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Simultaneous transient dispersive readout of multiple spin qubits
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We propose a paradigm of multiplexed dispersive qubit measurement performed while the qubits dephase.
A Laplace transformation of the time-dependent cavity response allows to separate contributions from multiple
qubits coupled to the same resonator mode, thus allowing for simultaneous single-shot readout. With realistic
parameters for silicon spin qubits we find a competitive readout fidelity, while the measurement time compares
favorably to conventional dispersive readout. We extend the multiplexed readout method to quantum nondemo-
lition measurements using auxiliary qubits.
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I. INTRODUCTION

Fast high-fidelity readout is a key requirement to any qubit
implementation [1], in particular in view of quantum error
correction [2–4]. The use of dispersively coupled microwave
resonators [5] was pioneered by superconduction qubits [6–8].
Dispersive readout makes use of a qubit-state dependent shift
in the resonance frequency of the resonator. Similar tech-
niques are now in reach for spin qubits in semiconductor
quantum dots (QDs) [9,10] which have demonstrated strong
spin-photon coupling [11–13] mediated by artificial spin-orbit
coupling in a double QD (DQD) [14,15]. The dispersive read-
out of a single spin qubit was experimentally demonstrated
[11,16] and theoretically optimized [17,18].

To scale up quantum processors and to facilitate fault-
tolerant quantum computation, it is desirable to speed up
qubit measurements by reading out multiple qubits simulta-
neously. With several qubits dispersively coupled to the same
resonator, however, it is challenging to distinguish the contri-
butions of the individual qubits [19–21], although parametric
or dissipative dynamics allow a certain enhancement [22–24].
Readout with specialized electronics for each qubit [25] in-
troduces bulky components and thus limits scalability. In the
context of superconducting qubits it is now common to use
one readout resonator with individual frequency per qubit cou-
pled to a shared microwave feedline [26–30]. This approach is
clearly not optimal for spin qubits, given their small size and
their high density, compared to the space requirement of an
on-chip microwave resonator. While gate-dispersive sensing
[31–36] has motivated research efforts towards multiplexed
spin qubit readout [37–40], a satisfying and reliable solution
for fast simultaneous multispin readout is still lacking at the
moment.

In this article we propose a cavity-based multiqubit readout
in the dispersive regime relying on transient qubit-cavity inter-
action terms, illustrated in Fig. 1. The signals stemming from
different qubits coupled to the same resonator can be distin-
guished by a Laplace transform, allowing to read out multiple
qubits simultaneously. We analyze the readout fidelity and
discuss optimal operating regimes. The derivation of the un-
derlying equations also applies to other qubit implementations

whose Hamiltonian can be cast into the form of the dispersive
Hamiltonian, Eq. (5), for example transmon qubits, however,
we focus on silicon-based spin qubits, since we estimate that
this platform can benefit the greatest from our results.

This article is organized as follows. In Sec. II the model
of an ensemble of spin qubits dispersively coupled to a single
resonator mode is introduced. In Sec. III the proposed mea-
surement procedure is outlined and, subsequently, in Sec. IV
the readout fidelity is derived for a single-qubit readout and
then generalized to the case of multiple qubits.

II. MODEL

We consider multiple DQDs in an inhomogeneous mag-
netic field, where the μth DQD is occupied by a single
electron and is described by H (μ)

d = H (μ)
m + H (μ)

z , with

H (μ)
m = 1

2εμτ ′(μ)
z + t (μ)

c τ ′(μ)
x , (1)

H (μ)
z = 1

2 B(μ)
z σ ′(μ)

z + 1
2 b(μ)

x τ ′(μ)
z σ ′(μ)

x , (2)

where τ′ (μ) (σ′ (μ)) is the vector of Pauli operators for the
position (spin) of the electron. Then, εμ is the energy detuning
between the left and right QD levels, tc is the spin-conserving
tunneling matrix element, B(μ)

z is the Zeeman splitting, and
b(μ)

x is the difference in transverse magnetic field between the
QDs in energy units [15,17].

We assume that all DQDs couple to a single cavity mode
Hc = ω0a†a, via the electric dipole interaction

H (μ)
i = g(μ)

c τ ′(μ)
z (a† + a), (3)

where a(†) annihilates (creates) a photon, ω0 is the resonator
frequency, and g(μ)

c is the charge-photon coupling strength
[41,42]. The leakage rates at the resonator ports i = 1, 2 are
defined as κi and the total leakage rate is κ = κ1 + κ2. Fur-
thermore, a probe field

Hin = i
√

κ1(aine−iωpt a† − a∗
ineiωpt a) (4)

with frequency ωp and amplitude ain is injected into port 1 of
the resonator.
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FIG. 1. (a) To measure the qubit (purple ellipse) it is off-
resonantly coupled to a coplanar microwave cavity in the transient
period while it dephases. The output field depends on the projection
of the initial qubit state on the x basis (red and blue arrows pointing
left and right). (b) Two qubits coupled to the cavity electric field E
are probed with the input field ain. The output field aout depends on
the initial state of both qubits and can be analyzed using heterodyne
detection. The leakage rates κ1(2) represent the coupling of the res-
onator to the environment at port 1 (2).

Transforming the system H = Hc + ∑
μ(H (μ)

d + H (μ)
i )

into the eigenbases of the DQDs H (μ)
d [17] allows

defining a spin qubit with Pauli operators σ (μ) in the orbital
ground state of each DQD while the synthetic spin-orbit
coupling bx gives rise to the indirect spin-photon coupling
g(μ)

s ≈ g(μ)
c (2t (μ)

c )2b(μ)
x /�μ[�2

μ − (B(μ)
z )2] [15,17]. Here �μ

denotes the orbital energy splitting
√
ε2
μ + 4(t (μ)

c )2 of qubit
μ. Note that an alternative coupling mechanism has been
proposed that goes beyond the linear response of the qubit,
giving rise to a longitudinal coupling which depends on the
resonator frequency, and which can also mediate a disper-
sivelike qubit readout [18]. The DQD with a single charge
has a strong electric dipole moment, however, such that the
transverse coupling in H (μ)

i is by far the dominating ef-
fect. Neglecting additional smaller contributions is supported
by experimental observations on comparable devices which
were described by the coupling discussed here to a high
accuracy [11,16].

To describe cavity-based readout of the spin qubits
we perform a rotating wave approximation and apply a
Schrieffer–Wolff transformation [43,44] to model the disper-
sive regime where all electronic transitions are off-resonant
from the probe field [5]. In the spinlike subspace we find [17]

H ≈ δca†a +
∑

μ

[
δ(μ)

s /2 − χ (μ)
s (a†a + 1/2)

]
σ (μ)

z . (5)

Here, δc = ω0 − ωp [δ(μ)
s = E (μ)

s − ωp] is the detuning of
the resonator frequency (spin qubit splitting E (μ)

s ) from
the probe field, χ (μ)

s ≈ (g(μ)
s )2/
μ is the dispersive shift

due to the spin μ with 
μ = ω0 − E (μ)
s . Note that the

Hamiltonian in Eq. (5) is not unique to spin qubits and
could also describe, for example, superconducting transmon
qubits [5].

The equations of motion for a and σ
(μ)
− = 1

2 (σ (μ)
x − iσ (μ)

y )
are finally obtained by including the incoherent interactions
derived from input-output theory [17]

ȧ ≈ sca − √
κ1ain −

∑
μ

κg(μ)
s

2
μ

σ
(μ)
− , (6)

σ̇
(μ)
− ≈ sμσ

(μ)
− + g(μ)

s


μ

√
κ1ainσ

(μ)
z , (7)

with sc = −i(δc − ∑
μ χ (μ)

s σ
(μ)
z,0 ) − κ/2 and sμ = −i[δ(μ)

s −
2(a†a + 1

2 )χ (μ)
s ] − γμ/2, and where γμ is the dephasing rate

of qubit μ and σ
(μ)
i,0 = σ

(μ)
i (t = 0). The output field at port 2

of the cavity is derived from input-output theory [17,45,46]

aout ≈ √
κ2a +

∑
μ

√
κ2

g(μ)
s


μ

σ
(μ)
− . (8)

The last terms in Eqs. (6) and (8) are usually neglected in
the treatment of dispersive readout since they vanish in the
stationary state where the qubit is dephased and in a typical
measurement setup they are removed by frequency filters to
reduce noise. However, the dependence of the output field
aout (t ) on σ

(μ)
− before the steady state is reached implements

a measurement in the x basis of qubit μ if the detection
is sufficiently broadband. This readout must be considered
destructive as the qubit dephases in the process. It is possible
to turn this readout into a quantum nondemolition (QND)
measurement in the z basis by introducing an ancilla qubit.
The protocol is in analogy to the recently demonstrated QND
measurement in Ref. [47]. The ancilla a is initialized in state
|0z〉a. A CNOT gate with the qubit as control and the ancilla as
target, followed by a Hadamard gate on the ancilla, prepares
the ancilla in the x basis, conditional on the state of the qubit
in the z basis. The qubit is then quickly detuned to a protected
idling spot [48,49] while the ancilla is coupled to the resonator
and readout using the transient dispersive readout. Due to the
entangling gate, the state of the qubit can be inferred from
this measurement, although an imperfect gate may introduce
uncertainty.

Contributions from multiple qubits can be separated in
frequency [50] and thus observed simultaneously by detuning
the qubit splittings E (μ)

s from each other. This detuning will
also suppress coherent oscillations between different qubits
mediated by the resonator [5], justifying their negligence in
Eqs. (6) and (7).

III. PROPOSED READOUT PROCEDURE

Here, we investigate the expectation values of the system
observables as provided by the input-output theory described
in the previous section. We note that the dispersive qubit-
photon interaction in Eq. (5) commutes with the resonator
Hamiltonian Hc and no absorption or emission of photons
occurs. Furthermore, we assume that the cavity and the qubits
are initially decoupled, which can be realized by detuning
all qubits far from the charge transition |εμ/2t (μ)

c | � 1 and
it allows switching on or off the probe field without disturbing
the qubits. After the ringup of the cavity, the qubits can be
pulsed to the readout configuration. Thus, we can assume that
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FIG. 2. Laplace transform of the quadrature Im aout of the output field with two qubits at 2Re s = γ1 = γ2. (a) The result for the initial
qubit states |0x〉1 |0x〉2 (|1x〉1 |0x〉2) and (b) for the initial states |0x〉1 |1x〉2 (|1x〉1 |1x〉2) is depicted in red (blue). For each qubit μ = 1, 2 a pole
sμ of Im ãout is observed, the center pole sc is the cavity resonance. Directly at the poles Im ãout diverges and no distinction between the qubit
states can be made. However, in the vicinity of sμ the initial state of qubit μ can be revealed: First, Im ãout is evaluated at a readout frequency
s(μ)

r (vertical dashed gray line for qubit 1) near the pole. Then the obtained value is compared to a threshold cμ (horizontal dashed gray line),
the initial qubit state is assigned depending whether Im ãout (s(μ)

r ) is greater or less than cμ. (c), (d) Readout of qubit 2 depending on the initial
state of qubit 1. In analogy to panels (a) and (b) a readout frequency s(2)

r and a threshold c2 are chosen, which allow distinguishing the initial
states of qubit 2 from the cavity response. As the figure shows, this is possible for both qubits independently. (e) Im ãout in the complex plane
for the initial state |0x〉1 |0x〉2. The poles s1(2) and sc belonging to qubits 1 and 2 and the cavity are indicated, as well as the complex readout
frequency s(1)

r for qubit 1.

the photon number of the resonator is initialized to its steady
state value and that it can be treated as a constant.

Relying on the assumptions that the photon number
is a constant of motion during the readout (a†a)(t ) ≈
(a†a)(0), and that there is no initial spin-photon correlation
〈(a†a)(0)σ (μ)

− (0)〉 = 〈(a†a)(0)〉〈σ (μ)
− (0)〉, because the interac-

tion between DQD and resonator is switched on at time t = 0
the Laplace transform [51] of the expectation value of the
output field,

ãout (s) ≈ √
κ1ã(s) +

√
κ2

κ

∑
μ

ημ(s), (9)

ημ(s) = κg(μ)
s

2
μ

(
σ

(μ)
−,0 − √

κ1ain
g(μ)

s σ
(μ)
z,0


μs

)/
(s − sμ) (10)

can be found from the equations of motion, Eqs. (6) and (7).
The term including σ

(μ)
z,0 in ημ can be considered irrelevant

for the readout, since for typical spin qubit parameters in the
dispersive regime it is expected to be roughly two orders of
magnitude smaller than the leading term [11]. The field ã as a

function of the complex frequency s is given by

ã(s) ≈
(

a0 − √
κ1ain/s −

∑
μ

ημ(s)

)/
(s − sc). (11)

The field operator at the initial time is given by a(t = 0) =
a0. For the qubit μ = 1, 2..., ãout (s) exhibits a singularity at
sμ. The slope near the singularity depends on the initial state
σ

(μ)
−(z),0. For the basis states of the x basis this is σ

(μ)
−,0 = ±1/2

and σ
(μ)
z,0 = 0.

We assume that the quadrature Im aout of the transmitted
output field is measured [17] and derive its Laplace trans-
form with the aid of the identity L f ∗(s) = (L f )∗(s∗) [51].
An example for ãout (s) with two qubits is shown in Fig. 2.
It is clearly possible to distinguish the initial state of each
qubit μ = 1, 2 by choosing a proper complex readout fre-
quency s(μ)

r = sμ + 
sμ in the complex plane and evaluating
Im ãout (s(μ)

r ). The measurement outcome for the qubit state
is assigned depending on whether the observed Im ãout (s(μ)

r )
is above or below a threshold cμ. The choice of 
sμ affects
the contrast between the possible measurement outcomes and
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FIG. 3. Density plot of g(μ)
s /
μ which is the lever arm of ημ

for a single qubit. The contour lines indicate a constant dispersive
shift χ (μ)

s . For ideal multiqubit readout the qubits have distinct χ (μ)
s

and a high |g(μ)
s /
μ| similar for all μ, so their singularities appear

well separated with high visibility. Outside the gray shaded param-
eter range the dispersive approximation is valid, whereas within the
gray region deviations become larger until ultimately the dispersive
approximation breaks down when qubit and cavity become resonant.
The black dots indicate the parameters for the two qubits in the
example of Figs. 2 and 4. This choice of parameters is motivated by
the unambiguous observation of dispersive spin-photon interaction
with the values of spin-cavity detuning at these spots [11].

therefore the fidelity, as will be discussed in Sec. IV. In the
multiqubit case certain restrictions for 
sμ arise, which are
captured by Eq. (15).

All plots are drawn for realistic values of ω0 =
ωp = 23.6 µeV, B(1)

z = 23.6 µeV, B(2)
z = 23.664 µeV, g(μ)

c =
0.16 µeV, b(μ)

x = 1.68 µeV, t (μ)
c = 20 µeV, εμ = 0, κi =

7 neV, and γμ = 1.65 neV [11]. With this choice the qubit-
qubit interaction J12 mediated by the resonator can thus be
safely neglected, since J12/|E (1)

s − E (2)
s | ≈ 0.009 	 1 [19].

The input power |ain| is chosen such that the steady-state
cavity population is no more than 5% of the critical photon
number for the dispersive approximation [17,52].

To separate the singularities sμ of the individual qubits
along the imaginary axis of the complex frequency space, the
qubit frequency E (μ)

s can be tuned by means of B(μ)
z and t (μ)

c

to set δ(μ)
s and χ (μ)

s for each qubit. The electrostatic detuning
of the DQDs εμ has a weaker effect since ∂εμ

E (μ)
s |εμ=0 = 0

[15,17,48]. By tuning the qubit away from its sweet spot
εμ = 0, however, the dephasing γμ can be enhanced [48]. This
offers a possibility to separate the contributions sμ along the
real axis.

Tuning B(μ)
z and t (μ)

c to separate the qubits will also alter
g(μ)

s /
μ, which appears as a prefactor in ημ Eq. (10) and
which we denote as the readout lever arm. In Fig. 3 we
plot g(μ)

s /
μ and contours of constant χ (μ)
s , showing that it

is indeed possible to choose different χ (μ)
s with comparable

|g(μ)
s /
μ|. Note, however, that |g(μ)

s /
μ| 	 1 is required to
keep the spin-photon interaction off-resonant.

In an experiment, Im ãout (s) can be obtained by perform-
ing a series of short heterodyne measurements of Im aout (t )
with a duration of ti 	 minμ(Im sμ)−1, minμ 2γ −1

μ , for a total
readout time tr � maxμ(Im sμ)−1, maxμ 2γ −1

μ . The numerical
Laplace transform of the discrete time data can be imple-
mented by the z transformation and yields a continuous
function in the complex frequency space [53]. We assume that
the choice of the readout frequency s(μ)

r in the complex plane
is limited only by the accuracy of the frequency measurement
and thus |
sμ| = κ .

IV. READOUT FIDELITY

Equation (9) yields only the expectation value of the output
field. Assuming that the fluctuations are Gaussian we also
derive the variance

σ 2(s) ≈ 〈Im ãout (s)2〉 − 〈Im ãout (s)〉2

=
∣∣∣∣∣1/Rti + k2

2

∑
μ ξμ

s − 2sc

∣∣∣∣∣, (12)

ξμ =
(

κgμ
s


μ

)2[
F (μ)

g − (F (μ)
g )2

]{s − 2sμ}−1

×
{

s − 2sμ + 2i
[
δc − χsσ

μ
z,0

] + κ − γ μ

2

}−1

, (13)

of the measured quadrature in the complex frequency space.
Here, we have used that a quadrature of the output field can
be be measured with accuracy σ 2(t ) = 1/Rt in a given time t ,
where R = 4/(2N̄ + 2Namp + 1) with the number of thermal
noise photons N̄ , and the number of noise photons added
by the detector Namp [17]. We assume that the input field is
limited by vacuum fluctuations (N̄ = 0) and that the detector
is quantum limited (Namp = 1/2) [54] to estimate the optimal
fidelity. The terms ξμ emerges when an ancilla is entangled
with the qubit to allow a QND measurement, with a fidelity
Fg < 1 of the entangling two-qubit gate. The ξμ vanish for
Fg = 1 or if no ancilla is used and can be understood as
being due to the uncertainty of the state of the ancilla after
an imperfect conditional rotation. In the framework of the
Laplace transform, this term represents the dynamics of var a
due to a nonzero initial variance of the ancilla operators.

First, we estimate the readout fidelity for a single qubit,
for simplicity. We define a threshold c to discriminate
Im ãout (sr, σ ), where σ = 0, 1 is the initial qubit state.
The initial qubit state is identified as |0x〉 [|1x〉] upon ob-
servation of Im ãout (sr, σ ) > c with ãout (sr, 1) < ãout (sr, 0)
[ãout (sr, 0) < ãout (sr, 1)] and as |1x〉 [|0x〉] otherwise. The
probability to incorrectly find Im ãout (sr, σ ) > c is given by
α0 and the probability to incorrectly find Im ãout (sr, σ ) < c is
α1, defined as

ασ = 1

2

[
1 ± (−1)σ erf

(
Im ãout (sr, σ ) − c√

2σ 2(sr, σ )

)]
. (14)

The upper sign should be used if ãout (sr, 0) < ãout (sr, 1),
the lower sign otherwise. The choice c = 1

2 [ãout (sr, 0) +
ãout (sr, 1)] minimizes ασ [55].
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= 0.026 µeV

= 0.02 µeV

= 0.014 µeV

FIG. 4. (a) Single-shot readout fidelity F (μ)
r as a function of

φ (μ) = arg 
sμ for one qubit. The shade of the line indicates the cav-
ity output rate κ . The gray (green) lines correspond to a destructive
direct measurement (indirect QND measurement with Fg = 0.99).
The asymmetry is due to the relative placement of s(μ)

r and sc.
If κ � γμ the readout frequency s(μ)

r and the singularity sc may
approximately coincide, rendering readout at that angle impossi-
ble. (b) Readout fidelity for simultaneous two-qubit readout. Solid
(dotted) refers to qubit μ = 1(2). The angles φ (1) and φ (2) are inde-
pendent. There are choices for φμ where qubit μ cannot be read out
since the effect of the other qubit is too strong. This is particularly
prominent at large κ , indicated by the lightest shade. In both panels
tr/ti = 4000. The qubit parameters are taken from the experimental
realization in Ref. [11] and shown in Fig. 3.

Equation (14) is valid for a direct x measurement of a single
qubit. If an entangling gate with fidelity Fg � 1 is used to mea-
sure the qubit via an ancilla, then the readout fidelity Fr � Fg,
necessitating optimized gates [56,57]. We account for this by
introducing α′

0 = Fgα0 + (1 − Fg)(1 − α1) and α′
1 = Fgα1 +

(1 − Fg)(1 − α0), where the first (second) term corresponds
to the readout (two-qubit gate) error. We finally define the
readout infidelity 1 − Fr = 1

2 (α′
0 + α′

1) [47,58].
In Fig. 4(a) the single-qubit readout infidelity is plotted

as a function of φ = arg 
s. The optimal readout fidelity is
achieved if 
s is imaginary, due to the shape of the singu-
larity. The orientation of sr with respect to sc gives rise to
an anisotropy in complex frequency space. For κ � γ the
readout becomes impossible if sr faces towards sc since in
that case sr ≈ sc, where no distinction between the qubits
states is possible [see Fig. 3(c)]. Generally, a smaller κ grants
lower 1 − Fr because it reduces the frequency uncertainty
and also increases Im ãout (sr, 0)/

√
2σ 2(sr, 0). Furthermore,


 = ωr − Es should be as small as agreeable with the dis-
persive approximation to boost Fr .

We now turn back to the multiqubit case. To generalize
the fidelity to multiple qubits it must be taken into account
that α(μ)

σ is conditional on the state of the other qubits. To
estimate the single-qubit readout fidelity F (μ)

r of qubit μ in
a simultaneous measurement of two qubits, Fig. 4(b), we
average the threshold cμ over all states of the other qubit. In
our example the two qubits are symmetrically detuned from
the cavity frequency and thus their singularities are mirrored
copies of each other.

Remarkably, there are choices of φμ where qubit μ

cannot be read out with our scheme. For example, if
Im ãout (s(2)

r , 0, 0) < Im ãout (s(2)
r , 0, 1) < Im ãout (s(2)

r , 1, 0) <

Im ãout (s(2)
r , 1, 1) it is impossible to discern the basis states of

qubit 2 with a single unconditional threshold c2. To identify
choices of s(2)

r where this problem does not occur we demand
ζ2[Im ãout (s(2)

r , 0, 1) − Im ãout (s(2)
r , 1, 0)] > σ̄ (s(2)

r ), where
ζ2 = sgn[Im ãout (s(2)

r , 1, 1) − Im ãout (s(2)
r , 0, 0)] is a sign

dependent on the DQD parameters and σ̄ is σ averaged
over all two-qubit states. Using also the analogous condition
for qubit 1 we find that both qubits can be read out if for
μ = 1, 2:

ζμ

√
κ2

κ
Im

[
s(μ)

r + iδc

s(μ)
r − sc

(
1


sμ

− 1

s(μ)
r − sμ̄

)]
>

σ̄
(
s(μ)

r

)
2

.

(15)

This provides a rule how far the readout frequency s(μ)
r of

qubit μ must be from the singularity sμ̄ of the other qubit and
from sc. Here, μ̄ = 2(1) if μ = 1(2).

Note that Eq. (15) is valid for the two-qubit example
of Fig. 4(b) but not the general case. To include more
qubits, the term 1/(s(μ)

r − sμ̄) should be replaced by the
sum

∑
ν 
=μ 1/(s(μ)

r − sν ). Together with the tunability of
E (μ)

s and γμ in a given device this complex frequency
qubit spacing determines how many qubits can be read out
simultaneously.

So far, the relaxation of the qubits was neglected. To in-
clude relaxation, the equation

σ̇ (μ)
z = −(

�
(μ)
i + �(μ)

p

)
σ (μ)

z (16)

for the qubit populations is taken into account along with
Eqs. (6) and (7). Here, �

(μ)
i = 1/T (μ)

1 is the intrinsic relax-
ation rate of qubit μ and �(μ)

p = κ (g(μ)
s /
μ)2 is the Purcell

qubit relaxation rate due to the spin-photon coupling (assum-
ing N̄ 	 1) [17]. The solution ãout of this extended set of
equations has the same form as Eqs. (9) and (10), with an
altered σ (μ)

z -term in ημ(s), Eq. (10), capturing the effect of
the relaxation. This term does not depend on the qubit states
and thus reduces the readout contrast. We consider the ratio
of qubit state-dependent and qubit state-independent terms,
and conclude that the effect of relaxation on ãout (s) can be
neglected if for all μ:

R =

∣∣∣∣∣∣∣
∑

ν

√
κ1aing(ν)

s


νs(μ)
r

(
1
2 + s(μ)

r

�
(ν)
i +�

(ν)
p

)
∣∣∣∣∣∣∣ 	 1. (17)
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For a constant qubit population on the timescale of
the readout, �

(μ)
i + �(μ)

p → 0 and R → 0. With increasing
relaxation, the phase shift between the two signals of the
output field is reduced and approaches a saturation value. If
Eq. (17) is not fulfilled, the effect of the relaxation is too
strong and the qubit state-dependent components cannot be
identified from the decomposition of the output field. Another
limitation for the relaxation rate is �

(μ)
i + �(μ)

p < 1/tr , other-
wise only limited information is gained. For realistic silicon
spin-qubit parameters Eq. (17) is satisfied and relaxation is
expected to be insignificant [11].

Finally, we compare our proposed transient multiqubit
readout to the conventional dispersive readout of multiple
qubits. Conventional dispersive multiqubit readout has been
demonstrated with up to two transmon qubits [19,20] but
remains elusive for spins so far. Using the dispersive Hamilto-
nian, Eq. (5), conventional multiqubit readout can be modeled
by defining intervals in the range of the observed quadrature
associated with each multiqubit state. The interval the ob-
servable is found in will determine which state is assigned
to the system. The probability to find the observable in the
correct interval after a certain sampling time can be estimated
in complete analogy to the discussion with only two intervals
described in this section. Comparing to our readout time tr
we find that the transient dispersive readout is approximately
one order of magnitude faster if a comparable fidelity Fm =
F (1)

r F (2)
r for the multiqubit state is required. Compared to the

readout time of the dispersive readout of a single qubit per
resonator we still find a speedup by a factor of between 1.5 and
2 [17]. We furthermore emphasize that our proposed transient
readout is easier to scale up beyond the two-qubit case since
the responses from different are easily separated, whereas
conventionally the dispersive shifts must be chosen in a way
such that all

∑
μ σμχ (μ)

s , σμ = ±1, are unique. Note, however,
that the transient dispersive readout is either destructive and
requires reinitialization or an overhead in qubits and two-qubit
gates which limits the readout fidelity.

V. CONCLUSIONS

In summary, we have proposed a protocol for the simul-
taneous readout of multiple qubits dispersively coupled to a
single resonator mode. The contributions of the individual
qubits are separated by recording the time-resolved output
field and then performing a Laplace transform. The transient
dispersive readout proposed in this letter can be a potent
tool for the fast, multiplexed, and/or selective readout of
resonator-coupled qubits. This holds the promise of greatly
advancing the scalability of solid-state qubits since it speeds
up the readout of entire registers, leaving more time for gate
operation and opening the pathway for quantum error correc-
tion. Nonetheless, it is still possible to read out individual
qubits if required, by keeping the others detuned from the
resonator frequency.

The use of a single resonator is particularly beneficial for
semiconductor spin qubits, where it is unrealistic to include
a large number of readout resonators into the chip due to
their large footprint. While a promising readout fidelity was
estimated in this article with realistic parameters for electron
spin qubits in Si/SiGe, it can be expected that our proposal
will also be feasible for SiMOS [59] or hole spin qubits
[60]. We further see potential of our technique in the field of
superconducting qubits by reducing the wiring complexity of
the readout apparatus.

After demonstrating the basic concept of the readout
scheme, we expect that the evaluation protocol can be opti-
mized further for future applications, relying on a fit to the
heterodyne signal, rather than the evaluation at certain points
in the complex frequency domain.
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