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Resonant direct CNOT in remote double quantum dot spin qubits
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A critical element towards the realization of scalable quantum processors is nonlocal coupling between
nodes. Scaling connectivity beyond nearest-neighbor interactions requires the implementation of a mediating
interaction often termed a quantum bus. Cavity photons have long been used as a bus by the superconducting
qubit community, but it has only recently been demonstrated that spin-based qubits in double quantum dot
architectures can reach the strong coupling regime and exhibit spin-spin interactions via the exchange of real or
virtual photons. Two-qubit gate operations are predicted in the dispersive regime where cavity loss plays a less
prominent role. In this work we combine a cross-resonance entangling drive with simultaneous local rotations to
propose a framework for a resonant direct-CNOT operation, between two nonlocal single-spin qubits dispersively
coupled to a common mode of a superconducting resonator. We expect gate times near 100 ns and fidelities
above 90% with existing technology.
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I. INTRODUCTION

Electron spins in quantum dots (QDs) have long been an
attractive candidate for spin-based computation and informa-
tion processing [1–3]. Spin initialization and readout has been
demonstrated through spin-to-charge conversion [4,5], and
remarkably long spin coherence times have been reached in
Si-based QDs as a result of isotopic purification [6]. Addi-
tionally, the use of local magnetic field gradients allows for
all-electric spin manipulation [7,8]. These milestones have
lead to the recent realization of fault-tolerant single- and two-
qubit gates [9–14]. With an eye on building quantum networks
[15,16] and simulations [17], these single-qubit systems can
be scaled by an order of magnitude through tunnel-coupled
linear and two-dimensional arrays which demonstrate spin-
coherent charge displacement [18–21]. These dense qubit
arrays provide registers for implementation of surface code
protocols, but interconnection of these registers will require
some form of long-range coupling [16].

Achieving reliable long-range coupling in quantum sys-
tems is perhaps the most pressing obstacle to realizing the next
generation of quantum technology. Extending beyond micron-
scale intermediate coupling schemes [22,23] to macroscopic
separations on the order of 1 mm requires coupling to an
ancillary system [24,25], a so-called “quantum bus.” Photonic
coupling of superconducting qubits by way of superconduct-
ing resonators was realized well over a decade ago [26]
alongside proposals for coupling QD qubits with supercon-
ducting circuits [27–29]. The relatively weak magnetic dipole
coupling rate between a single photon and an electron is
inherently too slow (10–500 Hz) to overcome dephasing or
cavity loss, presenting a clear challenge to reaching the strong
spin-photon coupling regime [30]. Theoretical proposals have
been aimed at alleviating this issue by coupling the spin to
the photon indirectly through the electric dipole moment [31].
Spin-charge hybridization along with the use of micromag-
netics to establish local field gradients lead to the realization

of strong spin-photon coupling for single spins in Si-based
double QDs (DQDs) [32,33].

Cavity-mediated spin-spin interactions have been realized
in both the resonant [34] and the dispersive [35] regimes.
Universal two-qubit photon-mediated gates are predicted to
exist for DQD spin qubits [36,37], and driven two-qubit
gates have been proposed for both superconducting qubits
and quantum-dot spin qubits, such as the cross-resonance
(CR) gate [38,39]. The essence of the cross-resonance gate
is the conditional rotation of the target qubit based on the
orientation of the control qubit. The fidelity of the CR gate
can be enhanced by echoing the CR pulse [40] and applying
rotary tones to the target qubit [39,41,42]. However, these
optimized schemes still require additional local rotations on
the target qubit to yield a CNOT gate. Performing these lo-
cal rotations in series with the cross-resonance pulse can be
suboptimal for circuit performance, and in superconducting
platforms applying the local rotations in parallel with the CR
pulse, the so-called “direct-CNOT,” is shown to be an essential
ingredient in building circuits with larger quantum volume
[43].

In this article, we propose a framework for realizing a
direct-CNOT gate between two single-electron DQD qubits
dispersively coupled to a common cavity mode. By tuning the
spin-charge hybridization these spin qubits are predicted to
outperform their charge qubit counterpart [36]. Here we show
that driving both spins at a common frequency and asym-
metric amplitudes allows for controlled two-qubit rotations.
We expect synchronization of the drive strength to produce a
high-fidelity direct-CNOT gate within the entanglement time of
the CR scheme, similar to direct-CNOT conditions in supercon-
ducting qubits [44]. These gate times can rival those predicted
for local operations on driven exchange-coupled spin qubits
[45]. Given the sensitivity of QD spin qubits to local nuclei,
gate fidelity should benefit from isotopically purified 28Si,
where even in the presence of cavity loss and phonon emission
fidelities larger than 90% should be possible.
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FIG. 1. (a) Diagram of the system. Two symmetric flopping-
mode spin qubits with tunnel coupling tc are coupled to the same
cavity mode of a microwave resonator. A gradient between the ex-
ternal field at qubit 1 (Bz

1) and qubit 2 (Bz
2), δBz = Bz

2 − Bz
1 [Bz

avg =
(Bz

1 + Bz
2)/2], lifts the degeneracy between antiparallel spin configu-

rations, allowing the individual spins to be addressed. (b) View along
the y axis of a longitudinal field gradient in the x component of the
field, bxz, which provides an artificial spin-orbit coupling, allowing
the spin to couple to the photon through the electric dipole of the
DQD. This gradient is assumed to be equal for DQD1 and DQD2.
(c) View along the x axis of local transverse gradients in the y
component of the field, byy

j , which provide an electrically driven ac
magnetic field used to drive spin transitions. Gradients of this type
could result from the diverging field lines of a pointed micromagnet
at the surface of the device, as shown in the cartoon.

II. MODEL

We consider two singly charged DQDs capacitively cou-
pled to a common mode of a superconducting microwave
resonator (cavity) with frequency ωc, as sketched in Fig. 1(a).
The energy detuning between the right (R) and left (L)
dots, ε, and the tunnel coupling tc are electrically con-
trolled, and the spin-photon interaction is facilitated by a
local inhomogeneous magnetic field, ∂Bx/∂z. We assume
the gradient to be linear with the difference in field be-
tween the two dots parametrized by the quantity bxz

j =
[Bx

j (Rj ) − Bx
j (Lj )]/2, where j indicates the DQD. For sim-

plicity we take this local gradient at the first DQD to
be equal to that at the second DQD, i.e., bxz

1 = bxz
2 = bxz,

as depicted in Fig. 1(b). We set h̄ = 1 and begin in the
double-dot basis by considering the model Hamiltonian H̃ =
H̃0 + H̃d (t ) + H̃I , with H̃0 = ∑

j (tcτ̃
x
j + ε j τ̃

z
j /2 + Bz

j σ̃
z
j /2 +

bxzτ̃ z
j σ̃

x
j /2) + ωca†a. In this expression, Bz

j is the external
field, a† (a) is the photonic creation (annihilation) operator,
σ̃ k

j for k = {x, y, z} are the spin Pauli matrices, and τ̃ k
j for

k = {x, y, z} are the spatial Pauli matrices satisfying the re-
lation τ z

j |Lj (Rj )〉 = (−1)|Lj (Rj )〉. The driving Hamiltonian
is written as H̃d(t ) = ∑

j byy
j cos(ωd

j t + φ)σ̃ y
j /2, where byy

j =
[By

j (ymax) − By
j (−ymax)]/2 is used to parametrize the linear

gradient of the form ∂By/∂y, and ymax represents the maxi-
mum displacement of the spin from equilibrium along the y
axis. This gradient is used to drive the spin through electrically
driven spin resonance with the driving frequency ωd

j and the
phase φ [7,8,32,33,46,47]. A cartoon representation of this
gradient is shown in Fig. 1(c). The charge couples to the cav-
ity mode through a dipolar interaction with the Hamiltonian
H̃int = ∑

j gc(a† + a)τ̃ z
j . The electric dipole coupling strength

gc is proportional to the dipole moment of the DQD and is
therefore electrically controllable through ε. In what follows
we maximize the dipole moment of the DQD by choosing the
symmetric configuration where the charge is equally likely to
be in the R or L dot (ε = 0).

The tunnel coupling tc hybridizes the double-dot states to
form the symmetric and antisymmetric states |± j〉 = (|Lj〉 ±
|Rj〉)/

√
2. These states hybridize with the spin due to the local

gradient bxz
j . Recasting the Hamiltonian in the basis of H̃0

leads to the transformed components,

H0 = 1

2

∑
j

(
E τ

j τ
z
j + Eσ

j σ z
j

) + ωca†a,

Hd(t ) = 1

2

∑
j

(
Dτ

j τ
y
j σ

z
j + Dσ

j σ
y
j

)
cos

(
ωd

j t + φ
)
,

HI =
∑

j

(
gτ

jτ
x
j − gσ

j σ
x
j τ

z
j

)(
a† + a

)
, (1)

where the driving strengths are Dσ
j = byy

j cos θ̄ j and
Dτ

j = byy
j sin θ̄ j , and the cavity coupling strengths

are gσ
j = gc sin θ̄ j and gτ

j = gc cos θ̄ j for spin and
charge, respectively. These terms depend on the
average hybridization angle θ̄ j = (θ+

j + θ−
j )/2, where

θ±
j = arctan[bxz/(2tc ± Bz

j )] ∈ [0, π ]. In what follows,
we assume 2tc > Bz

j � bxz, in analogy to Ref. [36].
The charge (spin) transition energies are then given by
E τ (σ )

j =E2(1), j−E0, j , where E2(1), j = ±
√

(2tc−Bz
j )

2+(bxz )2)/2

and E0, j=−√
(2tc+Bz

j )
2+(bxz )2)/2.

Dispersive coupling between the DQDs and the cavity
mitigates losses due to interactions with real photons, limit-
ing the spin-photon exchange to short-lived virtual transitions
[35,48]. The dispersive regime requires the cavity frequency
to be detuned from the spin transition energy by the amount
� j = Eσ

j − ωc such that � j � gσ
j . In this regime the photonic

states are weakly coupled, and we perform a Schrieffer-
Wolff transformation to decouple the vacuum state from the
populated photon states up to first order in the perturbative
parameters gτ (σ )/|Eτ (σ ) − ωc| [36]:

Hd =
∑

j

(
Ẽ τ

j τ
z
j + Ẽσ

j σ z
j + (

Dτ
j τ

y
j σ

z
j + Dσ

j σ
y
j

)
× cos

(
ωd

j t + φ
)/

2 + Sx
jσ

x
j τ

x
j + Sy

jσ
y
j τ

y
j

)
+ Jτ τ x

1 τ x
2 − Jσ1,τ2σ x

1 τ z
1τ

x
2

− Jσ2,τ1τ x
1 σ x

2 τ z
2 + J σ x

1 σ x
2 τ z

1τ
z
2 , (2)
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where the Pauli matrices σ k
j and τ k

j now correspond
to the qubits dressed by the photonic excitations. The

dressed energy levels are Ẽσ
j = 1

2 [Eσ
j + 2(gσ

j )2 Eσ
j

(Eσ
j )2−ω2

c
] and

Ẽ τ
j = 1

2 [E τ
j + 2(gτ

j )
2 E τ

j

(E τ
j )2−ω2

c
], the local spin-charge coupling

coefficients are Sx
j = gσ

j gτ
j

E τ
j

(E τ
j )2−ω2

c
and Sy

j = gσ
j gτ

j
Eσ

j

(Eσ
j )2−ω2

c
,

the nonlocal charge-charge coupling coefficient is
Jτ = gτ

1gτ
2ωc[ 1

(E τ
1 )2−ω2

c
+ 1

(E τ
2 )2−ω2

c
], the nonlocal spin-spin

coupling coefficient is J = gσ
1 gσ

2ωc[ 1
(Eσ

1 )2−ω2
c
+ 1

(Eσ
2 )2−ω2

c
],

and the nonlocal spin-charge coefficients are
Jσ1(2),τ2(1) = gσ

1(2)g
τ
2(1)ωc[ 1

(Eσ
1(2) )

2 − ω2
c

+ 1
(E τ

2(1) )
2 −ω2

c
].

Tuning the cavity frequency such that
gτ

j� j/|E τ
j − ωc| � gσ

j � � j is the most interesting for
spin-qubit operation [36]. In the rotating-wave approximation
the dispersive Hamiltonian can be approximated as

Hd ≈
∑

j

[
Ẽσ

avgσ
z
j + iDσ

j

(
ei(ωd

j t+φ j )σ−
j − e−i(ωd

j t+φ j )σ+
j

)/
4
]

+ 1

2
δẼσ

(
σ z

1 − σ z
2

) + J
2

(σ+
1 σ−

2 + σ−
1 σ+

2 ), (3)

where σ
+(−)
j is the spin-raising(lowering) operator of the jth

qubit. The cavity-mediated spin-spin interaction coefficient
simplifies to J ≈ gσ

1 gσ
2 ( 1

�1
+ 1

�2
) when Eσ

j ∼ ωc. Due to
the difference in external field between the two qubits, the
dressed energy levels have been written in terms of an aver-
age spin-flip energy, Ẽσ

avg = (Ẽσ
1 + Ẽσ

2 )/2, and a difference
term, δẼσ = Ẽσ

1 − Ẽσ
2 . Since the cavity is tuned closer to

the spin transition energy, any nonlocal charge-charge and
spin-charge transitions are highly off-resonant and therefore
provide a negligible contribution to the dynamics. Addition-
ally, by tuning the local driving to spin transitions, the local
charge transitions are negligible for the same reason, and the
resulting Hamiltonian has no relevant dynamics in the charge
channel. We therefore take the computational subspace to be
the lowest energy charge sector.

We now assume that both spins are driven at the same
frequency (ωd

1 = ωd
2 = ωd ), but not necessarily the same

strength. This allows one to drive entanglement in addition
to local rotations. Next we assume the spin-spin interaction
to be small relative to the spin-flip gradient, J � δẼσ , and
we use the adiabatic basis, {|↑↑〉, |̃↓↑〉, |̃↑↓〉, |↓↓〉}, where H
is diagonalized with respect to the spin-spin interaction. The
weak spin-spin interaction slightly hybridizes the antiparal-
lel product states |̃↑↓〉 = cos(ξ/2)|↑↓〉 + sin(ξ/2)| ↓↑〉 and
|̃↓↑〉 = − sin(ξ/2)|↑↓〉 + cos(ξ/2)|↓↑〉 with the hybridiza-
tion angle ξ = arctan(J /2δẼσ ) ∈ [0, π ]. In this basis the
only off-diagonal contribution comes from the driving term,
which can be written as

Ĥd(t ) = Dσ
1

2
cos(ωdt + φ)

[
cos(ξ/2)σ̂ y

1 + sin(ξ/2)σ̂ z
1 σ̂

y
2

]
+ Dσ

2

2
cos(ωdt + φ)

[
cos(ξ/2)σ̂ y

2 − sin(ξ/2)σ̂ y
1 σ̂ z

2

]
.

(4)

In order to illuminate the choice to drive at a common fre-
quency, consider DQD1 to be the target qubit and DQD2 to
be the control qubit. Driving the two qubits at the resonant

FIG. 2. Sketch of the energy levels for the spin manifold in the
lowest charge sector. A gradient in the external field lifts the degen-
eracy between the ms = 0 states. Once the cavity-mediated spin-spin
interaction is present the ms = 0 levels experience an additional
symmetric shift in frequency. Frequency f1 ( f2) drives the spin at
DQD1(2) unconditionally due to the symmetry of the system.

frequency of DQD1 reduces Eq. (4) to

Ĥd(t ) ≈ 1
2 Dσ

1 cos
(
ωdt + φ

)
cos(ξ/2)σ̂ y

1

− 1
2 Dσ

2 cos(ωdt + φ) sin(ξ/2)σ̂ y
1 σ̂ z

2 . (5)

The first term in Eq. (5) describes a local rotation of the
target while the second describes the entangling CR term. The
objective is to synchronize these terms in such a way that the
pulses result in a direct-CNOT gate.

Figure 2 shows a sketch of the energy levels for states
in the computational subspace. The effective gradient in the
external field, δẼσ , lifts the degeneracy between the ms = 0
states. The presence of the nonlocal spin-spin coupling adds
an additional symmetric frequency shift to the ms = 0 states
in the adiabatic basis. This symmetric splitting is in contrast
to the uniform shift seen for homogeneous exchange coupling
[45] which allows for direct access to conditional rotations.
The symmetry of this system dictates that frequency f1 ( f2)
resonantly drives the spin at DQD1(2) regardless of the spin
orientation at DQD2(1). The primary aim of this work is
to synchronize Dσ

1 and Dσ
2 in order to generate conditional

rotations of the target qubit. To eliminate the time depen-
dence in Eq. (4), we work in a frame rotating at the drive
frequency about the spin quantization axis. The rotating-frame
Hamiltonian has the form H̊ = i ˙̂R(t )R̂†(t ) + R̂(t )Ĥ(t )R̂†(t ),
where R̂ = exp[iωd (σ̂ z

1 + σ̂ z
2 )t/2]. The time-independent

Hamiltonian can be expressed as

H̊ =

⎛
⎜⎜⎝

λ‖ −iα∗
− −iβ∗

+ 0
iα− −λ⊥ 0 −iβ∗

−
iβ+ 0 λ⊥ −iα∗

+
0 iβ− iα+ −λ‖

⎞
⎟⎟⎠, (6)
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with λ‖ = 2Ẽσ
avg − ωd , λ⊥ =

√
(δẼσ )2 + (J /2)2, and the ef-

fective driving amplitudes

α± = 1
4

[ ± sin(ξ/2)Dσ
2 + cos(ξ/2)Dσ

1

]
eiφ (7)

and

β± = 1
4

[ ± sin(ξ/2)Dσ
1 + cos(ξ/2)Dσ

2

]
eiφ. (8)

In what follows we rely on the hybridized driving amplitudes
to generate a single-shot CNOT gate.

III. RESONANT NONLOCAL DIRECT-CNOT GATE

For a CNOT gate we define the spin in DQD1 to be the
target and the spin in DQD2 to be the control, as previously
discussed. Using the same basis as in Eq. (6), this operation is
represented by the matrix

UCNOT =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠. (9)

To model this operation we require the target spin to flip if the
control is spin-up and an identity operation if the control is
spin-down. To resonantly drive the spin at DQD1 we choose
a driving frequency that is determined by the energy separa-
tion between |↑↑〉 and |̃↓↑〉: ωd − δωd = λ‖ + λ⊥, where δωd

accounts for the detuning between the drive and the energy
separation between the two levels. On resonance, δωd = 0,
the β transitions couple states split in energy by the relatively
large quantity 2δẼσ . As long as the off-resonant transitions
are weakly coupled (β± � δẼσ ) the Hamiltonian expressed
in Eq. (6) is effectively block diagonal, with both {|↑↑〉, |̃↓↑〉}
and {|̃↑↓〉, |↓↓〉} blocks producing full Rabi oscillations
at frequencies �− = 2|α−| and �+ = 2|α+|, respectively.
The time required for maximum population transfer be-
tween the states |↑↑〉 ↔ |̃↓↑〉 is tCNOT = (2m + 1)π/�−, for
integer m.

Treating the resonant blocks individually, we calculate the
unitary operator for each. With the aim of obtaining the uni-
tary in Eq. (9), the drive phase should be set such that the
rotation is about the ±x axis: φ = (2� + 1)π/2, for integer �.
Under this condition, the control spin-up block evolves as

U2=↑ = e−iF1t

[
cos

(
�−t

2

)
1 + i2�+1 sin

(
�−t

2

)
σ x

]
, (10)

and the block for control spin-down evolves as

U2=↓ = e−iF2t

[
cos

(
�+t

2

)
1 + i2�+1 sin

(
�+t

2

)
σ x

]
. (11)

The dynamic phase is dependent on the energy of the corre-
sponding block, F1(2) = ∓

√
(δẼσ )2 + (J /2)2. The choice of

phase allows one to write the total unitary (U = U2=↓ ⊕ U2=↑)
in the form of the CNOT unitary shown in Eq. (9), up to local
rotations about the z axis. However, one could generate a
conditional rotation about any arbitrary axis in the x-y plane
by making the substitution σ x → sin φ σ x + cos φ σ y.

In order to generate a single-shot conditional rotation of the
target spin, the Rabi frequencies �+ and �− should be out of

FIG. 3. Calculated transition probabilities for the synchronized
|2 =↑〉 (blue) and |2 =↓〉 (red) blocks. The relevant parameters
are chosen to be experimentally realizable with a driving strength
Dσ

2 = 100 MHz. The integers m = 0 and n = 1 are chosen to min-
imize the gate time, shown here to be tCNOT = 142 ns. Parameters:
tc = 3.6 GHz, Bz

avg = 6.3 GHz, δBz = 300 MHz, bxz = 780 MHz,
ωc = 5.6 GHz, gc = 190 MHz.

phase. The necessary condition is then

�− = 2m + 1

2n
�+, (12)

with integer n. This can be done by adjusting the ratio of the
ac driving strengths such that

Dσ
1

Dσ
2

= −1 + 2(m + n)

1 + 2(m − n)
tan(ξ/2), (13)

where m and n obey Eq. (12). The unitary operator up to a
global phase at time tCNOT is

U (tCNOT) = ei(�dyn+�hol )σ z
2 UCNOT. (14)

The time-dependent dynamic phase is �dyn = F2−F1
2 tCNOT and

the time-independent holonomic phase is �hol = π
2 [(2� +

1)/2 + m − n].
Figure 3 shows the synchronized Rabi oscillations for the

driven CNOT gate. System parameters were chosen to repre-
sent realistic experimental conditions and are quoted in the
figure caption. The analytic expressions derived above for
the unitary evolution ignore the off-resonant transitions with
coupling β± in Eq. (6). In general, strong driving will in-
crease population transfer through the off-resonant channels
impacting the coherent average gate fidelity F̄c. Numerical
calculations of this fidelity show that for a modest syn-
chronized drive strength of Dσ

2 = 100 MHz we predict gate
times of tCNOT = 142 ns with coherent average fidelity F̄c =
0.99. In principle, driving with this strength requires a field
gradient with magnitude near 3.5 mT, a requirement well
within the typical strength of contemporary micromagnetics
(∼1 mT/nm).

IV. DISCUSSION AND SUMMARY

In addition to the parasitic effects of off-resonant chan-
nels, coupling to the environment also reduces the fidelity
of the gate. Since the spin qubit couples to the cavity
through a virtual charge qubit, the gate is vulnerable to both
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electron-phonon interaction and photonic loss through the cavity. However, since the charge qubit and photons are both virtual,
the influence on gate fidelity is less pronounced than it would be under resonant coupling. To estimate these effects we
calculate the average fidelity [49] in the presence of cavity loss, electron-phonon coupling, and general spin decoherence. The
master equation in the dispersive basis follows the derivation from Ref. [36] and has the form

d

dt
ρ(t ) = −i[Hd(t ), ρ(t )] + κ

2

∑
j

(
gσ

j

)2

�2
j

D[σ−
j ]ρ(t ) +

∑
j

γ
Eσ

j
p

2
sin2 θ̄ jD

[(
1 −

(
gσ

j

)2

2�2
j

)
τ z

j σ
−
j

]
ρ(t )

+
∑

j

γ
E τ

j
p

2
cos2 θ̄ jD

[(
1 −

(
gσ

j

)2

�2
j

)
τ−

j −
(
gσ

j

)2

�2
j

τ−
j σ z

j

]
ρ(t )

+ 2
∑

j

γ
E τ

j +Eσ
j −ωc

p

(
gσ

j

)2

�2
j

(
E τ

j − Eσ
j

)2
cos2 θ̄ j(

E τ
j − ωc

)2 D[τ−
j σ−

j ]ρ(t ) + νT ∗
2

2

∑
j

D
[
σ z

j

]
ρ(t ), (15)

where D[ô] represents the Lindblad superoperator D[ô]ρ =
2ôρô† − {ô†ô, ρ}, and {...} represents the anticommutator. The
density matrix ρ̂ corresponds to the 16-dimensional spin-
charge subspace for an empty cavity in the dispersive basis,
and we assume the environment to be at zero temperature.
The first term describes the coherent evolution of the system
and the second term describes loss through the cavity at rate
κ . Terms three, four, and five account for the relaxation due
to electron-phonon coupling with rate γ E

p at energy E , and the
last term expresses general dephasing of the spin at rate νT ∗

2
. In

the following calculations we assume γ E
p = γ ωc

p (E/ωc)5 [50].
An average measure of how well a trace-preserving

quantum operation, E , approximates a quantum gate, U ,
is defined as F̄ (E,U ) ≡ ∫

dψ〈ψ |U †E (ψ )U |ψ〉. Making
use of the entanglement fidelity [51], Fe, we calculate the
average fidelity on the four-dimensional computational
subspace spanned by the spin states in the lowest charge
sector and an empty cavity. The evolution defined by Eq. (15)
represents a trace nonpreserving map E ′ in this subspace and
the expression for the average fidelity is given by [49,52]
F̄ (E,U ) = (

∑
j Tr[UU †

j U †E ′(Uj )] + 16Tr[E ′(1/4)])/80,
where U represents the ideal unitary from Eq. (14) with
a general control qubit phase, ζ . In the gate frame the
generalized unitary has the form Uideal = exp(−iζσ z

2 )UCNOT,
where ζ is chosen to numerically maximize the quantity∑

j Tr[UU †
j U †E ′(Uj )]. We also introduce a basis of unitary

operators, Uj = X kZl , on the four-dimensional two-qubit
subspace, where X | j〉 = | j ⊕ 1〉 and Z| j〉 = e2π i j/4| j〉 are
defined on computational basis states |0〉, . . . , |3〉. Here the
operation ⊕ represents addition modulo 4.

Spin relaxation rates will depend on the degree of spin-
charge hybridization, quantified by the angle θ̄ j . The degree
of hybridization is determined by the local gradient bxz, the
tunnel coupling tc, and the applied fields Bz

avg ± δBz. In prac-
tice, the applied fields and field gradients are difficult to tune
once set, but the tunnel coupling can be adjusted electrically
through gate voltages.

In Fig. 4(a) we show the average fidelity as a function of the
tunnel coupling within the range Bz

avg + δBz � 2tc for a syn-
chronized drive strength of Dσ

2,sync = 150 MHz which satisfies
Eq. (13) with m = 0 and n = 1. The points indicate numerical
solutions to Eq. (15) with κ = 1.5 MHz, γ ωc

p = 1 MHz, and
νT ∗

2
= 100 kHz. The solid line shows a moving average in

order to capture the trend. As the tunnel coupling increases,
the spin-charge hybridization decreases. This mitigates the

(MHz)

(GHz)

(ns)

(a)

(b)

FIG. 4. (a) The average fidelity as a function of spin-charge
hybridization via the tunnel coupling tc for drive strength
Dσ

2,sync = 150 MHz, γ ωc
p = 1 MHz, and νT ∗

2
= 100 kHz. (b) The gate

time and average fidelity as a function of synchronized drive strength
for νT ∗

2
= 100 kHz with γ ωc

p = 4 MHz (green dotted) and γ ωc
p = 1

MHz (green solid), and νT ∗
2

= 50 kHz for γ ωc
p = 1 MHz (green dot-

dashed). The inset shows the fidelity for νT ∗
2

= 100 kHz and γ ωc
p = 1

MHz for a larger range of driving strengths to illustrate the impact
of coherent off-resonant processes. Optimal strengths are indicated
by the gray shaded region. In both (a) and (b) the orange points
indicate the average fidelity found through numerical solutions of
Eq. (15) and the overlaid lines represent a moving average. Addi-
tional parameters: tc = 3.6 GHz, Bz

avg = 6.3 GHz, δBz = 300 MHz,
bxz = 780 MHz, ωc = 5.6 GHz, gc = 190 MHz, κ = 1.5 MHz, m = 0,
and n = 1.
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coupling to phonons and cavity loss, but also reduces the
magnitude of the spin-spin interaction. An optimal range is
found between tc = 3.4 GHz and tc = 3.6 GHz, and since
we assume J /δẼσ � 1 in the analytic derivation above, we
chose tc = 3.6 GHz for the results presented in this work.
The average fidelity and gate time are plotted in Fig. 4(b)
as a function of the synchronized drive strength Dσ

2,sync for
three sets of realistic parameters. Once again, the points result
from numerically solving Eq. (15) and the overlaid green lines
represent a moving average. Strong driving leads to faster gate
times (shown by the blue line) at the cost of increased transi-
tions through off-resonant channels, which ultimately impact
gate fidelity (see inset). However, weaker driving requires the
system to be highly coherent, and if the gate time is too long
incoherent processes become significant and the fidelity again
suffers.

Competition between off-resonant evolution and dissipa-
tion results in an optimal drive strength that maximizes gate
fidelity. The optimal synchronized drive strengths for the
set of parameters shown in Fig. 4(b) are within the range
Dσ

2,sync ≈ 100–150 MHz, indicated by the gray region of the
inset. The top-end parameters yield an average fidelity of
F̄ = 0.94, as shown by the green dot-dashed line. However,
using rather conservative values [53,54] still yields an average
fidelity just below 90% (F̄ = 0.88) as shown by the dotted
green line.

In practice, the symmetric (ε = 0) configuration will be
avoided while the qubits are idle in order to prolong coher-
ence. This is done by adiabatically transferring the spin from
the symmetric configuration to the single-dot configuration—
a process which can also result in error. Transitions between
symmetric and asymmetric dot levels are akin to physically

shuttling a spin from one dot to the other. Adiabatic transfer
fidelity in silicon-based double dots is predicted to be quite
high (∼0.99) for systems with weak gradients and relatively
large applied fields [55]. We consider this to be a minor
correction to the total gate fidelity, and we have, therefore,
omitted it in this work.

With recently achieved electric dipole coupling strengths
gc ≈ 190 MHz using high-impedance resonators [35], we pre-
dict gate fidelities well above 90% in the presence of cavity
loss, phonon emission, and spin dephasing with gate times
around 100 ns. We note that these gate times, compared to
typical CR gate times, are a result of the driving strength
and improvements in parameters, such as the electric dipole
coupling, since the bottleneck in this scheme is still the cross-
resonance entanglement time.

A gate fidelity near 90% is significantly lower than fault
tolerance thresholds [15], but as technology creeps toward
error-corrected circuits, optimizing noisy intermediate-scale
quantum gates allows one to execute deeper circuits without
error correction [56]. Additionally, it is likely that methods
such as entanglement purification can be applied to increase
the fidelity of the direct-CNOT [57,58]. Along with single-spin
operations this work elucidates the potential for all electri-
cal remote entanglement in solid-state DQD spin qubits and
enhances the prospects of these systems for quantum infor-
mation processing.
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