Eq. (A2) and collecting terms of the
same order in ε, we obtain tractable equations for x̄n(t ),

Dt x̄0(t ) + L̄x̄0(t ) = b(t ),

Dt x̄n(t ) + L̄x̄n(t ) = −V δLV −1x̄n−1(t ), n � 1. (A4)

These equations may now be solved to the desired order in ε.
If the matrix L is diagonalizable, the differential equations at
each order decouple, while they are only partially decoupled if
L can only be brought into Jordan normal form. The solution
to the original equation (A1) is given by

x(t ) = V −1
N∑

n=0

x̄n(t ) + O(εN+1), (A5)

where N is the order of truncation. In the main text we used
this approach to solve the Langevin equations (1) for the ex-
pectation value 〈a(t )〉, expanding in the parameters ε = | f±|
[Eq. (6), Sec. IV] and ε = |g|/max{|δ0|, |κ − γ |} (Sec. IV)
with N = 2.

2. Time dependence of 〈σz〉
At this point one may consider the effect of a time de-

pendence of 〈σz〉 in the Langevin equations (1). Writing
〈σz〉 = 〈σ∞

z 〉 + ξ (t )e−γ̄ t with the steady-state solution 〈σ∞
z 〉

(which is assumed to be a thermal distribution in the main
text), a characteristic decay rate γ̄ > 0, and a function ξ (t )
bounded in t , we obtain the Langevin equations (1) plus an
additional time-dependent matrix term ∼ �(t )e−γ̄ t . Since ξ (t )
is bounded in t , so is the associated matrix �(t ). In our per-
turbative approach, the time dependence of 〈σz〉 results in an
additional term in the nth-order equation for x̄ = V (〈σ−〉, 〈a〉)
according to Eq. (A4) above,

d x̄n(t )

dt
+ L̄x̄n(t )

= −V δLV −1x̄n−1(t ) − e−γ̄ tV �(t )V −1x̄n−1(t ), (A6)

where L̄ = V LV −1 is the time-independent system matrix in
its (generalized) eigenbasis. The general solution is

x̄n(t ) = e−L̄t

(
x̄0(0) −

∫ t

0
eL̄t ′

V δL(t ′)V −1x̄n−1(t ′)dt ′

−
∫ t

0
eL̄t ′

e−γ̄ t ′
V �(t ′)V −1x̄n−1(t ′)dt ′

)
. (A7)

We will now show that the additional part due to the time
dependence of 〈σz〉,

ηn := −e−L̄t
∫ t

0
eL̄t ′

e−γ̄ t ′
V �(t ′)V −1x̄n−1(t ′)dt ′, (A8)

vanishes in the long-time limit at all orders n and hence
exactly in the full long-time solution. Writing ηn = (η1

n, η
2
n ),

L̄ = diag(l1, l2) with Re(l1,2) > 0, and defining zn(t ) =
V �(t )V −1x̄n−1(t ) with zn = (z1

n, z2
n ), we have, for the com-

ponents i ∈ {1, 2},

ηi
n = −e−lit

∫ t

0
zi

n(t ′)e(li−γ̄ )t ′
dt ′. (A9)

The functions |zi
n(t )| are bounded in t since all their con-

stituents are, and we have

0 � |ηi
n| � |zi

n,max|e−Re(li )t
∫ t

0
e[Re(li )−γ̄ ]t ′

dt ′

=
{

|zi
n,max| e−γ̄ t −e−Re(li )t

Re(li )−γ̄
, γ̄ = Re(li)

|zi
n,max|te−γ̄ t , γ̄ = Re(li),

(A10)

where |zi
n,max| = max{|zi

n(t ′)| : t ′ ∈ [0, t]}. Since Re(li), γ̄ >

0, the rightmost expression vanishes and ηi
n → 0 in the long-

time limit at all orders n. Hence, it is sufficient to consider the
steady-state value of 〈σz〉 even at the level of the differential
equations (1).

APPENDIX B: LONG-TIME LIMIT

To simplify the calculations when solving the quantum
Langevin equations to second order in the noise, we note that
since the absolute value squared | · |2 is a continuous function,
we have

lim
t→τ

|A(t )|2 = | lim
t→τ

A(t )|2 (B1)

if the limit limt→τ A(t ) exists. It is therefore possible to take
the long-time limit already in the expression for the transmis-
sion amplitude. When taking the limit, we use the estimate

0 � I (1)(α, β )

≡
∣∣∣∣e−αt

∫ t

0
δX (t ′)eβt ′

dt ′
∣∣∣∣

� |e−αt |
∫ t

0
|δX (t ′)||eβt ′ |dt ′

� |e−αt |
∫ t

0
|δXmax||eβt ′ |dt ′, (B2)

where δXmax < ∞ is the maximal value taken by the noise in
the interval [0, t] under consideration and the real part of α is
positive. When the real part of β is zero, the rightmost expres-
sion is zero for t → ∞ and hence the original integral I (1).
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Writing αR and βR for the real parts of α and β, respectively,
we find, for βR = 0,

0 � I (1)(α, β ) � |δXmax|e−αRt
∫ t

0
eβRt ′

dt ′

= |δXmax|
βR

(e(βR−αR )t − e−αRt ). (B3)

At t → ∞ the rightmost expression, and hence the integral
I (1), vanishes if βR < αR.

A similar estimate holds for the second-order noise integral
0 � I (2)(α, β, γ )

≡
∣∣∣∣∣e−αt

∫ t

0
dt ′δX (t ′)eβt ′

∫ t ′

0
dt ′′δX (t ′′)eγ t ′′

∣∣∣∣∣
� |δXmax|2e−αRt

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t2

2 , βR = γR = 0
eγRt −1

γ 2
R

− t
γR

, βR = 0, γR = 0
teβRt

βR
− eβRt −1

β2
R

, βR = 0, γR = 0
e(βR+γR )t −1
γR (βR+γR ) − eβRt

βRγR
, βR, γR = 0,

(B4)

where xR denotes the real part of the number x ∈ {α, β, γ }. In
the long-time limit we have, for αR > 0,

0 � I (2)(α, β, γ ) � |δXmax|2

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, βR = γR = 0
e(γR−αR )t

γ 2
R

, βR = 0, γR = 0

e(βR−αR )t
(

t
βR

− 1
β2

R

)
, βR = 0, γR = 0

e(βR+γR−αR )t

γR (βR+γR ) − e(βR−αR )t

βRγR
, βR, γR = 0.

(B5)

The estimates (B3) and (B5) allow us to determine the terms
in the expansion of the transmission amplitude A that are
nonvanishing in the long-time limit.

APPENDIX C: LIMIT � → 0

In this Appendix we show that the transmission obtained
in the case of a diagonalizable system matrix L (� = 0,
Sec. III A) transitions smoothly into the transmission in
the case of a nondiagonalizable system matrix L (� = 0,
Sec. III B). By expanding the exponentials exp[(i� +  ±
�)t] in orders of �t , we find, for the noise integrals in Eq. (5),

f+ − f−

= 2�λe−lt
∫ t

0
dt1δX (t1)elt1 (t1 − t ) + O(�2),∑

±
±( f±± − f∓±)

= 4�λ2e−lt
∫ t

0
dt1δX (t1)

∫ t1

0
δX (t2)elt2 (t1 − t ) + O(�2),∑

±
( f±± − f∓±)

= 4�2λ2e−lt
∫ t

0
dt1δX (t1)

×
∫ t1

0
δX (t2)elt2

(
t1t2 + t1t − tt2 − t2

1

) + O(�3), (C1)

where l = i� + . The powers of � in these expressions
cancel the negative powers of � in the transmission amplitude
(4), and in the limit � → 0 (this requires δ0 = 0) we find

A(t )

A0
= 1 − 〈σz〉g2

i� + γ /2

(
iĨ1(t ) + Ĩ2(t ) + κ − γ

4
Ĩ3(t )

)
, (C2)

where

Ĩ1(t ) = λe−lt
∫ t

0
dt1δX (t1)elt1 (t − t1),

Ĩ2(t ) = λ2e−lt
∫ t

0
dt1δX (t1)

∫ t1

0
δX (t2)elt2 (t − t1),

Ĩ3(t ) = λ2e−lt
∫ t

0
dt1δX (t1)

×
∫ t1

0
δX (t2)elt2

(
t1t2 + t1t − t2t − t2

1

)
. (C3)

Hence, the limit � = 0 exists. Moreover, we can easily see
that Eq. (C2) is precisely the transmission (13) obtained in
Sec. III B if Ĩ1(t ) = I1(t ), Ĩ2(t ) = I2(t ), and Ĩ3(t ) = I3(t ) with
I1,2,3 as defined in Eq. (14). The latter three equalities hold true
for any fluctuations δX (t ) that are of exponential order in t as
can be shown by writing δX (t ) in its Laplace representation
in Eqs. (14) and (C3) and integrating the resulting expression
in Eq. (C3) by parts.

APPENDIX D: MEAN AND VARIANCE
OF THE TRANSMISSION

1. Perturbation series in the noise

In general, the normalized transmission has the form of

a perturbation series |A|/|A0| =
√

1 + ∑∞
n=1 An(δX ), where

the terms An(δX ) are of order n in the noise δX and |A0| is
the noise-free transmission. We find for the first and second
noncentral moments, respectively,

〈〈|A|〉〉
|A0| = 1 + 1

2
〈〈A1(δX )〉〉 + 1

2
〈〈A2(δX )〉〉

− 1

8
〈〈A1(δX )2〉〉 + O(δX 3), (D1)

〈〈|A|2〉〉
|A0|2 = 1 + 〈〈A1(δX )〉〉 + 〈〈A2(δX )〉〉 + O(δX 3). (D2)

Consequently, the variance reads

Var(|A|)
|A0|2 = 〈〈|A|2〉〉 − 〈〈|A|〉〉2

|A0|2

= 1

4
[〈〈A1(δX )2〉〉 − 〈〈A1(δX )〉〉2] + O(δX 3).

(D3)

The second term vanishes in the case of zero-mean noise,
while the first term is nonzero in general. For the normalized
transmission amplitude in Eq. (4) of Sec. III A we have

A1(δX ) = Re

(
i〈σz〉g2

2�(i�q + γ /2)
[ f+(t ) − f−(t )]

)
(D4)
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and for the normalized transmission amplitude in Eq. (13) of
Sec. III B we find

A1(δX ) = −Re

( −〈σz〉g2

i� + γ /2
I1(t )

)
. (D5)

Since we have to square the real part of the noise integrals
before averaging when computing the mean or variance, it is
not possible to rewrite these quantities in terms of convolu-
tions. As a result, the figure of merit in Sec. III is chosen to be
the second noncentral moment, i.e., the averaged transmission
probability 〈〈|A|2〉〉 = 〈〈|A|〉〉2 + Var(|A|).

2. Perturbation series in the qubit-photon coupling

In the dispersive regime discussed in Sec. IV the transmis-
sion probability is a perturbation series in the small parameter

ε = g/max{|δ0|, |κ − γ |}, |A| = ∑∞
n=0 εnAn. As shown in the

Supplemental Material of Ref. [48], the variance reads

Var(|A|) = ε2(〈〈A2
1〉〉 − 〈〈A1〉〉2) + O(ε3) (D6)

if A0 is not affected by noise. This is true in Sec. IV, where
A0 ≡ A∞ is the noise-free transmission through an empty
cavity. In the long-time limit the term linear in g vanishes
A1 → 0. As a consequence, the variance of |A| vanishes up
to quadratic order in ε and hence 〈〈|A|2〉〉 = 〈〈|A|〉〉2 + O(ε3).

APPENDIX E: EXPLICIT FORM OF
THE FUNCTIONS � AND ψ j

Using the notation �1 = Re(�) and �2 = Im(�), the
function � appearing in Eq. (7) reads

� = 4�2γ + 8�1�q

|�|2
2�2(�1�2 − �) − �1

(
2 − �2 + �2

2 − �2
1

)
(
2 − �2 + �2

2 − �2
1

)2 + 4
(
� − �1�2

)2

+ 4�1γ − 8�2�q

|�|2
�2

(
2 − �2 + �2

2 − �2
1

) + 2�1(�1�2 − �)(
2 − �2 + �2

2 − �2
1

)2 + 4(� − �1�2)2
. (E1)

Moreover, the set of functions {ψ j : j ∈ {1, 2, 3, 4, 5}} ap-
pearing in Eq. (7) has elements of the form

ψ1 = 4〈σz〉g2,

ψ2/3 = ν± f± + μ±g±
2

, (E2)

ψ4/5 = ν±h± + μ±k±
2

,

where the positive (negative) sign belongs to the even (odd)
index in the latter two equations,

ν± =
(

�2
1 − �2

2

|�|4
γ

2
− 2�q

�1�2

|�|4
)

(γ − κ ± 4�1)

−
(

�1�2

|�|4 γ + �q
�2

1 − �2
2

|�|4
)

(2δ0 ∓ 4�2),

μ± =
(

�2
1 − �2

2

|�|4
γ

2
− 2�q

�1�2

|�|4
)

(2δ0 ∓ 4�2)

+
(

�1�2

|�|4 γ + �q
�2

1 − �2
2

|�|4
)

(γ − κ ± 4�1) (E3)

and

f± = ( ± �1)2

( ± �1)2 + (� ± �2)2

− ( ± �1)( ∓ �1)

( ∓ �1)2 + (� ∓ �2)2
,

h± = − � ± �2

( ± �1)2 + (� ± �2)2

+ � ∓ �2

( ∓ �1)2 + (� ∓ �2)2
,

g± = − (� ± �2)( ± �1)

( ± �1)2 + (� ± �2)2

+ (� ∓ �2)( ± �1)

( ∓ �1)2 + (� ∓ �2)2
,

k± = −  ± �1

( ± �1)2 + (� ± �2)2

+  ∓ �1

( ∓ �1)2 + (� ∓ �2)2
. (E4)

APPENDIX F: FOURIER TRANSFORMS
OF THE CONVOLUTION KERNELS

In this Appendix we display the explicit expressions
for the Fourier transforms of the convolution kernels in
Eqs. (9) and (18). These are needed to compute the noise
power spectral density from the measured convolutions by
the convolution theorem. Given a function f (�), its Fourier
transform is computed according to the convention f̃ (τ ) =
(1/2π )

∫ ∞
−∞ f (�)e−i�τ d�.

1. Diagonalizable system matrix

We first consider the kernels in Eq. (9). Since |�1| < 

the kernel K1 has two first-order poles in the upper half
plane at ±�2 + i( ∓ �1) and two first-order poles in
the lower half plane at ±�2 − i( ∓ �1). The kernels K2

and K4 have two first-order poles at −�2 ± i( + �1)
and the kernels K3 and K5 have two-first order poles at
�2 ± i( − �1). Closing the contour in the upper (lower)
half plane for τ < 0 (τ > 0), we find, by applying the
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residue theorem,

K̃1(τ ) =
⎧⎨
⎩

e−i�2τ+(−�1 )τ

8(−�1 )(�1+i�2 )(−i�2 ) − ei�2τ+(+�1 )τ

8(+�1 )(�1+i�2 )(+i�2 ) , τ < 0

e−i�2τ−(−�1 )τ

8(−�1 )(�1−i�2 )(+i�2 ) − ei�2τ−(+�1 )τ

8(+�1 )(�1−i�2 )(−i�2 ) , τ � 0,

K̃2/3(τ ) = e±i�2τ−(±�1 )|τ |

2( ± �1)
, K̃4/5(τ ) = − i

2
sgn(τ )e±i�2τ−(±�1 )|τ |, (F1)

where once again the positive (negative) sign is associated
with the even (odd) index in the latter two equations. The ex-
pressions for K̃4/5(τ ) are discontinuous at τ = 0 because the
kernels K4/5(�) are not absolutely integrable. However, the
functions are square integrable and so the Fourier transforms
exist.

2. Nondiagonalizable system matrix

Each kernel in Eq. (18) has two second-order poles at
�± = ±i. Closing the contour in the upper (lower) half
plane for τ < 0 (τ > 0), we find by again applying the residue
theorem

K̃1(τ ) =
( |τ |

2
+ 1

3

)
e−|τ |

4
,

K̃2(τ ) =
(

κ − γ

4
|τ | + 1

)
e−|τ |, (F2)

K̃3(τ ) = −i

(
κ − γ

4
τ + sgn(τ )

2

)
e−|τ |.

Note that, as was the case with the kernels K4/5 when treating a
diagonalizable system matrix above, the Fourier transform of
K3(�) is discontinuous at τ = 0 because K3 is not absolutely
integrable but exists because the kernel is square integrable.

APPENDIX G: EXTRACTING THE CONVOLUTIONS

In this Appendix we present specific schemes to extract
the convolutions from the measured transmission. We treat the
case where the analytical solution is obtained as a perturbation
series in the noise in Appendix G 1 and the case where it is
obtained as a perturbation series in the qubit-photon coupling
in Appendix G 2.

1. Perturbation series in the noise

We first present a specific scheme to extract the convolu-
tions from the measured transmission according to the results
of Sec. III under the assumption of independent control over
the parameters δ0 (via the qubit frequency ωq), ωp, and g (e.g.,
via the detuning in a semiconductor charge qubit). Working
at the point of equal decay rates κ = γ , we have Re(�) = 0
and Im(�) =

√
(δ0/2)2 − 〈σz〉g2. In the following we aim to

change the parameters such that the sum
∑

j ψ jC j appearing
in the expression for the averaged transmission probability
can be recorded as a function of the detuning δ0 while the
convolutions C j are kept constant at any given �.

The requirement that the C j are unchanged at the distinct
parameter configurations (i.e., at different δ0) can be achieved

by keeping Im(�) and � fixed, as can be seen from Eq. (9).
Further, Im(�) (�) can be kept constant by compensating the
change in δ0 by a change in g (ωp). Specifically, we have the
dependences

g2(δ0) = 4〈σz(δ0,0)〉g2
0 + δ2

0 − δ2
0,0

4〈σz(δ0)〉

= 4 tanh[(ωc − δ0,0)/2T ]g2
0 + δ2

0 − δ2
0,0

4 tanh[(ωc − δ0)/2T ]
,

ωp(δ0) = ωp,0 + δ0,0 − δ0

2
, (G1)

where δ0,0, g0, and ωp,0 are the initial parameter values.
After extracting the values of the convolution C j at a given

� by fitting the expression for the transmission probability
in Eq. (7) as a function of δ0 to the measured data, we may
change � by changing ωp,0 → ωp,1 and repeat the procedure
for as many points of � as required for computing the Fourier
transform of one of the convolutions to the desired accuracy.

2. Perturbation series in the coupling constant

Finally, we turn to the case discussed in Sec. IV, in which
the transmission is obtained as a perturbation series in the
qubit-photon coupling g, and detail how the real and imag-
inary parts of the convolution in Eq. (32) can be extracted
from the measured data. By varying both the probe frequency
ωp and the qubit frequency ωq it is possible to keep �q =
ωq − ωp (and hence the convolution C) constant while �c =
ωc − ωp is changed. Measuring the averaged transmission and
thereby the real part of the ANI for two distinct values �c,1

and �c,2, we may obtain an inhomogeneous system of linear
equations for the real and imaginary parts of the convolution
C,

(
α1(�c,1) α2(�c,1)
α1(�c,2) α2(�c,2)

)(
Re(C)
Im(C)

)
=

(
D2

N (�c,1)

D2
N (�c,2)

)
, (G2)

where D2
N (�c) = −d2Re〈〈N 〉〉/dλ2|λ=0 is the curvature of

the real part of the ANI and

α1(�c) =
[
κ
(
γ 2 − 4�2

q

) − 8γ�q�c
]

(
κ2 + 4�2

c

)(
γ 2 + 4�2

q

)2 ,

α2(�c) =
[
2�c

(
γ 2 − 4�2

q

) − 4κ�qγ
]

(
κ2 + 4�2

c

)(
γ 2 + 4�2

q

)2 . (G3)
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The system of linear equations may be solved for the real and
imaginary parts of the convolution if

det

(
α1(�c,1) α2(�c,1)
α1(�c,2) α2(�c,2)

)

= �c,1 − �c,2(
κ2 + 4�2

c,1

)(
κ2 + 4�2

c,2

)(
γ 2 + 4�2

q

)4

× 2κ[16γ 2�2
q − (

γ 2 − 4�2
q

)2] = 0. (G4)

Hence, a unique solution exists if 16γ 2�2
q−(γ 2−4�2

q)2 = 0,
which is true for all but four values of �q,

�p1,p2
q =

(
(−1)p1

2
+ (−1)p1+p2

√
2

)
γ , p1, p2 ∈ {0, 1}.

(G5)

Alternatively, we may use two distinct values of κ instead of
�c to extract the convolutions. Due to the dependence of the
functions α1,2 on the system parameters, the same analysis
holds and as before the convolution C can be extracted for all
detunings excluding the four values given in Eq. (G5).

APPENDIX H: COMPARISON OF THE TWO
PERTURBATION APPROACHES

In this Appendix we show that the transmissions obtained
in Secs. III and IV (denoted here by AδX and Ag, respectively)
agree in the appropriate limit, i.e.,

AδX (up to order g2) = Ag(up to order δX 2). (H1)

We start by expanding the transmission Ag in Eq. (22) in
orders of λδX (t ) and hence λX (t1, t2) = λ

∫ t2
t1

δX (t )dt ,
exp[−iλX (t1, t2)] = 1 − iλX (t1, t2) − λ2X (t1, t2)2/2 + · · · ,
yielding, after evaluation of the integral featuring the
zeroth-order term,

Ag = A∞

[
1 + 〈σz〉g2

(
1

qc
− iλI (1)

g (t ) − λ2

2
I (2)
g (t )

)]

+ O(δX 3), (H2)

where c = i�c + κ/2, q = i�q + γ /2, and

I (1)
g (t ) = e−ct

∫ t

0
dt1e(c−q)t1

∫ t1

0
dt2eqt2X (t1, t2), (H3a)

I (2)
g (t ) = e−ct

∫ t

0
dt1e(c−q)t1

∫ t1

0
dt2eqt2X (t1, t2)2. (H3b)

Similarly, we may expand the transmission AδX in Eq. (4) in
orders of g, again working up to second order. It is useful to
first take the limit in the quantities A0, �, and l±, yielding

A0 = A∞

(
1 + 〈σz〉g2

qc

)
,

� = c − q

2
+ 〈σz〉g2

c − q
, (H4)

l+ = c + 〈σz〉g2

c − q
, l− = q − 〈σz〉g2

c − q
.

Inserting these expressions into Eq. (4), we find

AδX = A∞

[
1 + 〈σz〉g2

(
1

qc
− iλI (1)

δX (t ) − λ2

2
I (2)
δX (t )

)]

+ O(g3), (H5)

where

I (1)
δX (t ) = 1

q(c − q)

(
e−qt

∫ t

0
dt1δX (t1)eqt1

− e−ct
∫ t

0
dt1δX (t1)ect1

)
, (H6a)

I (2)
δX (t ) = 2

q(c − q)

(
e−qt

∫ t

0
dt1δX (t1)

×
∫ t1

0
dt2δX (t2)eqt2 − e−ct

∫ t

0
dt1δX (t1)e(c−q)t1

×
∫ t1

0
dt2δX (t2)eqt2

)
. (H6b)

Comparing Eqs. (H2) and (H5), it is clear that they agree at
zeroth order in λ. Therefore, we must only show that I (1)

g =
I (1)
δX and I (2)

g = I (2)
δX to proof the claim (H1). In the following

we will show the equality at order λ1, and the tools used in
the proof can be applied to demonstrate the equality at order
λ2 in an analogous (yet more tedious) approach that we do not
show explicitly.

We proceed by rewriting I (1)
g in Eq. (H3a) using X (t1, t2) =

X (t2) − X (t1) with X (t ) = ∫ t
0 δX (s)ds and neglecting all

terms that vanish in the long-time limit,

I (1)
g (t ) = e−ct

(
1

q

∫ t

0
dt1X (t1)ect1

−
∫ t

0
dt1e(c−q)t1

∫ t1

0
dt2X (t2)eqt2

)
. (H7)

Integrating the t2-integral in the second term by parts and
using ∂tX (t ) = δX (t ), we find

I (1)
g (t ) = e−ct

∫ t

0
dt1e(c−q)t1

∫ t1

0
dt2δX (t2)

eqt2

q
. (H8)

Another partial integration in the t1 integral then completes
the proof at first order in λ,

I (1)
g (t ) = e−ct

q(c − q)

(
e(c−q)t

∫ t

0
dt1δX (t1)eqt1

−
∫ t

0
dt1δX (t1)ect1

)
= I (1)

δX (t ). (H9)

The equality I (2)
g = I (2)

δX at second order in λ can be shown
similarly by starting from Eq. (H3b), expanding X (t1, t2)2 =
X (t1)2 + X (t2)2 − 2X (t1)X (t2), and repeatedly integrating
by parts to arrive at Eq. (H6b).
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