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Back action in quantum electro-optic sampling of electromagnetic vacuum fluctuations
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The influence of measurement back action on electro-optic sampling of electromagnetic quantum fluctuations
is investigated. Based on a cascaded treatment of the nonlinear interaction between a near-infrared coherent probe
and the mid-infrared vacuum, we account for the generated electric-field contributions that lead to detectable
back action. Specifically, we theoretically address two realistic setups, exploiting one or two probe beams for
the nonlinear interaction with the quantum vacuum, respectively. The setup parameters at which back action
starts to considerably contaminate the measured noise profiles are determined. We find that back action starts to
detrimentally affect the signal once the fluctuations due to the coupling to the mid-infrared vacuum become
comparable to the base shot noise. Due to the vacuum fluctuations entering at the beam splitter, the shot
noise of two incoming probe pulses in different channels is uncorrelated. Therefore, even when the base shot
noise dominates the output of the experiment, it does not contribute to the correlation signal itself. However, we
find that further contributions due to nonlinear shot-noise enhancement are still present. Ultimately, a regime in
which electro-optic sampling of quantum fields can be considered as effectively back-action free is found.
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I. INTRODUCTION

When performing quantum measurements, the interaction
with the measurement device typically causes a perturbation
of the quantum state [1–5]. Even for experiments keeping
the product of related uncertainties at their minimum, im-
proving the accuracy with which one observable is measured
inevitably increases the fluctuations in its canonically conju-
gate observable. This influence of the measurement device on
a quantum system is called quantum back action (BA) [6].
Often, the BA is undesired, but in some cases it underlies
the functionality of quantum-information processing schemes
[7,8].

Fluctuations in noncommuting observables persist even
when the system reaches its ground state. In recent years, re-
markable experiments have probed the zero-point fluctuations
of a plethora of quantum systems, in particular, single-mode
mesoscopic mechanical resonators [9] and multimode elec-
tromagnetic radiation [10–12]. Theoretical and experimental
evidence [13,14] points towards the inevitable presence of BA
in quantum mechanical resonators probed by light in optical
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cavities. While the light affects the resonator through radiation
pressure (Stokes and anti-Stokes scattering), the resonator
imprints its phase-space signature on the photons in the cavity
or, correspondingly, shifts the resonance frequency of the
cavity [15]. This BA, however, can be avoided by coupling
the vibrational modes of two oscillators through the cavity
photons, allowing the BA contributions from the two modes
to cancel each other [16].

Related arguments about mode coupling through BA were
invoked to explain electro-optic (EO) measurements of cor-
relations in the electromagnetic vacuum state [17]. The
potential effect of BA in such experiments, however, might
considerably diverge from those seen in optomechanical cav-
ities [18,19] since the characteristic nonlinearity of the EO
interaction effectively couples optical modes between and
within channels, each of them consisting of an infinite and
continuous set of modes. The potential of this advanced
scheme spans from the exploration of Hawking/Unruh effects
[20–23] to ultrafast quantum spectroscopy [24,25], thus call-
ing for a formal and thorough description of the underlying
physics.

In this paper, we theoretically study the BA in two experi-
mental settings involving EO sampling of the electromagnetic
ground state [10,17]. These measurements rely on a coupling
that imprints information about a multimode quantum state
on the ellipticity of a subcycle coherent pulse in a higher-
frequency range. For a single-channel experiment [10] [see
Fig. 1(b)], the interplay between shot noise (SN) and BA plays
a crucial role in determining the optimal range of parameters.
The situation is more complex when a second channel is
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FIG. 1. (a) Nonlinear crystal (NX) and field components. The
probe Ep is polarized along ez and propagates with wave vector kω =
kωek . The tensor components of the nonlinear susceptibility are such
that only field components along ex and ey can mix with the probe,
generating a new propagating quantum-field component along es.
(b) Scheme of an EO measurement. Ep changes its ellipticity in the
NX due to the nonlinearly generated es-polarized field component,
resulting in E′. A quarter-wave plate (λ/4) shifts the phase of the ea

component of E′ by π/2, leading to E′′, which has its E ′′
z and E ′′

s

components spatially split by a Wollaston prism (WP) before inde-
pendent photon counting. (c) Illustration of the state evolution under
the nonlinear interaction (cf. Appendix G). The states include z and s
polarizations (in-plane and out-of-plane panels) and two frequency
bands, MIR and NIR (left and right panels), with the z-polarized
NIR coherent probe represented as a blue pool of photons. Red
(green) contours represent annihilation (creation) of photons (golden
spheres) and the arrows show the directions of the energy transfers.
The first diagram (uppermost) shows the lowest-order perturbation
of the initial state, with s-polarized MIR and NIR photons being
created through annihilation of a probe photon. The second and third
diagrams show the second-order processes that lead to no BA in the
MIR (photons created by the first-order process are annihilated). The
last two diagrams show the remaining second-order processes, which
cause additional BA in the MIR via generation of extra photons.

included in the setup [17,26] as shown in Fig. 3(a). Here, the
contribution of the base SN to the signal correlation drops out
when averaging over many readout events [27]. We propose
the working regimes most suitable to avoid undesired BA
contributions to the EO signals (so that the measurement is
considered effectively BA free) and explain the subtle (yet
fundamental) role that the population of the measured modes
plays not only in the data presented in Ref. [17], but also in the
general conceptual understanding of quantum EO sampling.

II. SINGLE-CHANNEL MODEL

We start with a derivation of the cascaded contributions
to the quantum electric field that build up within the non-
linear medium and proceed to their conversion into the EO
signal noise upon detection. We initially consider a single-

channel setup as sketched in Figs. 1(a) and 1(b). An incoming
near-infrared (NIR) ultrashort probe pulse copropagates with
a mid-infrared (MIR) vacuum-state electric-field component
along the ek = [110] axis of a zinc-blende-type nonlinear
crystal (NX), as in Ref. [28]. The wave vector kω = kωek of
the probe pulse is perpendicular to the z axis of the crystal,
which in turn is parallel to the probe electric field Ep = Epez.
Since the probe pulse is in a coherent state, we can write
its field operator as Êp(r, t ) = Ep(r, t )ez + δÊ(r, t ), with
δÊ(r, t ) describing the (zero-point) quantum fluctuations. The
(cascaded) contribution to the second-order nonlinear polar-
ization arising in the crystal from the mixing between the
probe and any s-polarized (with es = ez × ek) quantum-field
contribution Ê (m)

s present in the crystal is given by P̂(2)
m (r, t ) =

−ε0dÊ (m)
s (r, t )Ep(r, t )es. Here, ε0 is the vacuum permittivity

and d = −n4r41 is the effective nonlinear susceptibility of
the NX, with n being its refractive index (RI) at the center
frequency of the probe and r41 its relevant EO coefficient
[29]. The index m represents the number of cascaded steps
generating a given contribution.

We divide the frequency domain into two segments, the
MIR, represented by �, and the NIR, represented by ω,
both of which can be expressed by � ∈ {�,ω}. The electric-
field operator is given in its paraxial form [30,31] Ê(r, t ) =∑

σ l p

∫
d� eσ ei�(n�rk/c0−t )Êσ l p(r,�), where

Êσ l p(r,�)=i sgn(�)

√
h̄|�|

4πε0n�c0
LGl p(r⊥,
rk ; �)âσ l p(�),

(1)
with amplitude distributions in the transversal plane located
at rk = r · ek given by the Laguerre-Gaussian (LG) modes
LGl p(r⊥,
rk = rk − L/2; �) with r⊥ = rzez + rses. The op-
erator âσ l p(� > 0) = â†

σ l p(−�) [20,31] annihilates a photon
with frequency �, polarization σ = s, z, and azimuthal l and
radial p indices labeling the LG modes. Here, c0 and n�

are the speed of light and the frequency-dependent RI of the
NX, respectively. We assume an NX extended from rk = 0
to L, so that the narrowest amplitude distribution for the LG
modes occurs at the center of the crystal, rk = L/2, where the
waist of the mode profiles reaches its minimal value w0. Ep

is given by Eq. (1) with âσ l p(ω) → ασ l p(ω), and we assume
its transversal profile to be in the fundamental mode, given
by g00 (r⊥ ) ≡ LG00 (r⊥ , 0; ω) = √

2/π w−1
0 exp(−r2

⊥/w2
0 ) and

αp(ω) ≡ αz00(ω). For the remainder of this work, we shall
exploit the fact that the NX is thin (L � n��w2

0/2c0 ) and
consider all fields at rk = L/2: Êσ l p({rk = L/2, r⊥},�) ≡
Êσ l p(r⊥ ,�). The indices l and p will be omitted whenever
possible.

The nonlinear polarization acts as a source for the genera-
tion of multimode squeezed electric-field components [20–22]
with polarization perpendicular to the probe. Neglecting the
depletion of the probe, the NIR output field Ê′ is given by the
input probe pulse plus the perturbative solutions to the wave
equation sourced by each of the cascaded P(2)

m (ω) [27] (cf.
[29] Sec. 1.6 and Chap. 2),

Ê (m+1)
s (r⊥ , ω) =

∫ ∞

−∞
d� Ê (m)

s (r⊥ ,�)Ep(r⊥ , ω − �)ζω,�,

(2)
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where Ê (1)
s (�) ≡ δÊs(�) represents the vacuum electric field

in the MIR and Ê (m)
s (�) for m > 1 reads

Ê (m)
s (r⊥ ,�) =

∫ ∞

−∞
dω Ê (m−1)

s (r⊥ , ω)E∗
p (r⊥ , ω − �)ζ ∗

−�,�.

(3)

As can be seen from Eq. (3), the cascaded-field genera-
tion requires Ê (m−1)

s (ω) as given by Eq. (2) to describe
the higher-order MIR contributions [in the same way that
Eq. (2) requires (3)], with Ê (1)

s (ω) ≡ δÊs(ω) being the vacuum
NIR electric field. The factor ζ±�,� = ∓id L�

2c0n sinc[ L�
2c0

(n
�

−
ng)]exp[i L�

2c0
(n

�
− ng)] determines phase matching. Here ng =

c0∂kω/∂ω is the group RI, taken at the central probe fre-
quency. The total generated field in each of the frequency
ranges is then 
Ê′(�) = ∑

m>1 Ê(m)(�), and accordingly
Ê′(ω) = Ep(ω) + δÊ(ω) + 
Ê′(ω) for the analyzed NIR.

After the NX, the detection part of the setup consists of
an ellipsometer including two balanced photon counters that
record the statistics of the photon numbers N̂s and N̂z for the
s- and z-polarization components of the output NIR field [cf.
Fig. 1(b)]. For the evaluation of the quantum signal Ŝ = N̂s −
N̂z, we may neglect quadratic or higher-order terms in δÊ .
δÊs(�) is given by Eq. (1) with transverse mode functions
g′

l p
(r⊥ ) ≡ LGl p (r⊥ , 0; �). The total signal can be split into EO

and base-SN contributions Ŝ = ŜEO + ŜSN. In a perturbative
approach, the contributions to the EO signal ŜEO = ∑∞

j=1 Ŝ ( j)

are given by

Ŝ ( j) = i
√

BA( j+1)
∫ ∞

0
d�

√
�

n
�

[
â( j)

s00(�)R(�) − H.c.
]
, (4)

where A( j+1) = ∫
d2r⊥gj+1

00
(r⊥ )g′

00
(r⊥ ) and â( j)

s00 is the
Bogoliubov-transformed (outgoing) annihilation operator,
given by a series of nested convolutions of âs00(�)
with functions covering either MIR or NIR frequencies
depending on the value of j [20,21]. In Eq. (4),
B = (d2L2N2ω2

p h̄)/(4πε0c3
0n2) and 1/ωp = β/κ is the

average inverse detected frequency, with β = ∫ ∞
0

dω
ω

|αp(ω)|2
and κ = ∫ ∞

0 dω|αp(ω)|2. We have introduced the
expectation value of the photon number per probe
pulse N = 〈N̂s + N̂z〉 = 4πc0nε0

h̄ β and the gating function
R(�) = iζω,�[ f ∗

+(�) + f−(�)]/(d Lω
c0n ) with f±(�) =∫ ∞

0 dω α∗
p (ω)αp(ω ± �)/κ determining the bandwidth

over which states can be measured. The base-SN contribution
is given by

ŜSN ≡ Ŝ (0) =
√

4πc0nε0

∫ ∞

0
dω

α∗
p (ω)âs00(ω) + H.c.√

h̄ω
. (5)

For a nondisplaced quantum state like the vacuum,
〈Ŝ ( j)〉 = 0 ∀ j ∈ N. When squared, however, the signals lead
to finite expectation values associated with their variance
〈Ŝ2〉 = 〈[∑ j=0 Ŝ ( j)]2〉. Through unfolding of the Bogoli-

ubov transformations determining â( j)
s00(�), it is possible to

see that, depending on j, the EO signals are function-
als of either âs00(�) (for j odd) or âs00(ω) (for j even).
Apart from 〈[Ŝ ( j)]2〉, this leads to cross-term contributions
to the variance in the form 〈Ŝ ( j)Ŝ ( j+2)〉, 〈Ŝ ( j)Ŝ ( j+4)〉, and
so on, as well as their conjugates. If one decomposes the

total signal into terms depending solely on â(�) and â(ω),∑
odd j Ŝ ( j) and

∑
even j Ŝ ( j), these two contributions would be

effectively related via a two-mode squeezing involving one
(nonmonochromatic) mode from each frequency range, MIR
and NIR [22]. For this reason, the noise registered in the NIR
is larger than the base level determined by 〈Ŝ2

SN〉 = N .
The main contribution of the electric-field fluctuations in

the MIR vacuum [32] to the EO signal variance is 〈(Ŝ (1) )2〉 ∝
N2

∫ ∞
0 d� � (n/n

�
)|R(�)|2, as shown in Appendix A and

experimentally endorsed by Ref. [10] (see also [28]). This
term represents the zero-point variance of the electric field
〈δÊs(r⊥ ,�)δÊs(r′

⊥ ,�′)〉, sampled over a frequency window
determined by R(�) and over a transverse spatial profile de-
termined by g2

00
(r⊥ ).

Complementary to 〈(Ŝ (1) )2〉, there is the cross term be-
tween Ŝ (2)[Ê (3)

s (ω)] and ŜSN[δÊs(ω)]. This term has not been
accounted for in Refs. [17,28,33,34], but its contribution
vanishes when the measurements are carried out far from
any resonances. Interestingly, both 〈Ŝ (2)Ŝ (0) + Ŝ (0)Ŝ (2)〉 and
〈Ŝ (1)Ŝ (1)〉 share contributions from the first- and second-order
perturbations in the initial sampled state from a state-evolution
perspective (cf. Appendix G). Some of them retain the MIR
sector of the vacuum unchanged, while others correspond to
populated MIR modes. Figure 1(c) sketches the annihilation
(red) and creation (green) of photons by the Hamiltonian
when acting on the vacuum (top, annihilating a probe photon
to create an MIR and an NIR photon) and on its first-order
perturbation (showing the action of the four different three-
photon contributions in the Hamiltonian), with the second and
third processes leading to no MIR photons in the perturbed
state, while the last two lead to an increase in the number
of MIR photons. These perturbations are the source of EO
signals and are comprised of a continuum of states in super-
position with the initial state. As long as their superposition
coefficients are much smaller than the coefficient of the initial
state, the first- and second-order perturbations of the initial
state are the dominating BA and the measurement of the
vacuum noise can be seen as effectively free of BA. As N
increases, further BA-induced contributions with coefficients
growing even faster with N , such as the ones contributing
to 〈[Ŝ (2)]2〉 and terms involving Ŝ ( j>2), become significant
in the quantum superposition of states, with our perturbation
approach breaking down as they start to dominate.

III. SINGLE-CHANNEL RESULTS

To evaluate the BA effect on the measurement results, we
derive all contributions from Eqs. (2) and (3) to the EO signal
variance up to fourth order. The cross term between the SN
signal and Ŝ (4)[Ê (5)(ω)] vanishes within our approximations.
The remaining â(ω)-dependent contribution, which also en-
hances the base SN, results from 〈[Ŝ (2)]2〉 and scales as N3.
Concurrent to this contribution is the â(�)-dependent (cross)
term 〈Ŝ (1)Ŝ (3) + Ŝ (3)Ŝ (1)〉, which scales as N3 but has an
opposite sign to 〈[Ŝ (2)]2〉 . Consequently, it leads to variance
reduction.

Figure 2 illustrates the total root-mean-square (rms) signal
per probe photon as a function of N . For comparison, we
provide plots corresponding to the experimental parameters
of Refs. [28] (set 1, a) and [17] (set 2, b). For the probe pulses
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FIG. 2. (a), (b) Ratio 
S/N (with the rms signal 
S = 〈Ŝ2〉1/2
)

in dependence of the number N of photons per probe pulse. The
solid blue lines represent the total rms signal per photon, the
dotted black lines represent the base-SN contribution, the dashed
red lines show the main EO rms signal, and the green (purple)
dotted-dashed lines account for 〈[Ŝ (2)

EO]2〉 [〈Ŝ (1)
EOŜ

(3)
EO + Ŝ (3)

EOŜ
(1)
EO〉]. The

background gradient illustrates the transition between the effectively
BA-free, shot-noise dominated (SN), and the BA-dominated (BA)
regimes. (c), (d) Increase of (
S − 
SSN )/
SSN with N . The solid
(dotted) blue lines contain up to fourth- (second-) order contribu-
tions. (a), (c) [(b), (d)] Correspond to parameter set 1 (set 2) (see
main text).

we assume ω(set 1)
p /(2π ) = 247 THz and ω(set 2)

p /(2π ) = 375
THz, and spectral bandwidths of 
ω(set 1)

p /(2π ) = 150 THz
and 
ω(set 2)

p /(2π ) = 2.77 THz with rectangular spectral am-
plitude distributions and flat phase. We consider beam waist
radii of w

(set 1)
0 = 3 µm and w

(set 2)
0 = 125 µm. For the NX

we use L(set 1) = 7 µm and L(set 2) = 3 mm, r41 = 3.9 pm/V,
n(set 1) = 2.76, n(set 2) = 2.85, n(set 1)

g = 2.9, n(set 2)
g = 3.18 and

n
�

varying slightly within the relevant THz frequency range
(cf. Appendix E). We do not include contributions from four-
wave mixing since they only affect the probe (for more details,
see Appendix F). Figure 2 reveals a considerable deviation
from the result determined solely by the SN and the main
EO contribution [28] when photon numbers are larger than
∼1011. Minima in the rms signal per probe photon occur
at N = 1.6 × 1011 for set 1 [Fig. 2(a)] and N = 6.4 × 1011

for set 2 [Fig. 2(b)], i.e., roughly when 〈[Ŝ (1)]2〉 ∼ 〈[ŜSN]2〉.
Contrary to naive expectations that 〈(Ŝ (1) )2〉 would generally
dominate the total rms signal for large N , our results show
that increasing the probe intensity beyond a certain value has
a rather detrimental effect since both the base SN and main EO
signal variance are rapidly overtaken by the cascaded effects.
Therefore, a reliable minimally disturbing quantum-state sam-
pling may be achieved only for N considerably smaller than
its value at the minima of the solid blue curves in Figs. 2(a)
and 2(b). Figures 2(c) and 2(d) show the (normalized) detected
rms signal on top of the base SN contribution. Departure
from zero allows for a clear visualization of the EO contri-
butions, with the onset of the fourth-order terms resulting in
a divergence between the solid and the dashed blue lines in
each figure. The threshold for the regime dominated by BA is
analyzed in Appendix B.

FIG. 3. (a) EO measurement with two channels (ch1 and ch2),
with λ/4, WP, and G(τ ) representing the quarter-wave plate, the Wol-
laston prism, and the correlation register. (b) Total second-(red) and
fourth-order (green) contributions to g(τ ) for N = 1011, representing
correlations in the two-channel measurements.

IV. TWO-CHANNEL MODEL

For a two-channel setup [Fig. 3(a)], the probe beam under-
goes a beam-splitting operation before any of the processes
discussed before [see Fig. 1(b)]. The two probe pulses re-
leased from a 50:50 beam splitter not only carry different
phases (reflected and transmitted beams differ in phase by
π/2), but also commuting annihilation and creation opera-
tors due to the admixture of uncorrelated vacuum noise (cf.
Appendix C). Once the first probe pulse meets the NX, its
interactions with the MIR vacuum will generate the BA con-
tributions as discussed above. The second probe pulse reaches
the NX with a time delay τ and interacts not only with that
MIR vacuum, but also with the BA contributions generated
by the passage of the first probe. It will also generate its
own BA contributions that can interact with the first probe.
Each channel output undergoes its own ellipsometry detec-
tion. The signals from the two channels, Ŝch1 and Ŝch2, are
then multiplied before readout, rendering a delay-dependent
signal variance with the properties of a correlation func-
tion: G(τ ) = 1

2C 〈0|{Ŝch2(τ ), Ŝch1(τ )}|0〉 = 1
C g(τ ) with C =

(n3Lωpr41N/c0)2 [17]. The subscripts ch1 and ch2 shall de-
scribe quantities related to the channels 1 and 2, respectively.

We consider a setup in which the directions of the central
wave vectors of the beams in the two channels deviate only
slightly from each other (i.e., kch1 · kch2 ≈ kch1kch2). This al-
lows for consideration of effectively coplanar beam waists in
the NX, as well as nearly collinear phase matching for the
wave-mixing processes. Therefore, the treatment of fields in
terms of the paraxial decomposition remains well justified.
To avoid considerable deviations of output wave vectors from
either kch1 or kch2, only the second set of parameters will be
considered. Due to the limited beam waist, mixing between
modes from different channels during the ellipsometry step
is avoided. For the quantum fluctuations of the probe pulses
[âch1(ω), â†

ch2(ω′)] = 0, leading to 〈{Ŝ (0)
ch1, Ŝ

(0)
ch2}〉 = 0 [cf. (5)].

Consequently, while SN still affects the measurements, the
two-channel equivalent of the base SN does not contribute
to g(τ ). In general, the (time-dependent) signal operators are
given by equations similar to Eq. (4). The cascaded contri-
butions (2) and (3) (for m � 2) are now composed of convo-
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lutions with either Ep,ch2(ω)e−i(ωτ+π/2) or Ep,ch1(ω), splitting
each single-channel contribution Ê (m)

s into 2m−1 terms. Ellip-
sometry conducted with either of these fields then leads to Ŝ ( j)

ch2

or Ŝ ( j)
ch1, respectively (cf. Appendix D). Since oscillations in

τ with NIR frequencies can neither be resolved nor are of
major interest in such an experiment, only contributions to
G(τ ) oscillating at MIR frequencies will be considered.

V. TWO-CHANNEL RESULTS

Figure 3(b) shows g(τ ) with all terms up to fourth order.
The main contribution, which depends on Ê (2)

ch1(τ )Ê (2)
ch2(τ ),

is proportional to N2
∫ ∞

0 d�� (n/n
�

)|R(�)|2 cos(�τ ). This
behavior is also seen in the measured data in Ref. [17] up
to differences in spectral shape chosen for the probe. Con-
tributions from higher-order terms are minor up to N ∼ 1011,
where they become comparable to the second-order contribu-
tions. For N ∼ 108, as in experiments [11,12,17], higher-order
contributions to G(τ ) are negligible.

The characteristic timescale of G(τ ) is similar to that of
the two probe pulses since the multiplied signal is nonzero
only when they share interactions with the same propagat-
ing MIR modes [35] . The oscillations of G(τ ) in Fig. 3(b)
happen with a timescale approximately inverse to the average
probed MIR (angular) frequency and reflect the interfer-
ence between modes from different channels [36,37]. From a
state-evolution perspective, G(τ ) includes interchannel probe-
probe correlations mediated by MIR states, populated or not
(see Appendix G).

VI. CONCLUSIONS

Our results show that in single-channel quantum EO mea-
surements of the electromagnetic vacuum there is a suitable
setup-dependent range of probe intensities to minimize the
contributions from (measurement-)generated MIR photons to
the signal. For small (large) probe intensities, the results are
inevitably contaminated by excessive SN (BA). The photon
numbers where 〈[Ŝ (1)]2〉 ∼ 〈[ŜSN]2〉 represent upper limits
to the experimentally admissible probe intensities to avoid
BA predominance. The BA to the MIR states is inherent to
the EO measurement but the detected MIR signal variance
can be considered effectively BA free (weak measurement)
for small perturbations of the MIR states. Creation of MIR
photons considerably changes the picture of EO sampling
as a potential quantum nondemolition measurement since
notwithstanding its indirect character (with the MIR as sam-
ple and NIR as ancilla), a postselection scheme is needed
to filter components of the sample without generated pho-
tons. Furthermore, the base-SN contribution does not show
up in the averaged correlations measured with two channels,
while enhanced SN contributions appear for probe intensities
orders of magnitude above the experimentally used. Future
works might explore postselection to achieve further BA
evasion.
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APPENDIX A: HIGHER-ORDER CONTRIBUTIONS
TO THE SIGNAL VARIANCE

In this Appendix, we provide the expressions for the
higher-order contributions (in terms of powers of the sus-
ceptibility or of the probe photon number) to the signal
variance. All equations have been derived with the aid
of Eqs. (2)–(4), which give nested convolutions when ap-
plied alternatively m times. The signal operator is given
by the difference between the number operators N̂ (m)

s/z =
4πc0nε0

∫
dω
h̄ω

∫
d2r⊥Ê ′′(m)†

s/z (r⊥, ω)Ê ′′(m)
s/z (r⊥, ω) for the z and

s polarizations, with the double primes denoting the post-
wave-plate electric-field operators. When the expectation
values of quadratic combinations of signal operators with
respect to the vacuum state are taken, the creation opera-
tor from one signal and the annihilation operator from the
other signal will provide the needed delta function [i.e.,
〈âs00(�)â†

s00(�′)〉 = δ(� − �′)] to tie the convolutions in the
two signal operators together. Integrals at the ends of the
nested convolutions give terms of the form (A4), while the
term (A5) appears in the center of larger nested convolutions,
as shown below.

Apart from the main contribution to the signal variance
given by

〈(Ŝ (1) )2〉 = N2

(
n3 Lωp

c0
r41

)2 h̄
∫ ∞

0 d�� (n/n
�

)|R(�)|2
4π2ε0c0nw2

0

,

(A1)
there is another contribution of second order in r41 arising
from the cross term between the SN signal and the signal
arising from the measurement of the field Ê (3)

s (ω) (i.e., the
field generated when the nonlinear mixing with the probe
takes the NIR vacuum field to the MIR and this new generated
MIR field mixes then once again with the probe to give a
NIR field). The respective contribution to the signal variance
is given by

〈{Ŝ (2), ŜSN}〉 = −2C1√
3

∫ ∞

−∞
d��

2c0n2

n
�
dLω

[iζω,� f−(�)R∗(�)],

(A2)
where

Cj = N j+1

(
n3 Lωp

c0
r41

)2 j( h̄

4π2ε0c0nw2
0

) j

(A3)

and j ∈ N. The spatial integral for Ŝ (2) (with w′
0 = w0/

√
3)

gives A(3) = (2/
√

3π2)/w2
0. Note that the variable ω−1 in

Eq. (A2) gets canceled by the ω in ζω,�, so that the result does
not depend on it. For our specific choice of the probe pro-
file, f−(�) = F (�) ≡ 1

2 [ f ∗
+(�) + f−(�)] within the range of

MIR frequencies selected by the phase matching, making the
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integrand an even function of �. Hence, the right-hand side of
Eq. (A2) vanishes.

Before delving into the fourth-order contributions to the
signal variance, it is worth introducing some building-block

functions that will be used through the remainder of the Ap-
pendix:

R(±)
i (�, X, τ ) = 1

2
sinc

[
L�

2c0
(n

�
− ng)

]
e

iL�
2c0

(n
�

−ng )

∫ ∞
−∞ dω α∗

p (ω)αp(ω − �)K (±)
i (ω, X, τ )∫ ∞

0 dω |αp(ω)|2 , (A4)

W (±)
i (�,�′, X, τ ) =

∫ ∞
−∞ dω ωα∗

p (ω − �)K (±)
i (ω, X, τ )αp(ω − �′)∫ ∞

0 dω |αp(ω)|2 , (A5)

G(±,±′ )
i j (�,�′, X,Y, τ ) =

(
d

Lω
3/2
p

2c0n

)−2

ζ ∗
ωp,�

ζωp,�′R(±)
i (�, X, τ )W (±′ )

j (�,�′,Y, τ ). (A6)

The functions K (±)
i can have different shapes depending on

the choice of the index i, namely, K (±)
0 (ω, X, τ ) = θ (±ω),

K (±)
1 (ω, X, τ ) = cos[τ (ω + X )]θ (±ω), and K (±)

2 (ω, X, τ ) =
sin[τ (ω + X )]θ (±ω). Here θ (x) denotes the Heaviside step
function. In the trivial i = 0 case, we have∑

s=±
R(±)

0 (�) = sinc

[
L�

2c0
(n

�
− ng)

]
e

iL�
2c0

(n
�

−ng )

× (1 − |�|/
ω)θ (1 − |�|/
ω) = R(�).
(A7)

There are three fourth-order contributions to the signal
variance. One of them is just the square of the signal asso-
ciated with Ê (3)

s (ω) field mentioned above (i.e., shot-noise
enhancement). The corresponding expression is given by

〈(Ŝ (2) )2〉 = C2

3

∑
t=±

∫ ∞

−∞
d�

∫ ∞

−∞
d�′

× (��′)R∗(�′)G(t,+)
00 (�,�′, 0, 0, 0). (A8)

The second term of same perturbative order results from the
mixing between the main signal Ŝ (1)[δÊs(�)] and the signal
Ŝ (3)[Ê (3)

s (�)], giving

〈{Ŝ (3), Ŝ (1)}〉 = −C2√
2

∑
t,s=±

∫ ∞

−∞
d�

∫ ∞

0
d�′

× (��′)R∗(�′)G(t,s)
00 (�,�′, 0, 0, 0)

n

n�′
.

(A9)

Here, A(4) =
√

2/π3/w3
0 for Ŝ (3) with w′

0 = w0/2. The last
contribution comes from the cross term between the SN and
the signal Ŝ (4)[Ê (5)

s (ω)] [with A(5) = 4/(
√

5π2w2
0 ) for w′ =

w0/
√

5]. This term gives zero variance contribution for our
choice of the probe profile, similarly to Eq. (A2) [because∑

t W (t )
0 (�,�′) = −∑

t W (t )
0 (−�,−�′)]:

〈{Ŝ (4)
EO, ŜSN}〉 = C2√

5

∑
t,s=±

∫ ∞

−∞
d�

∫ ∞

−∞
d�′(��′)

× R(+)∗
0 (�′, 0, 0)G(t,s)

00 (�,�′, 0, 0, 0).
(A10)

APPENDIX B: INFLUENCE OF THE BEAM WAIST
AND ONSET OF CASCADED-CONTRIBUTION SIGNALS

The threshold for the regime dominated by BA is illustrated
in Fig. 4 in dependence of the beam waist radius w0. In
Figs. 4(a) and 4(b), one can see how the minimum of the total
rms signal per photon (at the minimizing N value, Nmin) de-
pends on w0 [normalized by L(set 1) and L(set 2), respectively].
For comparison, we also show the dependencies of the SN
and main ( j = 1) rms signals per photon on w0 at N = Nmin.
One can see that 
S/N (Nmin, L/w0) increases linearly with
L/w0 and its slope is larger than the ones for both the SN
and the main EO contributions, which also grow linearly. One
can therefore expect that increasing the length-to-waist ratio
makes the detection of the vacuum signal more difficult.

APPENDIX C: PRODUCT SIGNAL WITH TWO PROBE
BEAMS

In this Appendix we discuss in more details the subtleties
of the theoretical description in case of the measurement
scheme implemented in Ref. [17]. One of the key features
of this experiment is the use of a beam splitter to convert
a single probe pulse into two pulses of equal durations. The
beam splitter mixes the coherent probe of classical amplitude
αp and its quantum vacuum contribution (described by opera-
tors â) with the vacuum noise (represented by operators âfree)
accessing the classically free port of the device. The resulting
transformation of the incoming probe field is given by

â(out)
1 (ω) = T (ω)â(in)

1 (ω) + R′(ω)â(in)
2 (ω)

= T (ω)αp(ω) + [T (ω)â(ω) + R′(ω)âfree(ω)]

= T (ω)αp(ω) + âp,ch1(ω),

â(out)
2 (ω) = R(ω)â(in)

1 (ω) + T ′(ω)â(in)
2 (ω)

= R(ω)αp(ω) + [R(ω)â(ω) + T ′(ω)âfree(ω)]

= R(ω)αp(ω) + âp,ch2(ω).

(C1)

It is worth mentioning that this transformation applies for all
frequencies, including the MIR frequency range, in which
αp(ω) = 0. The new annihilation operators âp,ch1 and âp,ch2
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FIG. 4. Minimum of 
S/N as a function of w0. The solid blue line shows the total 
S/N value. The dotted black (dashed red) lines
represent the SN (main EO) contributions. The insets show how the probe photon number that minimizes 
S/N , Nmin, varies as a function of
w0 (also normalized as L/w0 ). (a), (b) Correspond to parameter sets 1 and 2, respectively, apart from the value of w0.

are associated with the two channels employed in the exper-
iment. One interesting feature of the output operators is their
commutativity: [âp,ch1, â†

p,ch2] = T R∗ + R′T ′∗ = 0 under the
assumption of a dissipationless beam splitter. As a result, the
product of two signals, each of which is a functional of beam-
splitter creation and annihilation output operators originating
from a different channel, has vanishing expectation value.
A less pronounced but also important feature is the phase
introduced by the beam splitter on the reflected components
of the fields. For the sake of agreement with the particular
experimental realization, we shall consider an ideal 50:50
beam splitter without dispersion, with T = T ′ = 1/

√
2 and

R = R′ = i/
√

2.
To account for the relative delay between modes in differ-

ent channels, we consider the channel-two modes to be time
shifted by a delay τ relative to the channel-one modes. This
effectively introduces a factor e−i�τ on the positive-frequency
components of the channel-two fields when working in the
frequency domain. Assuming that the fields from both chan-
nels meet at the NX in a quasiparallel configuration (i.e.,
the angle between them is �5◦), so that cross-section and
propagation-length mismatch can be neglected at the focus
of the beams and the frequency decomposition of fields can
substitute the wave-vector one, wave mixing will involve con-
tributions from both channels. Hence, the τ -dependent phase
(with a suitable frequency argument) can appear at any (if
not several) steps when applying Eqs. (2) and (3). There are,
however, constraints on the possibilities of combination of
phase factors in the convolutions of field operators with (time-
shifted) probe pulses, based on the actual spatial distribution
of output wave vectors. Since k� effectively does not affect
the direction of kω,ch1/2, so that kω,ch1/2 ± k� ≈ kω±�,ch1/2 for
either channel, combinations of fields from different channels
should be such that the sum of wave vectors involved in the
nested convolutions aligns with the input wave vector of one
of the channels:

∑
i ki ≈ kch1/2. This leads to a set of effective

selection rules:
(i) Convolution of two field contributions from the same

channel [e.g., by consecutive application of Eqs. (2) and (3)

with the same probe] does not contribute to the final wave
vector since such a same-channel convolution involves two
wave vectors that are opposite to each other.

(ii) For fields that are functionals of the NIR annihilation
and creation operators, contributions to the expectation value
of a product of two signal operators will not vanish only when
both multiplied signals depend on operators from the same
channel: the output in one of the channels should carry NIR
annihilation and creation operators from the other channel or,
equivalently, the sum of wave vectors corresponding to a given
Ê (m)

s,ch2/1(ω) should take the input vector kch1/2 of δÊs,ch1/2(ω)
to the output kch2/1.

(iii) Only odd total numbers of τ -dependent phase factors
distributed between the nested convolutions in both Ê (m)

s,ch1(ω)

and Ê (m′ )
s,ch2(ω) lead to cross signals with oscillations at MIR

frequencies.
The ellipsometry step takes place independently for each

channel, with channel-one fields being superposed with Ep,ch1

and channel-two fields with Ep,ch2, respectively. For this rea-
son, the base SN signals in each channel commute with each
other [these signals in channels one and two are proportional
to integrals over âp,ch1(ω) and âp,ch2(ω), respectively, as well
as their corresponding conjugates]. This commutation relation
is what allows the measurement of the product of signals
from different channels to have its base SN contribution re-
duced to negligible values over a large enough averaging
sample, at least as long as SN enhancement does not be-
come appreciable. Upon multiplication of the signals from
the two channels, each signal-variance component treated
in the previous section will now give rise to a plethora of
time-dependent components, many of which oscillate with
frequencies in the bandwidth of the probe. The latter com-
ponents will not be considered in this work since with their
high-frequency oscillations they effectively just average out to
zero in the discussed experiment. With the purpose of compar-
ison, we shall consider the beam-splitter output probes to have
the same intensity as the probes used in the single-channel
calculations.
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APPENDIX D: CORRELATION FUNCTIONS

Upon application of the selection rules introduced in the
Appendix C it is possible to reduce the total of 56 contribu-
tions to the correlation function (up to fourth order) to just
a few. At second order, only two out of the eight possible
outcomes fulfill the selection rules. We start by the description
of the mainly contributing second-order term, the squared
MIR vacuum signal of the form

1

2

〈
Ŝ (1)

ch1Ŝ
(1)
ch2 + Ŝ (1)

ch2Ŝ
(1)
ch1

〉
(τ )

= C1

∫ ∞

−∞
d��

n

n
�

|R(�)|2cos(�τ ). (D1)

Its time dependence comes from the delay in one of the
channels, introducing an e−i(ω−�)τ phase factor on the
(channel-two) field that mixes with the MIR vacuum in Eq. (2)
and an e−iωτ on the probe that takes part in the (channel-two)
ellipsometry, resulting in the overall �τ dependence. The
other contribution of second order reads

1

2

〈{
Ŝ (2)

ch1, Ŝ
(0)
ch2

} + {
Ŝ (0)

ch1, Ŝ
(2)
ch2

}〉
(τ ) = −2C1√

3

∫ ∞

−∞
d�� (n/n

�
)

×
[

iζω,� f−(�)R∗(�) cos(�τ )

/(
d

lω

2c0n

)]
.

(D2)
This lowest-order cross-talk contribution results when the
NIR electric-field fluctuations in one channel are down-
converted to the MIR and then up-converted to the NIR at
another channel. Under our approximations, this contribution
vanishes.

On top of the cross-signal contributions (D1) and (D2),
there are still contributions of higher perturbative orders. The
next-order terms depend on N3, and eventually overcome the
N2 terms as the probe-pulse intensity is increased. These
N3-dependent terms are similar in nature to the ones derived
for the single-channel case, but differ in the many ways in
which the probe pulses from the two channels can combine
with the quantum components of the electromagnetic field.
We shall therefore present them in the same order as we did in
Appendix A.

The fourth-order contribution related to the E (3)
s (ω) field

can be split into three parts: 1
2 〈Ŝ (2)

ch1Ŝ
(2)
ch2 + Ŝ (2)

ch2Ŝ
(2)
ch1〉(τ ) =

V (a)
{2,2}(τ ) + V (b)

{2,2}(τ ) + V (c)
{2,2}(τ ). Here, V (a)

{2,2} results from two
equivalent processes: one in which the output of wave vector
kch2 − k′

ch2 + k′′
ch2 is multiplied with the output corresponding

to kch2 − k′
ch2 + k′′

ch1 and another in which the ch1 and ch2
subscripts are swapped.1 V (b)

{2,2} originates from the product of
field contributions with wave vectors kch1 − k′

ch2 + k′′
ch2 and

kch1 − k′
ch1 + k′′

ch2, while V (c)
{2,2} results from the product of

1In the schematic wave-vector description kch2 − k′
ch2 + k′′

ch1, the
unprimed vector kch2 represents the wave vector of the NIR operator
δÊch2(ω), while the primed and doubly primed vectors stand for the
wave vectors of the probe pulses participating in the first and second
convolutions, respectively, that generate the output field contribution.

contributions with wave vectors kch2 − k′
ch2 + k′′

ch1 and kch2 −
k′

ch1 + k′′
ch1. Explicitly we find the following expressions:

V (a)
{2,2}(τ ) = C2

3

∑
t,s=±

∫ ∞

−∞
d�

∫ ∞

−∞
d�′(��′)R(s)∗

0 (�′, 0, 0)

× G(t,+)
00 (�,�′, 0, 0, 0)[cos(�τ ) + cos(�′τ )],

(D3)

V (b)
{2,2}(τ ) = C2

3

∑
s=±

∑
i=1,2

∫ ∞

−∞
d�

∫ ∞

−∞
d�′(��′)R(s)∗

0

× (�′, 0, 0)G(+,+)
ii (�,�′,�′, 0, τ ), (D4)

and

V (c)
{2,2}(τ ) = C2

3

∑
s=±

∑
i=1,2

∫ ∞

−∞
d�

∫ ∞

−∞
d�′(��′)R(+)∗

i

× (�′,�, τ )G(s,+)
0i (�,�′, 0, 0, τ ). (D5)

The behavior of each of the above contributions in depen-
dence on the time delay τ is illustrated in Fig. 5.

The mixing between the main signal Ŝ (1)[δÊs(�)]
and Ŝ (3)[Ê (3)

s (�)] in the considered two-channel setup
gives 1

2 〈Ŝ (3)
ch1Ŝ

(1)
ch2 + Ŝ (1)

ch1Ŝ
(3)
ch2 + Ŝ (3)

ch2Ŝ
(1)
ch1 + Ŝ (1)

ch2Ŝ
(3)
ch1〉(τ ) =

V (a)
{1,3}(τ ) + V (b)

{1,3}(τ ). Here, V (a)
{1,3} results from four equivalent

processes: one in which the output of wave vector
k� + k′

ch1 − k′′
ch1 + k′′′

ch1 is multiplied with the output of
vector k� + k′

ch2, another in which the output of wave
vector k� + k′

ch2 − k′′
ch2 + k′′′

ch1 is multiplied with the output
with k� + k′

ch2, and the other two processes corresponding
to swapped indices ch1 and ch2. V (b)

{1,3} originates from
the product of field contributions with wave vectors
k� + k′

ch1 − k′′
ch2 + k′′′

ch2 and k� + k′
ch2 and the corresponding

index-swapped counterpart. Explicitly we have

V (a)
{1,3}(τ ) = −C2√

2

∑
t,s,u=±

∫ ∞

−∞
d�

∫ ∞

0
d�′(��′)R(u)∗

0 (�′, 0, 0)

× G(t,s)
00 (�,�′, 0, 0, 0)[cos(�τ ) + cos(�′τ )]

n

n�′
(D6)

and

V (b)
{1,3}(τ ) =−C2√

2

∑
t,s=±

∑
i=1,2

∫ ∞

−∞
d�

∫ ∞

0
d�′(��′)

n

n�′

× R(s)∗
0 (�′, 0, 0)G(t,t )

ii (�,�′,�′, 0, τ ).

(D7)

The behaviors of V (a)
{1,3}(τ ) and V (b)

{1,3}(τ ) can be seen in Fig. 6.
The last fourth-order contribution, from the cross term

between the base-SN signal and the signal Ŝ (4)[Ê (5)(ω)] has
the form 1

2 〈Ŝ (4)
ch1Ŝ

(0)
ch2 + Ŝ (0)

ch1Ŝ
(4)
ch2 + Ŝ (4)

ch2Ŝ
(0)
ch1 + Ŝ (0)

ch2Ŝ
(4)
ch1〉(τ ) =

V (a)
{0,4}(τ ) + V (b)

{0,4}(τ ) + V (c)
{0,4}(τ ). As in the previous case, V (a)

{0,4}
results from four equivalent processes: one in which the
output of wave vector kch2 − k′

ch2 + k′′
ch2 − k′′′

ch2 + k′′
ch1 is

multiplied with the SN output of vector kch2, another in which
the kch2 − k′

ch2 + k′′
ch1 − k′′′

ch1 + k′′
ch1 contribution combines

with the same SN output, and the processes with ch1 and ch2
labels swapped. V (b)

{0,4} originates from the product of field con-
tributions with wave vectors kch2 − k′

ch2 + k′′
ch1 − k′′′

ch2 + k′′
ch2

and kch2, while V (c)
{0,4} results from the product of contributions
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FIG. 5. Top: V (a)
{2,2}(τ )/N3. Center: V (b)

{2,2}(τ )/N3. Bottom:

V (c)
{2,2}(τ )/N3.

with wave vectors kch2 − k′
ch1 + k′′

ch1 − k′′′
ch2 + k′′

ch1 and kch2

(and the corresponding terms with swapped indices). The
corresponding expressions are

V (a)
{0,4}(τ ) = C2√

5

∑
t,s=±

∫ ∞

−∞
d�

∫ ∞

−∞
d�′(��′)R(+)∗

0 (�′, 0, 0)

× G(t,s)
00 (�,�′, 0, 0, 0)[cos(�τ ) + cos(�′τ )],

(D8)

FIG. 6. Top: V (a)
{1,3}(τ )/N3. Bottom: V (b)

{1,3}(τ )/N3.

V (b)
{0,4}(τ ) = C2√

5

∑
t=±

∑
i=1,2

∫ ∞

−∞
d�

∫ ∞

−∞
d�′(��′)

× R(+)∗
0 (�′, 0, 0)G(t,t )

ii (�,�′,�′, 0, τ ),

(D9)

and

V (c)
{0,4}(τ ) = C2√

5

∑
t=±

∑
i=1,2

∫ ∞

−∞
d�

∫ ∞

−∞
d�′(��′)

× R(+)∗
i (�′,�, τ )G(t,+)

0i (�,�′, 0, 0, τ ).

(D10)

Because both V (a)
{0,4}(τ ) and V (b)

{0,4}(τ ) turn out to vanish on the
grounds of symmetry [for the same reason why Eq. (A10) van-
ishes], V (c)

{0,4}(τ ) is the only nonvanishing term in this series; its
profile is shown in Fig. 7.

There is a minute difference between Nmin in Fig. 4 and the
corresponding N at which the fourth-order contributions to the
BA starts to dominate in the two-channel measurement, and it
is related to the splitting of each single-channel contribution
Ê (m)

s into 2m−1 terms when two pulses are present.
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FIG. 7. V (c)
{0,4}(τ )/N3 profile.

APPENDIX E: PHASE MATCHING, DISPERSION,
AND ABSORPTION

For the first set of parameters, the RI in the MIR range up
to 150 THz is modeled as [40]

n(set1)
� = Re

√
6.7

[
1 + (6.2)2 − (5.3)2

(5.3)2 − �̃2 − 0.09i|�̃|

]
, (E1)

where �̃ = �/(2π × 1012 THz). The corresponding gating
function is shown in Fig. 8. Since an absorption peak is found
at around 5 THz, a cutoff is applied for frequencies below 18
THz when calculations involving the first set of parameters
are considered.

Consideration of the second set of parameters requires the
usage of a different RI profile due to the extra low-frequency
band selected by the gating function, partially overlapping
with the absorption peak of the medium. In this case, the
following dispersion profile is utilized [17]:

n� = −0.0164 �̃6 + 0.1478
∣∣�̃∣∣5 − 0.5185 �̃4

+ 0.8974
∣∣�̃∣∣3 − 0.7782 �̃2 + 0.3283

∣∣�̃∣∣ + 3.0657.

(E2)

On top of that, an additional damping function is included in
the gating function for the second parameter set in order to
account for absorption. The absorption profile (extracted from

FIG. 8. (Full cyan) Gating function |R(�)|2�/ω(set 1)
p for the first

set of parameters considered (scaled up by factor 15). (Dotted gray)
Corresponding phase-matching function |ζω,�|/(d Lω

2c0n ).

FIG. 9. (Full cyan) Gating function |R(�)|2Abs(�)�/ω(set 2)
p for

the second set of parameters considered (scaled up by 1500). (Dotted
gray) Corresponding phase-matching function |ζω,�|/(d Lω

2c0n ).

Ref. [17]) is given by

Abs(�) = exp[−0.000 618 �̃8 − 0.000 087 9 �̃6]. (E3)

Fortunately, the effect from taking Eq. (E3) into account
is marginal, so that the validity of the paraxial quantization
is not compromised. This also justifies the neglection of ab-
sorption when treating the two-channel experiment, in order to
decrease computational effort. The resulting phase-matching
function (including absorption) is shown in Fig. 9.

APPENDIX F: χ(3) CONTRIBUTION

An aspect that might arise when accounting for cascaded
nonlinear processes is the possibility of four-wave mixing
taking place. The main contribution to the nonlinear polar-
ization leading to the generation of such field components is
proportional to the susceptibility χ (3) and to the combination
of terms E2

p (t )δÊ (t ). Under the assumption of Kleinman sym-
metry [29], there are six χ (3) components that can generate
measurable field components: χ (3)

xxzz = χ (3)
yyzz, χ

(3)
xzxz = χ (3)

yzyz, and
χ (3)

xzzx = χ (3)
yzzy. In fact, for a probe pulse propagating through

a ZnTe crystal along the [110] direction and polarized along
the [001] axis, the (third-order) nonlinear-polarization com-
ponents generating additional electric fields are

P̂(3)
x (t ) = ε0(χ (3)

xxzz + χ (3)
xzxz + χ (3)

xzzx )E2
p (t )δÊx(t ) (F1)

and

P̂(3)
y (t ) = ε0(χ (3)

yyzz + χ (3)
yzyz + χ (3)

yzzy)E2
p (t )δÊy(t ). (F2)

In terms of the basis spanned by ez, es, and ek , this polarization
has a longitudinal ek component, which does not generate any
outgoing field contribution, and a es component

P̂(3)
s (t ) = ε0(χ (3)

xxzz + χ (3)
xzxz + χ (3)

xzzx )E2
p (t )δÊs(t ), (F3)

with δÊs = 1√
2
(δÊy − δÊx ). For brevity, we denote X =

χ (3)
xxzz + χ (3)

xzxz + χ (3)
xzzx. From our definition, the spectral decom-
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position of this expression gives

P(3)
s (ω) = ε0X

∫ ∞

−∞
dω′I (ω − ω′)δÊs(ω

′)

× e
irk
c0

[ω′nω′+(ω−ω′ )nω−ω′−ωnω], (F4)

in which

I (�) =
∫ ∞

−∞
dω E∗

p (ω − �)Ep(ω)e
irk
c0

[ωnω−(ω−�)nω−�−�n�]
.

(F5)

With this polarization, we find the following approximate
solution to the paraxial equation:

Êχ (3)

s (ω) = XLω

2nc0

∫ ∞

−∞
dω′dω′′E∗

p (ω′ + ω′′ − ω)Ep(ω′)δÊs(ω
′′)sinc

{
L

2c0
[ω′′nω′′ − (ω′ + ω′′ − ω)nω′+ω′′−ω − ωnω + ω′nω′]

}
.

(F6)

When all the three frequencies in Eq. (F6) are in
the NIR, sinc{ L

2c0
[ω′′nω′′ − (ω′ + ω′′ − ω)nω′+ω′′−ω − ωnω +

ω′nω′ ]} ≈ 1. This allows one to write the signal operator re-
sulting after the ellipsometry step as (note that even though
the spatial argument of the electric field has been omitted, the
effect of the beam waist is accounted for in the value of A(3)

used for the signal operator)

Ŝχ (3) = 4
√

ε0XLκi

w2
0

√
3π h̄c0n

∫ ∞

0
dω

∫ ∞

−∞
dω′√ω′

×
√

n

nω′
F (ω′ − ω)α∗

p (ω)â(ω′) + H.c. (F7)

Equation (F7) does not give any contributions at second order
since its cross term with Ŝ (0) vanishes. At fourth order, only
the square of Eq. (F7) contributes and gives

〈[Ŝχ (3)
]2〉 =4N3

3

(
Lωp

nc0
X

)2( h̄

4π2ε0c0nw2
0

)2 ∫ ∞

0
dω

∫ ∞

0
dω′

×
∫ ∞

0
dω′′ n

nω′
ω′F (ω′ − ω)F ∗(ω′ − ω′′)

× α∗
p (ω)αp(ω′′)

β
. (F8)

Precise values of the relevant tensor components of χ (3)

cannot, to the best of our knowledge, be found reliably in

the literature. Indirect χ (3) measurements based on the RI
modulation through Kerr effect lead to a wide span of reported
values [41–44]. The large fluctuations in the found values for
linear combinations of χ (3) tensor components can be traced
back to the sampled frequency ranges, with measurements
near the two-photon-absorption frequency (when the sum of
the frequencies of two photons matches the band gap of the
NX) leading to resonantly enhanced values of the third-order
nonlinear susceptibility. At such frequencies, undesired ef-
fects like crystal heating (through generation of electron-hole
pairs) and probe depletion might take place. For ZnTe, used
in Ref. [17], the band gap corresponds to a frequency of

ω ≈ 550 THz, while for AgGaS2, used in Ref. [10], the
value is 
ω ≈ 660 THz. Adopting the χ (3) value extracted
from Ref. [43] and assuming all tensor components in X to
be the same, one arrives at 〈[Ŝχ (3)

]2〉 ∼ 10−21N3 for the first
set of parameters. 〈[Ŝχ (3)

]2〉 might be as large as (or possibly
larger than) the signal-variance contributions originating from
cascaded χ (2) processes (depending on the choice of NX
and probe frequency range). The contribution described by
Eq. (F8), however, relates to a process of nature similar to
self-phase modulation and therefore affects solely the electric-
field fluctuations in the probe pulse (SN enhancement). These
χ (3) contributions have no connections to the sampled MIR
vacuum and can be suppressed in a measurement (e.g., by
investigating and avoiding the presence of self-phase modu-
lation in the spectrum of the probe pulse), therefore justifying
their neglection in our paper.

APPENDIX G: QUANTUM-STATE EVOLUTION

The quantum states participating in EO sampling involve two polarizations and an ultrabroad-band continuous range of
frequencies. The treatment of a multimode problem can be circumvented by the use of nonmonochromatic modes covering
the involved NIR and the MIR frequency ranges, leading to an effective description of the probe-driven interaction as a
two-mode squeezing between the s-polarized MIR and NIR modes [22]. In the subcycle sampling regime, the corresponding
nonmonochromatic mode operators exhibit some unusual properties that can be related to the presence of virtual particles. As
an example, the MIR annihilation operator does not completely annihilate the vacuum state |{0}�〉 defined over the continuous
set of the MIR frequencies. For the sake of simplicity, we shall ignore these properties. If we additionally adopt a fully quantum
description of the probe, the state evolution can then be treated in terms of an effective three-mode interaction, with corresponding
operators âMIR, âNIR, and âp for the s-polarized MIR, s-polarized NIR, and z-polarized NIR (probe), respectively. One can then
enforce energy conservation on the Hamiltonian (neglecting time-ordering effects) and exclude up-conversion to frequencies
above the NIR (as well as the inverse process), so that the simplified action Ŝ = ∫

dtĤ becomes

Ŝ =Aâ†
MIRâ†

NIRâp + A∗âMIRâNIRâ†
p + CâMIRâ†

NIRâp + C∗â†
MIRâNIRâ†

p (G1)
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and the unitary evolution operator reads as

Û = exp{Aâ†
MIRâ†

NIRâp − A∗âMIRâNIRâ†
p + CâMIRâ†

NIRâp − C∗â†
MIRâNIRâ†

p}, (G2)

with A = −iA and C = −iC being coefficients depending on the field quantization considered and on the properties, geometry,
and modeling of the NX (so that A and C are proportional to linear combinations of elements of the nonlinear susceptibility).
If for all three considered modes neither annihilation nor creation is favored relative to each other (what could happen, e.g., by
considering frequencies close to the NX resonance), |A| = |C| holds.

For the EO sampling, we consider the input state |α, 0, 0〉, where the first, second, and third entries stand for the probe
(z-polarized NIR mode), MIR, and s-polarized NIR modes, respectively. The probe is initially in the coherent state of amplitude
α generated by a corresponding displacement operator, while both the MIR and s-polarized NIR modes are in their vacuum
states. Through Taylor expansion, the first-order correction to the initial state caused by Eq. (G2) is given by

|out1〉 = lnÛ |α, 0, 0〉 = Aα|α, 1, 1〉, (G3)

while the second-order one reads as

|out2〉 = 1

2
ln2Û |α, 0, 0〉 =

(
A2α2|α, 2, 2〉 − 1

2
|A|2αâ†

p|α, 0, 0〉 + 1√
2
ACα2|α, 0, 2〉 − 1√

2
AC∗αâ†

p|α, 2, 0〉
)

. (G4)

The conjunction of quarter-wave plate, Wollaston prism, and photon detection leads to the signal operator

Ŝ = i
(
â†

pâNIR − â†
NIRâp

)
, (G5)

which can be applied on (G3) and (G4) to give

|sig1〉 = Ŝ|out1〉 = iAα(â†
p|α, 1, 0〉 −

√
2α|α, 1, 2〉) (G6)

and

|sig2〉 = Ŝ|out2〉 = i

[√
2A2α2â†

p|α, 2, 1〉 −
√

3A2α3|α, 2, 3〉 + 1

2
|A|2α(â†

pα + 1)|α, 0, 1〉 + ACα2â†
p|α, 0, 1〉

−
√

3

2
ACα3|α, 0, 3〉 + 1√

2
AC∗α(â†

pα + 1)|α, 2, 1〉
]
. (G7)

Together with

|sig0〉 = Ŝ|α, 0, 0〉 = −iα|α, 0, 1〉, (G8)

which gives the (shot-noise) contribution 〈sig0|sig0〉 = |α|2, and 〈Ŝ〉 = 0, the expectation value for the signal variance up to the
second order is given by 〈Ŝ2〉 = 〈sig0|sig0〉 + 〈sig1|sig1〉 + 〈sig0|sig2〉 + 〈sig2|sig0〉, with

〈sig1|sig1〉 = |A|2|α|2(1 + 3|α|2) (G9)

and

〈sig0|sig2〉 + 〈sig2|sig0〉 = −|A|2|α|2 − (|A|2 + AC + A∗C∗)|α|4. (G10)

In other words, the total signal variance takes the form

〈Ŝ2〉 = |α|2 + (2|A|2 − AC − A∗C∗)|α|4, (G11)

where the EO term is proportional to |α|4 ∝ N2. Note that |out1〉 (which has the same MIR state as |sig1〉) contains a MIR
photon, while |out2〉 contains contributions from states both with and without MIR photons, but only the latter contribute to the
signal at second order. It is insightful to reconnect this state-evolution approach to the Heisenberg-picture calculations presented
in this paper. One can notice that 〈sig1|sig1〉 and 〈sig0|sig2〉 + 〈sig2|sig0〉 are related to both 〈α, 0, 0|[Ŝ (1)]2|α, 0, 0〉 = 〈[Ŝ (1)]2〉
[the superscript (1) here denotes first-order operator evolution, as in the main text] and 〈Ŝ (2)Ŝ (0)〉 + 〈Ŝ (0)Ŝ (2)〉 since

〈[Ŝ (1)]2〉 =〈[Ŝ, lnÛ ]2〉 = −〈lnÛ Ŝ2lnÛ 〉 + 〈[lnÛ Ŝ]2〉 − 〈Ŝln2Û Ŝ〉 + 〈[ŜlnÛ ]2〉 (G12)

and

〈{Ŝ (2), Ŝ (0)
}〉 =1

2
〈[[Ŝ, lnÛ ], lnÛ ]Ŝ〉 + 1

2
〈Ŝ[[Ŝ, lnÛ ], lnÛ ]〉 = 1

2
〈ln2Û Ŝ2〉 + 1

2
〈Ŝ2ln2Û 〉 − 〈[lnÛ Ŝ]2〉

+ 〈Ŝln2Û Ŝ〉 − 〈[ŜlnÛ ]2〉. (G13)

When combining Eqs. (G12) and (G13), the terms that do not lead to either 〈sig1|sig1〉 or 〈sig0|sig2〉 + 〈sig2|sig0〉 mutually
cancel. Note that lnÛ is anti-Hermitian, so that 〈out1| = −〈α, 0, 0|lnÛ and therefore 〈[Ŝ (1)]2〉 + 〈Ŝ (2)Ŝ (0)〉 + 〈Ŝ (0)Ŝ (2)〉 =
〈sig1|sig1〉 + 〈sig0|sig2〉 + 〈sig2|sig0〉. The terms that mutually cancel, however, are still present in the evolved signals and result
in contributions to the signal variance arising from Ŝ (1) and Ŝ (2) that carry contributions from both |sig1〉 and |sig2〉.
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Explicit evolution of the signal operator (G5) results in

Ŝ (1) = −i[n̂p − n̂NIR][(A − C∗)â†
MIR − (A∗ − C)âMIR] (G14)

and

Ŝ (2) = i

2
(|A|2 − |C|2)[n̂p − n̂NIR][â†

pâNIR − â†
NIRâp]

− i[Aâ†
MIRâ†

NIRâp + A∗âMIRâNIRâ†
p + CâMIRâ†

NIRâp + C∗â†
MIRâNIRâ†

p][(A − C∗)â†
MIR − (A∗ − C)âMIR]. (G15)

It is worth mentioning that by considering in this paper only nested convolutions linear in the unperturbed quantum fields δÊ , we
are keeping solely the terms proportional to n̂p = â†

pâp in the above equations. These are the terms that give the |α|4 contributions
to the signal variances.

Using Eq. (G15), one can calculate

{Ŝ (0), Ŝ (2)} = − (|A|2 − |C|2){n̂p(n̂NIR + 1) − n̂NIR(n̂p + 1) − (â†
p)2â2

NIR + (â†
NIR)2â2

p

+ [n̂p − n̂NIR][−n̂p(n̂NIR + 1) − n̂NIR(n̂p + 1) + (â†
p)2â2

NIR − (â†
NIR)2â2

p]}
+ {2[Aâ†

MIRâ†
NIRâp + A∗âMIRâNIRâ†

p + CâMIRâ†
NIRâp + C∗â†

MIRâNIRâ†
p](â†

pâNIR − â†
NIRâp)

+ (n̂p − n̂NIR)[(A + C∗)â†
MIR + (A∗ + C)âMIR]}[(A − C∗)â†

MIR − (A∗ − C)âMIR], (G16)

which leads to

〈{Ŝ (2), Ŝ (0)}〉 = −(|A|2 + |C|2 − AC − A∗C∗)|α|2 + (|A|2 − |C|2)|α|4. (G17)

Similarly,

〈[Ŝ (1)]2〉 = (|A|2 + |C|2 − AC − A∗C∗)(|α|2 + |α|4). (G18)

It is clear that the above equations are linear combinations of (G9) and (G10), emphasizing the fact that both 〈Ŝ (2)Ŝ (0)〉 +
〈Ŝ (0)Ŝ (2)〉 and 〈[Ŝ (1)]2〉 contain contributions from populated MIR states. When the relation |A| = |C| holds, the |α|4-dependent
term in 〈Ŝ (2)Ŝ (0)〉 + 〈Ŝ (0)Ŝ (2)〉 vanishes, in agreement with Eq. (A2).

For a two-channel setup, similar calculations can be performed using the initial state |αch1, αch2, 0MIR, 0NIR,ch1, 0NIR,ch2〉.
The signal operator has to be replaced by two operators: Ŝch1 = i(â†

p,ch1âNIR,ch1 − â†
NIR,ch1âp,ch1) and Ŝch2 = i(â†

p,ch2âNIR,ch2 −
â†

NIR,ch2âp,ch2). Analogously, in the evolution operator in place of Aâpâ†
NIRâ†

MIR one should consider Ach1âp,ch1â†
NIR,ch1â†

MIR +
Ach2âp,ch2â†

NIR,ch2â†
MIR [âMIR = (âMIR,ch1 + iâMIR,ch2)/

√
2], with similar replacements for the other terms. This can be clearly

seen, e.g., for the first-order state

|out′1〉 =Ach1αch1|αch1, αch2, 1, 1, 0〉 + Ach2αch2|αch1, αch2, 1, 0, 1〉, (G19)

which can generate two contributions

|sig′
1,ch1〉 = iAch1αch1â†

p,ch1|αch1, αch2, 1, 0, 0〉 − i
√

2Ach1α
2
ch1|αch1, αch2, 1, 2, 0〉 − iAch2αch1αch2|αch1, αch2, 1, 1, 1〉 (G20)

and

|sig′
1,ch2〉 = iAch2αch2â†

p,ch2|αch1, αch2, 1, 0, 0〉 − i
√

2Ach2α
2
ch2|αch1, αch2, 1, 0, 2〉 − iAch1αch1αch2|αch1, αch2, 1, 1, 1〉. (G21)

The cross-signal contribution to the variance (relevant for the corresponding experiment) then reads

〈sig′
1,ch1|sig′

1,ch2〉 + 〈sig′
1,ch2|sig′

1,ch1〉 = 2(A∗
ch1Ach2 + Ach1A∗

ch2)|αch1αch2|2. (G22)

The other second-order term gives

〈sig′
0,ch1|sig′

2,ch2〉 + 〈sig′
2,ch2|sig′

0,ch1〉 + 〈sig′
2,ch1|sig′

0,ch2〉 + 〈sig′
0,ch2|sig′

2,ch1〉
= −(Ach1Cch2 + Ach2Cch1 + A∗

ch1C∗
ch2 + A∗

ch2C∗
ch1)|αch1αch2|2. (G23)

Note that these results are different from the corresponding ones for a single channel (in the sense that one cannot recover the
latter by simply setting αch1 = αch2).

Since the calculations in this section serve a merely illustrative purpose, we shall refrain from going to fourth order here. It is
worth noting, however, that these results are expected from the complete calculations shown in the paper in the limit of a gating
function proportional to a Dirac delta distribution in frequency.
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