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Following recent progress in the experimental application of electro-optic sampling to the detection
of the quantum fluctuations of the electromagnetic-field ground state and ultrabroadband squeezed
states on a subcycle scale, we propose an approach to elevate broadband electro-optic sampling
from a spectroscopic method to a full quantum tomography scheme, able to reconstruct a broad-
band quantum state directly in the time-domain. By combining two recently developed methods
to theoretically describe quantum electro-optic sampling, we analytically relate the photon-count
probability distribution of the electro-optic signal to a transformed phase-space quasiprobability
distribution of the sampled quantum state as a function of the time delay between the sampled
mid-infrared pulsed state and an ultrabroadband near-infrared pump/probe pulse. We catalog and
analyze sources of noise and show that in quantum electro-optic sampling with an ultrabroadband
pump pulse one can expect to observe thermalization due to entanglement breaking. Mitigation of
the thermalization noise enables a tomographic reconstruction of broadband quantum states while
granting access to its dynamics on a subcycle scale.

I. INTRODUCTION

Accessing the dynamics of broadband time-dependent
quantum states remains challenging even for state-of-the-
art experiments. While many theoretical descriptions
of quantum optical systems resort to monochromatic
modes, in practice, non-monochromatic modes are un-
avoidable for many applications [1]. Wave packets, for ex-
ample, are inherently multi-mode and are vital for trans-
mitting quantum information over long distances and
thus necessary for quantum communication technologies
[2, 3] such as continuous-variable quantum key distribu-
tion [4–9]. For these technologies it is crucial to prepare
the correct target state, which is usually validated using
homodyne quantum tomography [10–24]. To obtain not
only the amplitude, but also the phase information of
the sampled optical state, homodyne tomography relies
on the interference with a local oscillator whose temporal
modes overlap partially or entirely with those of the sam-
pled state within a beam splitter [11, 25–32]. The large
overlap of the sampled pulsed mode with the local oscil-
lator unavoidably leads to an averaging of the measured
signal over the detection time. In addition, homodyning
generally leads to the destruction of the sampled state.
The averaging effect can be reduced by the use of a ultra-
short local-oscillator pulse, such that the sampled state
is only averaged over the envelope of the short pulse, as
shown schematically in Fig. 1. Furthermore, the destruc-
tion of the sampled state can be avoided by indirect de-
tection. These modifications are defining characteristics
of electro-optic sampling [33–47]. Electro-optic sampling
utilizes a short, higher-frequency ancillary pulse, usually
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in the near-infrared (NIR), to sample a longer pulse of
lower frequency, usually in the mid-infrared (MIR) range.
The ellipticity of the higher-frequency modes is corre-
lated with the state of the lower-frequency modes, av-
eraged over a small time slice defined by the ancillary
pulse. Therefore, by measuring the change in elliptic-
ity of the high-frequency modes one can infer the state
of the low-frequency modes at the time of interaction.
Such measurements require the usage of ancillary pulses
shorter than the duration of a single cycle of the sampled
broadband state, the so-called subcycle regime.

There are two approaches to optical quantum tomog-
raphy. One is based on the simultaneous measurement
of two noncommuting electromagnetic-field quadratures,
which allow to reconstruct the phase-space quasiproba-
bility distribution of the quantum state, and therewith
the quantum state, directly from the sampled data [20–
24]. In the other approach, the quantum state is re-
constructed from single-quadrature measurements using
the Radon-transform [10, 11, 14]. These state-of-the-art
quantum tomography methods to reconstruct the wave-
form and the quantum state of the electromagnetic field
do not operate in the subcycle regime and thus require
the sampled state to be composed of at most a few repro-
ducible orthogonal mode profiles [17, 48–50]. Recently,
electro-optic sampling has been successfully used to sam-
ple the statistics of the electromagnetic-field broadband
ground state [51], as well as of ultrabroadband squeezed
states in the time domain with subcycle resolution [52].
On the theory side, new tools have been developed to
account for quantum contributions to the nonlinear in-
teraction necessary to generate the electro-optic signal
[37–46, 53–57]. However, a description of the full photon-
counting statistics of the electro-optic signal for the mea-
surement of broadband quantum states and its relation
to phase-space distributions are still missing. Here, we
close this conceptual gap by merging two recently de-
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FIG. 1. The goal of time-domain quantum tomography is
to reconstruct the quantum state and dynamics of a pulsed
quantum state directly in the time domain. (a) Exemplary
time-evolution in phase space of the broadband (Husimi)
quasiprobability distribution ρ(z;−1) of a coherent (pulsed)
quantum state, whose quadratures evolve dynamically follow-
ing the solid green line. The free time evolution of the dis-
tribution starts in the vacuum at (i), spirals outwards via
(ii)-(iv) until reaching maximum displacement in (v) before
returning to the vacuum. (b) The corresponding sampled
waveform of the pulsed quantum state with the dashed or-
ange (dash-dotted red) line for the real (imaginary) part.
The state is sampled and thus averaged over the duration
of a pump pulses envelope (solid blue). If the pump pulse
is shorter than the duration of a single cycle of the sample
pulse, the measurement is said to be subcycle. For a pump
pulse centered at the vertical line located at (i), the sampled
waveform averaged over the duration of the pump is close to
zero, while at (v) the average real part of the waveform is
maximal, matching the free time evolution in (a).

veloped theoretical methods [43, 58] to derive the prob-
ability distribution of the quantum-electro-optic mea-
surement outcomes. We propose a modified quantum-
electro-optic sampling setup capable of measuring two
noncommuting quadratures of the spatiotemporally lo-
calized MIR mode simultaneously: Instead of one detec-
tion stage, two detection stages sensitive to two neighbor-
ing non-overlapping spectral cuts of the high-frequency
signal generated by the nonlinear interaction are used.
We utilize the method of first-order unitary developed in
Ref. [43] and simplify the description to involve solely a
few effective nonmonochromatic modes. We can then ap-
ply the framework developed in Ref. [58] and relate the
count-probability distribution of the electro-optic signal

to a (transformed) phase-space quasiprobability distribu-
tion. The transformation is due to entanglement break-
age during the sampling process and leads to excess noise.
We propose a means to attenuate this noise by selecting a
frequency band reducing the entanglement breakage prior
to detection. The resulting model allows for the descrip-
tion of multichannel quantum electro-optic sampling, and
we show how this proposed measurement scheme can be
used for optical time-domain quantum tomography with
subcycle resolution.
Our paper is structured as follows. In Sec. II we de-

velop a theoretical model to describe quantum electro-
optic sampling. Sec. III presents the main result of this
work: The count-probability distribution of the electro-
optic signal. In Sec. IV we utilize the analysis developed
in the preceding sections to discuss realistic implementa-
tions of optical time-domain quantum tomography.

II. THEORETICAL FRAMEWORK

Before embarking on the formal theoretical description
of our model, we develop an intuitive picture of electro-
optic sampling as a quantum tomography scheme for re-
constructing the quantum state of the electromagnetic
field with a subcycle resolution in Sec. IIA. In the subse-
quent sections, we then describe the formal model of our
proposed generalization of quantum electro-optic sam-
pling. We divide the measurement protocol into three
stages: the nonlinear interaction (Sec. II B), the filtering
stage (Sec. II C) and the ellipsometry stage (Sec. IID). In
Sec. II E we show how our model improves and general-
izes the effective description of the nonlinear interaction
laid down in Ref. [43].

A. Heuristics of (time-domain) quantum
tomography

In optical tomography of continuous-variable quantum
states the reconstruction of the state is usually performed
in phase space. A (single-mode) quantum state can be
represented by a distribution over a complex argument,
where the real part corresponds to the generalized co-
ordinate (X quadrature) and the imaginary part to the
generalized momentum (Y quadrature) of the mode. One
example of such a quasiprobability distribution is the
widely known Wigner function; another related exam-
ple is the Husimi distribution, visualized for a broad-
band coherent state in Fig. 1 (a) at different points of
its time evolution. With a finite number of measure-
ments, these distributions can only be sampled at discrete
points, which for homodyne detection and electro-optic
sampling are in practice determined by the difference
counts ∆ni of two balanced photon detectors, i = X,Y.
Over time the quasiprobability distribution of a single-
mode quantum state would rotate in phase space and
thus by directly measuring the photon number in that
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single mode, only information about the amplitude, but
not about the phase, can be collected. For this reason,
an ancillary mode in a coherent state β is introduced,
also referred to as a local oscillator, with which the single
mode can interfere. If these balanced detections make use
of local oscillators shifted by π/2 relative to each other,
the tomography scheme is able to sample the quasiprob-
ability distribution of the single mode at the complex
arguments z({∆ni}) = (∆nX + i∆nY)/|β| [20–24]. Al-
though popularly used tomography techniques like ho-
modyne detection make use of direct measurements, en-
tangling the analyzed mode to ancillary modes using a
nonlinear crystal implements an indirect measurement,
as we have shown in [58]. In this case, the difference-
count probability distribution

p({∆ni}) ∝ ρ [z({∆ni})/ sinh(|ζ|); s̃] . (1)

is proportional to the s̃-quasiprobability distribution ρ
of the quantum state in which the parameter s̃ = 1 −
2 coth2(|ζ|) is determined by the two-mode squeezing
strength ζ of the nonlinear crystal. These distributions
are a smoothed-out version of the Wigner function, which
is achieved by convolving the Wigner function with a
Gaussian distribution of variance proportional to −s̃. To
ensure non-negativity of the quasiporbability distribu-
tion, one requires s̃ < −1. With increasing squeezing
strength, the measurement is made stronger and s̃ ap-
proaches its maximum value of −1.
If the nonlinear crystal is driven by an ultrabroadband

pulse instead of a few monochromatic modes, the tomog-
raphy scheme from the previous paragraph constitutes a
(generalized) version of quantum electro-optic sampling.
Electro-optic sampling utilizes the electro-optic effect to
sample a short low-frequency pulse using an even shorter
high-frequency pulse for which the sampled pulse seems
quasi-instantaneous. Because of the electro-optic (Pock-
els) effect, the electric field of the sampled low-frequency
modes induces (or changes) birefringence in the nonlin-
ear crystal which leads to a change in the ellipticity of
the probing high-frequency pulse at the time of interac-
tion [59]. The ellipticity can then be measured using a
balanced photon-detection between the two polarization
directions of the high-frequency pulse (ellipsometer) and
thus the state of the low-frequency electric field averaged
over the time of interaction can be inferred [33–36]. By
repeating this measurement for different time delays ∆t
between the high- and low-frequency pulse, the electric
field can be sampled as a function of time (delay), as de-
picted in Fig. 1 (b). In order to sample the waveform
directly in the time domain, the high-frequency pulse
needs to be shorter than a single optical cycle of the
low-frequency pulse. If this is the case, the measurement
is said to be subcycle. In principle the same could be
achieved with homodyne detection, although this would
require either fast photodetectors or the local oscillator
to be highly subcycle with respect to itself. The lat-
ter requirement is due to the shared frequency domain
of the local oscillator and the sampled pulse in homo-

dyne detection. The nonlinear mechanism underlying
electro-optic sampling allows the high-frequency pulse to
be single-cycle or even a few cycles long, while retain-
ing its subcycle character relative to the low-frequency
pulse. Furthermore, electro-optic sampling makes acces-
sible the frequency range right between the gap of elec-
tronic and optical frequencies, the so-called mid-infrared
range. Generation and detection of mid-infrared frequen-
cies using electronics or optics remain challenging. On
the other hand, detection in the high-frequency range,
usually spanning from near infrared to optical frequen-
cies, can be easily achieved using optical components.
If the probed low-frequency modes are in a quantum

state, we would expect the count-probability distribution
to follow the quasiprobability distribution of the quan-
tum state averaged over the time window defined by the
short probing high-frequency pulse, as sketched in Fig. 1
(b). However, quantum mechanically the short high-
frequency pulse has an additional quantum mechanical
effect. Since the Gabor limit forces a bandwidth broad-
ening if the pulse is made shorter, additional unsam-
pled modes get entangled to the sampled ones. There-
fore, the entanglement between the sampled and unsam-
pled modes is broken through measurement. This entan-
glement breakage leads to an increase of the von Neu-
mann entropy of the sampled quantum state, which in
turn creates thermal excitations [43]. The thermaliza-
tion is reflected in the electro-optic signal as excess noise
[see Fig. 5 and Sec. III], leading to a resolution tradeoff
between time and phase-space coordinates. The sam-
pled frequencies are up-converted to the detected modes
via difference-frequency generation, while the thermal-
ized modes are up-converted by sum-frequency genera-
tion. Therefore, the excess noise due to thermalization
can be mitigated by filtering the high-frequencies below
the central frequency of the high-frequency pump pulse.

B. The nonlinear interaction

Since electro-optic sampling is an indirect measure-
ment of low-frequency modes mediated by a subcycle
pulse of high-frequency ancillary modes, the two fre-
quency ranges have to be correlated in order to access
information about the former by measuring the latter. In
this work we consider low-frequency mid-infrared (MIR)
and high-frequency near-infrared (NIR) modes, which in-
teract in a zinc-blende-type nonlinear crystal of length
L, refractive index nω [given by Eq. (C1)] and a coupling
constant d = −n4

ωp
r41 dependent on the refractive index

at the central pump frequency ωp and the second-order
electro-optic (susceptibility) coefficient, r41 = 4pmV−1

(see [59], p. 500). As depicted in Fig. 2, in the non-
linear crystal (NL), the interaction of the z-polarized NIR
modes with the s-polarized MIR modes generates new ex-
citations in the s-polarized NIR modes (for details about
the geometric arrangement see Ref [37]). This interaction
can be described by the unitary time-evolution operator
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FIG. 2. Schematic of the proposed electro-optic quantum to-
mography setup. The z-polarized near-infrared (NIR) pulse
interacts with the s-polarized mid-infrared (MIR) temporal
mode in the zinc-blende-type nonlinear crystal, labeled (NL),
and generates new excitations in the s-polarized NIR modes.
By varying the time delay ∆t between the NIR pulse and the
pulsed MIR mode, the MIR mode is sampled. A polarizing
beam-splitter can be used to remove the z-polarized pump
and a new probe pulse with a different amplitude can be in-
troduced as a replacement. The s- and z-polarized NIR modes
then undergo a spectral filter station, labeled (SF). Two
narrow (quasimonochromatic) and non-overlapping frequency
bands ω̃ of the NIR modes are selected, each being directed to-
wards one detection stage. The two NIR quasimonochromatic
modes with frequency bands ∆ωi pass through a φi waveplate
rotated by an angle θi, labeled (WP). Afterwards the s and z
components of each quasimonochromatic NIR frequency band
are split spatially with the aid of a polarizing beam splitter,
labeled (PBS). The photon numbers n̂i,s and n̂i,z in the s and
z polarized components of each quasimonochromatic cut are
counted using photo detectors, labeled (D), and the difference
∆n̂i = n̂i,s − n̂i,z constitutes the electro-optic signal.

ÛNL = exp
(
ŜNL

)
with [38, 43]

ŜNL =

∫
|Ω|<Λ

∫
Λ<|ω|

S(Ω, ω)âΩ,sâ
†
ω,sdΩdω, (2)

as long as the coherent pump is strong compared to any
quantum contributions (including depletion), absorption
is negligible (off-resonant regime) and there is no over-
lap between the MIR and NIR frequency ranges of in-
terest. To ensure skew Hermiticity of ŜNL, the condition
S∗(ω,Ω) = −S(Ω, ω) has to be fulfilled. We denote an-
gular frequencies in the MIR range by Ω while the NIR
range is represented by ω. From here on we will refer
to the angular frequency just as frequency. To avoid
frequency crossing between the NIR and MIR ranges, a
cutoff frequency Λ is introduced. The operator âω,s with
ω > 0 is the annihilation operator for the mode with
frequency ω and polarization s. We use the convention

â−ω,s = â†ω,s and [âω,s, â
†
ω′,s] = sign(ω)δ(ω − ω′). The

joint spectral amplitude

S(Ω, ω) = [αpEp(Ω− ω) + α∗
pE

∗
p(ω − Ω)]ζΩ,ω, (3)

is determined by two components. First, by the phase-
matching function,

ζΩ,ω = −id sign(ωΩ)

√
|ωΩ|
nΩnω

L

2c
sinc(ηω,Ω), (4)

ηΩ,ω =
L

2c
[ω(nω − nω−Ω)− Ω(nΩ − nΩ−ω)], (5)

including the speed of light c. Second, by the coherent
z-polarized ultrabroadband NIR pump of amplitude αp,
beam-waist area A, and spectrum

Ep(ω) = i

(
ℏ

4πcε0A

) 1
2

√
|ω|
nω

fp(ω), (6)

with the vacuum permittivity ε0 and the reduced Planck
constant ℏ. The mode function fp(ω) of the pump is
assumed to be a Gaussian

fp(ω) = Np exp
[
−(ω − ωp)

2/(2σp)
2 − itpω

]
, (7)

Np =

{√
π

2
σp

[
erfc

(
−ωp√
2σp

)
− erfc

(
ωp√
2σp

)]}− 1
2

(8)

of bandwidth σp and central frequency ωp.
The normalization constant Np ensures that∫∞
−∞ sign(ω)|fp(ω)|2dω = 1.

A closer inspection of Eq. (3) lets us differentiate four
frequency domains. If both the high and the low fre-
quencies are positive (ω > 0 and Ω > 0) the first sum-
mand in the right-hand side of Eq. (3) is exponentially
suppressed due to Ep(Ω− ω) selecting Ω frequencies far
beyond the MIR. Consequently, only E∗

p(ω − Ω) con-
tributes, favoring frequencies obeying |ω| ∼ ωp+|Ω|. The
detected s-polarized high-frequency excitations therefore
correspond to sum-frequency generation (SFG). The con-
jugate process (ω < 0 and Ω < 0), on the other hand,
suppresses the second summand in Eq. (3). SFG together
with its conjugate process result in a beam-splitter-like
contribution to Eq. (2). If the high and low frequency
have opposite signs (i.e., ω > 0 and Ω < 0 or ω < 0
and Ω > 0), the detected high-frequencies can be asso-
ciated with difference-frequency generation (DFG) and
modes fulfilling |ω| ∼ ωp − |Ω| are favored. Again, one
of the summands in the right-hand side of Eq. (3) is ex-
ponentially suppressed. Considering DFG together with
its conjugate process results in a squeezing-like contribu-
tion to Eq. (2). For a detailed derivation of the nonlinear
unitary operator, Eq. (2), see Ref. [43].

C. The filtering stage

To allow for a more versatile description, we assume
that pump and probe pulses can differ: After the NIR
pulse propagates through the nonlinear crystal, a polar-
izing beam-splitter can be used to remove the z-polarized
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pump and a new coherent probe pulse with amplitude β
can be introduced as a replacement. The combined s- and
z-polarized NIR modes are then spectrally filtered (e.g.,
by a band-pass filter) to give a narrow quasimonochro-
matic profile centered at ω̃ and of bandwidth ∆ω. The
filtering gives some control over the ratio between DFG
and SFG contribution to the signal. If frequencies above
the central frequency of the pump are detected, ω̃ > ωp,
mainly SFG contributes to the signal while for the op-
posite case, ω̃ < ωp, DFG is dominant [36]. The fil-
tered probe together with the filtered s-polarized NIR
excitations generated by the nonlinear interaction are
split spectrally into multiple narrow-band pulses, as in-
dicated in Fig. 2 (SF). This allows one to measure differ-
ent quadratures of the MIR modes simultaneously using
the different quasimonochomatic spectral splits. The new
pulses i ∈ I = {X,Y} are characterized by a central fre-
quency ω̃i and a bandwidth ∆ω̃i and define a set of dis-

crete modes ûω̃i,λ = (∆ωi)
− 1

2

∫∞
−∞ rect

(
ω̃i−ω
∆ωi

)
âω,λdω.

The rectangular function rect(x) is equal to 1 for |x| <
1/2, equal to 1/2 for |x| = 1/2, and 0 for |x| > 1/2. To
express the total NIR mode operator

ûω̃,λ =

∫ ∞

−∞
rect

(
ω̃ − ω

∆ω

)
âω,λdω =

∑
i∈I

α̃iûω̃i,λ (9)

in terms of the set of discrete mode operators, we have to

choose α̃i =
√
∆ωi/∆ω and require

∑
i∈I rect

(
ω̃i−ω
∆ωi

)
=

rect
(
ω̃−ω
∆ω

)
. The latter condition ensures that both spec-

tral cuts are correlated through the nonlinear interac-
tion with practically the same MIR frequency range (and
therefore the same nonmonochromatic mode). We will
denote discretized mode operators, defined over a fre-
quency range, with u, a, etc. This distinction is impor-
tant because the usual discrete-mode commutation rela-
tions are violated by pairs of such operators defined over
overlapping frequency bands, and we therefore assume
throughout this work that detected frequency bands are
so selected that no such overlaps can happen. The re-
placement of the pump by a probe pulse together with
the frequency splitting of the z-polarized modes can be
described by the displacement operators D̂ω̃i,z(βi) =

exp
(
βiû

†
ω̃i,z

−H.c.
)
with amplitudes βi = α̃iβ, where β

is the post-filtered probe amplitude.
Alternatively, the simultaneous measurement can be

realized using a beam splitter instead of the spectral
splitting, resulting in the same decomposition in the last
equality of Eq. (9), as shown in Appendix A. This al-
ternative approach upgrades the electro-optic-sampling
setup proposed in Ref. [36] to a quantum-tomography
protocol.

D. The ellipsometry stage

Subsequent to the filtering stage, we assume that an
ellipsometry on each NIR mode ûω̃i,λ is performed: A ϕi-

wave plate rotated by an angle θi, (WP) in Fig. 2, makes
the signal at each ellipsometry stage balanced. We choose
the signal to be balanced, i.e., to yield zero average sig-
nal for an MIR state for which all quadrature expectation
values vanish, because noise affecting both polarizations
the same way cancels out (see [58], Sec. III for details).
The action of the wave plate is assumed to be indepen-
dent of the frequency on each frequency band ∆ωi and

can thus be modeled by Ûω̃i,WP = exp
(
iϕiû

†
ω̃i,θi

ûω̃i,θi

)
,

where ûω̃i,θi = cos(θi)ûω̃i,s + sin(θi)ûω̃i,z is the bosonic
operator acting on the mode with polarization parallel
to the optical axis of the wave plate. The total time evo-
lution of the probe-and-sample system is described by

Û = ÛWPD̂ω̃(β⃗)ÛNL, (10)

with ÛWP =
⊗

i Ûω̃i,WP and D̂ω̃(β⃗) =
⊗

i D̂ω̃i,z(βi). Af-
ter the waveplate, the s- and z-polarized photons are spa-
tially separated with the aid of polarizing beam splitters,
(PBS) in Fig. 2. The photon number in each polariza-
tion of every frequency cut ω̃i is measured using photon
detectors, (D) in Fig. 2. The electro-optic signals are the
photon-count differences described by

∆n̂i =

∫ ∞

−∞
rect

(
ω̃i − ω

∆ωi

)
(n̂ω,s − n̂ωi,z) dω. (11)

By exploiting the narrow bandwidth of the operators
ûω̃i,λ, we can approximate the photon number,

n̂ω̃i,λ =

∫ ∞

−∞
rect

(
ω̃i − ω

∆ω

)
â†ω,λâω,λdω ≈ û†ω̃i,λ

ûω̃i,λ,

(12)
and thus express the photon-number difference in terms
of the photon number in each (polarization) mode with
frequency ω̃i,

∆n̂i ≈ n̂ω̃i,s − n̂ω̃i,z =

∞∑
∆ni=−∞

∆niP̂∆ni
. (13)

In the last step of the above equation, we decomposed
the observable ∆n̂i into projectors

P̂∆ni =

∞∑
ni=ñi

|ni +∆ni⟩i,s i,s⟨ni +∆ni| ⊗ |ni⟩i,z i,z⟨ni|,

(14)
onto the eigenspace of NIR Fock states with a
photon-number difference ∆ni between the s- and z-
polarized component. The summation starts at ñi =
max{0,−∆ni} to avoid negative photon-number count-
ing.
The projection operator in Eq. (14), as well as the total

time-evolution operator in Eq. (10), with the exception

of the nonlinear unitary ÛNL, are equivalent to the corre-
sponding operators used in Ref. [58]. While the unitary
defined by Eq. (2) describes a squeezing interaction be-
tween a continuum of modes, the unitary operator

ÛNL,MONO = exp

(
ζ∗âΩ,s

∑
i∈I

α̃iâi,s −H.c.

)
, (15)
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used in Ref. [58], describes a squeezing interaction be-
tween a monochromatic MIR mode âΩ,s and a non-
monochromatic NIR mode

∑
i∈I α̃iâi,s with the squeez-

ing strength ζ. In the following, we will discuss the con-
version of Eq. (2) into such an effective two-mode opera-
tor.

E. The first order unitary

In principle, it is possible to write the nonlinear unitary
operator in Eq. (2) in terms of discrete mode operators
using a Schmidt decomposition. Thus, the time evolution
in the nonlinear crystal can be understood as only acting
on a countably infinite number of effective nonmonochro-
matic modes instead of a continuum of modes. However,
a Schmidt decomposition is in general computationally
exhausting and selecting a set of most significant modes
participating in the interaction can be a challenging task.

Instead, the first-order unitary Û [1] = exp
(
Ŝ[1]
)
with

Ŝ[1] = θ
(1)
ω̃

(
aω̃û

†
ω̃ −H.c.

)
, (16)

can be used in place of Eq. (2), as shown in Ref. [43]. We
will drop the index indicating the polarization from here
on, since all operators in Eq. (16) act on the s-polarized
modes. The broadband mode operator

aω̃ =
1

θ
(1)
ω̃

[ûω̃, Ŝ] =

∫ Λ

−Λ

fω̃(Ω)e
−itpΩâΩdΩ, (17)

with fω̃(Ω) = (θ
(1)
ω̃

√
∆ω)−

1
2

∫∞
−∞ rect

(
ω̃−ω
∆ω

)
S(Ω, ω)dω

and θ
(1)
ω̃ = |[[Ŝ, û†ω̃], [ûω̃, Ŝ]]|

1
2 ̸= 0, is not a pure anni-

hilation or creation operator, since

[aω̃, a
†
ω̃] =

∫ Λ

−Λ

sign(Ω)|fω̃(Ω)|2dΩ = ±1. (18)

For
∫ Λ

0
|fω̃(Ω)|2dΩ >

∫ 0

−Λ
|fω̃(Ω)|2dΩ we will de-

note aω̃ = âω̃ as an annihilation operator and for∫ Λ

0
|fω̃(Ω)|2dΩ <

∫ 0

−Λ
|fω̃(Ω)|2dΩ as a creation opera-

tor aω̃ = â†ω̃. In either case, this operator is in gen-
eral different from the ordinary annihilation or creation
operator, because aω̃ |0⟩ ≠ 0 and ⟨0| aω̃ ̸= 0. Only if∫ 0

−Λ
|fω̃(Ω)|2dΩ = 0 or

∫ Λ

0
|fω̃(Ω)|2dΩ = 0, the operator

aω̃ is actually an annihilation or creation operator of the
(nonmonochromatic) Fock states.

Because the filtered bandwidth ∆ω is assumed to be
narrow, the mode function can be approximated by

fω̃(Ω) ≈
√
∆ω

θ
(1)
ω̃

S(Ω, ω̃)eitpΩ, (19)

θ
(1)
ω̃ ≈

√
∆ω̃

∣∣∣∣∣
∫ Λ

−Λ

sign(Ω)|S(ω̃,Ω)|2dΩ

∣∣∣∣∣
1/2

. (20)
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FIG. 3. Joint spectral amplitude (JSA) S(Ω, ω̃) at the de-
tected probe central frequency ω̃, defining the mode function
of aω̃ [cf. Eq. (19)], as well as its two composing functions,
the phase-matching function (solid light green line) ζΩ,ω̃ and
αpEp(ω̃ − Ω) + α∗

pE
∗
p(Ω − ω̃) describing the up- and down-

conversion of the s-polarized photons of frequency Ω (dashed
red line). The negative frequencies Ω < 0 of the up-conversion
process correspond to the detected difference-frequency gen-
eration (DFG), ω̃ = ωp − |Ω|, while the positive frequen-
cies Ω > 0 correspond to sum-frequency generation (SFG),
ω̃ = ωp + |Ω|. We assumed ω̃ = 300THz, ∆ω̃ = 1THz,
ωp = 350THz, σp = 35THz and L = 100 µm. The model for
the refractive index is given in Eq. (C1). The phase-matching
function has two maxima, one at Ω = 0 and one at Ω = ω̃,
while the pump contribution has maxima at Ω = ω̃ − ωp and
Ω = ω̃ + ωp, indicated by the vertical lines.

The spectrum of the MIR mode defined by Eq. (17) is
thus determined by the joint spectral amplitude S(Ω, ω̃)
with one of the frequencies fixed at the central frequency
ω̃ of the probe, the detected frequency. An example of
this spectrum can be seen in Fig. 3. The detected up-
conversion processes at Ω ∼ ω̃ − ωp dominate the spec-
trum, since the down-conversion processes at Ω ∼ ω̃+ωp

are suppressed by phase matching. The up-conversion
can be separated into the detected DFG, ω̃ = ωp − |Ω|
for Ω < 0 and SFG, ω̃ = ωp + |Ω|, for Ω > 0. If the cen-
tral frequency ωp of the pump is higher than the central
frequency of the probe, ω̃ < ωp, DFG corresponding to
the squeezing contributions in Eq. (16) prevails and we

can write aω̃ = â†ω̃.

From now on, we focus on the case aω̃ = â†ω̃, which we
will refer to as the squeezing regime. In this case, it is
possible to decompose the operator as

a†ω̃ = âω̃ =cosh(θ)âSA + sinh(θ) sin(θ⊥)e
−iΦ⊥ â†SA

+ sinh(θ) cos(θ⊥)â
†
TH, (21)

with θ = arccosh(
√∫ 0

−Λ
|fω̃(Ω)|2dΩ) and sin(θ⊥)e

iΦ⊥

= csch(θ) sech(θ)
∫ Λ

0
fω̃(Ω)fω̃(−Ω)dΩ, as well as the

two discretized (pure) annihilation operators âSA/TH =



7∫ Λ

0
fSA/TH(Ω)e

−itpΩâΩdΩ with

fSA(Ω) = sech(θ)f∗
ω̃(−Ω), (22)

fTH(Ω) = sec(θ⊥) csch(θ)fω̃(Ω)

− tan(θ⊥)e
iΦ⊥fSA(Ω). (23)

As will become clear later, the DFG contribution and
thus the operator âSA corresponds to the part of the
MIR spectrum sampled by the electro-optic sampling
setup in Fig. 2, while âTH represents the thermalized
modes, which are unsampled but entangled through the
nonlinear interaction to the sampled modes. By trac-
ing over the entangled modes, the state of the sam-
pled modes becomes partially mixed, resulting in an
increased von Neumann entropy. Thus, the mode an-
nihilated by âTH thermalizes the state of the sampled
modes [43]. The two operators commute by construc-
tion [âSA, âTH] = 0 and because of the way the operators
are constructed, the thermalized mode depends on the
sampled mode. If the phase difference between the sam-
pled mode and the modes contributing to the SFG is
a multiple of π, Φ⊥ = nπ, the sampled frequencies at-
tenuate the thermalized mode, as will become relevant
in Sec. IV. The decomposition in Eq. (21) can be ex-
pressed using a unitary single-mode squeezing operator

ŜâSAŜ
† = µSâSA+νSâ

†
SA and two-mode squeezing opera-

tor T̂ âSAT̂
† = µTâSA+νTâ

†
TH with µS/T = cosh

(∣∣ζS/T∣∣),
νS/T = exp

[
i arg(ζS/T)

]
sinh

(∣∣ζS/T∣∣). In order to write

âω̃ = ŜT̂ âSAT̂
†Ŝ†, (24)

we have to choose

ζS = eiΦ⊥ arccosh
{
[1− tanh2(θ) sin2(θ⊥)]

− 1
2

}
, (25)

ζT = arccosh
{
[cosh2(θ)− sinh2(θ) sin2(θ⊥)]

1
2

}
. (26)

The squeezing parameters θ
(1)
ω̃ , |ζS| and ζT are numer-

ically evaluated as a function of the up-converted fre-
quency ω̃−ωp and the down-converted frequency ω̃+ωp,
in Fig. 4. If the maximum of the pump shape correspond-
ing to the up-conversion process ω̃−ωp is shifted towards
the origin or if the bandwidth of the pump σp is increased,
the single- and two-mode squeezing parameters increase,
since more SFG is involved in the nonlinear interaction,
agreeing with the intuitive picture developed in Fig. 3.
Inserting Eq. (24) in the first-order unitary defined by
Eq. (16) results in

Û [1] = ŜT̂ Û ′
NLT̂

†Ŝ†, (27)

with the effective two-mode squeezing operator

Û ′
NL = exp

[
−θ

(1)
ω̃

(
âSA

∑
i∈I

α̃iûω̃i
−H.c.

)]
, (28)

similar to the operator in Eq. (30), used in Ref. [58]. Uti-
lizing the unitary transformation of the quadratic unitary

−25

−40

−55

(a)

0.2 0.6 1

θ
(1)
ω̃

(b)

0.4 0.8 1.2

ζT

(c)

0.3 0.7 1.1

|ζS|

−25

−40

−55

L
ow

fr
eq
u
en

cy
(ω̃
−
ω
p
)/
2
π
in

T
H
z

(d) (e) (f)

450 600 750

−25

−40

−55

(g)

450 600 750

High frequency (ω̃ + ωp)/2π in THz

(h)

450 600 750

(i)

FIG. 4. The three squeezing parameters determining the non-
linear unitary defined in Eq. (27) as a function of the up con-
verted frequency ω̃ − ωp and the down converted frequency
ω̃ + ωp [c.f. Fig. 3]. Note that ω̃ and ωp are both considered
variables. The nonlinear crystal is of length L = 100 µm and
the refractive index given in Eq. (C1). The filtered probe
pulse bandwidth is chosen as ∆ω̃/(2π) = 1THz and the
probe amplitude as αp = 2 · 106. The pump pulse band-
width is σp/(2π) = 15THz for (a)-(c), σp/(2π) = 35THz for
(d)-(f) and σp/(2π) = 50THz for (g)-(i). The white dashed
lines indicate the point with (ω̃ − ωp)/(2π) = −50THz and
(ω̃+ωp)/(2π) = 650THz, which are the values used in our ex-
ample for time-domain quantum state tomography in Sec. IV.

operator in Eq. (27), the total time evolution can be ex-
pressed as

Û ≈ ŜT̂ ÛeffT̂
†Ŝ†, (29)

where

Ûeff = ÛWPD̂ω̃(β⃗)Û
′
NL (30)

is the total, transformed time-evolution operator. The
unitary operator Ûeff is mathematically equivalent to the
time evolution used in Ref. [58] and thus, by transforming

the MIR state using the squeezing operators Ŝ and T̂ , one
can apply the results from Ref. [58], as will be done in
the following section.
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III. THE DIFFERENCE-COUNT PROBABILITY
DISTRIBUTION

The s-quasiprobability distributions ρ(z; s) parameter-
ized by a single (real) number s are a representation of
a (possibly mixed) quantum state equivalent to the den-
sity operator ρ̂, in the sense that all observable quantities
calculated from either agree. The two representations
can be related to one another via the s-characteristic

function χ(β; s) = exp
(
s|β|2/2

)
tr
[
D̂(β)ρ̂

]
, which is

the Fourier transform of the s-quasiprobability distri-
bution ρ(z; s) = π−1

∫
exp(−2i Im[βz∗])χ(β; s)d2β. For

s = −1, 0, 1, the characteristic function corresponds to
the expectation value of the antinormally, symmetrically
and normally ordered displacement operator and the re-
spective s-quasiprobability distributions are the Husimi,
Wigner and Glauber-Sudarshan distributions [60–62].
For the electro-optic sampling of a single monochromatic
mode, we have recently shown that the probability distri-
bution of the measured photon-number difference is re-
lated to a s-quasiprobability distribution of the sampled
quantum state [58]. In the case of electro-optic samping
with an ultrabroadband pump using the setup described
in the previous section, the probability to measure the
photon-number differences {∆ni} given the MIR modes,

centered at Ω̃, are in the initial broadband state ρ̂Ω̃ reads

p({∆ni}) = tr
(
P̂{∆ni}Û ρ̂Ω̃ ⊗ |0⟩NIR NIR⟨0|Û

†
)
. (31)

We assume that the (ultrabroadband) NIR modes (after
the removal of the z-polarized pump) are in the ground
state |0⟩NIR and the combined state of MIR and NIR
modes is evolved using the unitary time-evolution oper-
ator Û from Eq. (29) until a projective measurement,

described by the projectors P̂{∆ni} defined in Eq. (14),
is performed. Inserting Eq. (29) into Eq. (31) yields

p({∆ni}) ≈ tr
[
P̂{∆ni}ŜT̂ ÛeffT̂

†Ŝ†ρ̂Ω̃

⊗ |0⟩NIR NIR⟨0|ŜT̂ Û
†
effT̂

†Ŝ†
]
. (32)

The projectors P̂{∆ni} defined in Eq. (14) and the squeez-

ing operators Ŝ, T̂ act on different frequency bands, and
therefore, they commute. Thus, by defining a trans-
formed and reduced density operator (in which trr is the
trace over the modes not involved in the nonlinear inter-
action)

ˆ̃ρSA = trr

[
Ŝ†T̂ †ρ̂Ω̃T̂ Ŝ

]
(33)

solely of the sampled modes we can recast the count-
probability distribution into

p({∆ni}) ≈ trNIR

{
trSA

[
P̂{∆ni}

× Ûeff
ˆ̃ρSA ⊗ |0⟩NIR NIR⟨0|Û

†
eff

]}
. (34)

Eq. (34) only involves the (nonmonochromatic) sampled
MIR mode and the NIR modes and allows one to ap-
ply the formalism developed in Ref. [58]. Thus, we
can relate the count-probability distribution to the s̃-
quasiprobability distribution ρ̃SA(z; s) of the transformed
state in Eq. (33) through

p({∆ni}) ≈ Nρ̃SA(z({∆ni}); s̃). (35)

The quasiprobability distribution with parameter s̃ =

1− 2 coth2(|θ(1)ω̃ |) depending on the squeezing parameter

θ
(1)
ω̃ of the nonlinear interaction [cf. Eq. (16)] is renormal-

ized by N = csch2(|θ(1)ω̃ |)/2 and related to the discrete
photon-count differences via its argument

z({∆ni}) =
1√
2
csch(|ζ|)

(
∆nX

βX
+ i

∆nY

βY

)
, (36)

with amplitudes βi of the post-filtered probes. See
Sec. II A for an intuitive explanation of this result.
Eq. (35) holds only for |α̃X|2 = |α̃Y|2 = 1/2. How-
ever, the result presented here can easily be generalized
to measurements of multiple X̂ and Ŷ quadratures with
different αi by applying the full result of Ref. [58]. The
simplified count-probabilty distribution suffices for our
purpose. The nonmonochromatic s-quasiprobability dis-
tribution ˆ̃ρSA of the transformed state can be related to
the two-mode characteristic function χTM(βSA, βTH) =

tr
[
D̂SA(βSA)D̂TH(βTH)ρ̂Ω̃

]
, defined as the expectation

value of the displacement operators acting on the modes
SA and TH, by

ρ̃SA(z; s) =
1

π

∫
χSA(β; s)e

−2i Im(βz∗)d2β

=
1

π

∫
χTM [µT(µSβ − νSβ

∗),−νTβ
∗]

× e−2i Im(βz∗)+s|β|2/2d2β, (37)

as shown in Appendix A. The transformed s-
quasiprobability distributions for broadband coherent
states, cat states and the squeezed vacuum can be taken
from Appendix B.
The transformed quasiprobability distribution in

Eq. (37) turns into the quasiprobability distribution of
the sampled state ρ̂SA = trr(ρ̂Ω̃), if only DFG contributes
to the nonlinear interaction, i.e., ζS, ζT = 0. Increasing
the SFG will add some contribution from the thermal-
ized mode to the transformed state ρ̃SA. If the MIR
mode is in the vacuum state and if the bandwidth of the
pump is assumed to be σp/(2π) = 15THz, DFG predom-
inates and the difference-count probability distribution
follows the quasiprobability distribution of the vacuum,
as can be seen in Fig. 5 (a). However, if the bandwidth
of the pump is assumed to be σp/(2π) = 50THz, SFG
contributes stronger to the nonlinear interaction and the
difference-count probability distribution is squeezed due
to the effect of the squeezing operators in Eq. (33) on the
sampled state, visible in Fig. 5 (b). This observation is
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FIG. 5. Count-probability distribution [Eq. (35)] for a broad-

band MIR vacuum state with Ω̃/(2π) = 25THz, σΩ/(2π) =
5THz. For the filtered probe, we assume ω̃/(2π) = 300THz,
∆ω/(2π) = 1THz and β = 50. We consider a crystal of
length L = 100 µm. The parameters describing the pump
are αp = 2 · 106, tp = 0ps, ωp/(2π) = 350THz. (a) The
bandwidth of the pump is σp/(2π) = 15THz and difference-
frequency generation dominates the nonlinear interaction. (b)
The pump bandwidth is σp/(2π) = 50THz and the amount
of sum-frequency generation to the nonlinear interaction is
enhanced compared to the case in (a), resulting in some ther-
malization of the sampled quasiprobabilty distribution.

also supported by the ensemble calculation in Appendix
D. The variance of the difference counts ∆ni has two con-
tributions, one dependent on the MIR state and one only
dependent on the parameter of the nonlinear interaction

s̃ = 1 − 2 coth2(|θ(1)ω̃ |). The contribution from the latter
can be reduced by increasing the squeezing parameter

θ
(1)
ω̃ , which can be achieved by increasing the amplitude
αp of the pump or by shifting the central frequencies ω̃,

ωp towards increasing θ
(1)
ω̃ according to Fig. 4. The state-

dependent contribution can be expressed in terms of the
variance of the transformed sampled state in the MIR
and hence includes contributions from the thermalized
mode. For a coherent MIR input state ρ̂Ω̃ (including the
vacuum as a limit case), the main result from Ref. [43]
in the squeezing regime can be reproduced and general-
ized. Eq. (D9) shows that in the squeezing regime, i.e.,

aω̃ = â†ω̃, thermalization leads to an increase of the vari-
ance, which we will call thermalization noise from here
on. The thermalization noise can be mitigated by filter-
ing below the pump central frequency, ω̃ ≤ ωp, as we
discuss in the next section.

If the broadband MIR mode is in some arbitrary state
ρ̂Ω̃(âΩ̃) defined in terms of a single nonmonochromatic

mode operator âΩ̃ =
∫∞
0

fΩ̃(Ω)e
−itΩ̃ΩâΩdΩ, the two-

mode characteristic function can be calculated using the
decomposition

âΩ̃ = ASA(∆t)âSA +ATH(∆t)âTH +AUN(∆t)âUN, (38)

where the coefficients Ax(∆t) = [âΩ̃, â
†
x] (x =

SA,TH,UN) quantify the amount the sampled, thermal-
ized, and unsampled mode contribute to the MIR mode.
The newly introduced operator âUN of the unsampled
and uncorrelated modes, leaving the electro-optic signal

unaffected, has to be differentiated from the thermalized
mode, which is also unsampled, but correlated to the
sampled mode, therefore altering the measurement. All
operators on the right-hand side of Eq. (38) commute.
The coefficients Ax(∆t) can be expressed as the convolu-
tion of the Fourier-transformed mode functions F [fΩ̃](t)
and the gating function F [f∗

x ](t), dependent on the time
delay ∆t = tΩ̃ − tp between the sampled MIR pulse and
the NIR pump pulse according to

Ax(∆t) ≈ (F [fΩ̃] ∗ F [f∗
x ])(∆t). (39)

Therefore, the coefficients can be understood as the wave-
form of the MIR pulse F(fΩ̃) averaged over a time
window defined by F(fx). If the waveform is zero on
average and thus |AUN(∆t)| = 1, the transformed s-
quasiprobability distribution corresponds to the (possi-
bly squeezed) vacuum, shown in Fig. 6 (a). The key
idea to understand our approach to time-domain quan-
tum state tomography is the following: As the time de-
lay ∆t is varied, the time window is shifted and different
parts of the MIR waveform are averaged, which can in-
crease the contributions from the MIR state to the trans-
formed quasiprobability distribution ρ̃SA(z; s) depending
on the average waveform, thus dynamically sampling the
MIR state. This can be seen in Fig. 6 (a)-(d) for the
squeezed vacuum in the MIR. The shorter the NIR pump,
the shorter is the time window F(fSA) the MIR pulse is
averaged over. However, a shorter pump pulse will lead
to an increased bandwidth σp of the pump, because of
the Gabor limit [63]. The broad bandwidth leads to an
increase of the thermalization noise, which can be miti-
gated by filtering, as will be discussed in the next section.
This is the principle idea behind time-domain optical to-
mography, as proposed in this work.

IV. OPTICAL TIME-DOMAIN QUANTUM
TOMOGRAPHY

A phase-sensitive measurement typically requires the
comparison of the signal to a local oscillator. For pulse-
based homodyne detection, the sampled pulsed modes
and the local oscillator pulse are mixed in a beam splitter,
while for electro-optic sampling they interact in a non-
linear crystal. The mixing unavoidably leads to an aver-
aging of the detected modes over the duration (and oscil-
lations) of the local oscillator pulse. The goal of optical
time-domain quantum tomography is to reconstruct the
quantum state of a system, namely the MIR state, such
that the averaging is taken over a time interval below the
duration of a single cycle of the MIR-pulse central fre-
quency (i.e., subcycle), granting access to the dynamics
of quantum systems. The reconstruction of the sampled
MIR state and its dynamics using the quantum-electro-
optic-sampling setup proposed in Sec. II is based on the
relation between the photon-count probability distribu-
tion of the setup and the transformed s̃-quasiprobability
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FIG. 6. (a)-(d) Envelope of the gating function |F [fSA](t)| (solid blue line) and the waveform of the MIR F [fΩ̃](t) (dashed
orange line for the real part and dash-dotted red line for the imaginary part) in the time domain. The sampled mode has two
maxima indicated by the vertical lines located one period ηc =

L
2c
[ng(ω̃)−n(0)] of the (approximated) phase-matching function

away from the origin. The carrier envelope phase of the MIR tΩ̃ = ηc − 2πtstep/Ω̃ is varied in (a)-(d) by tstep = 2, 3
4
, 1
8
, 0.

The pump pulse is a coherent state with amplitude αp = 2 · 106 and of a Gaussian shape defined by Eq. (7) centered at
ωp/(2π) = 350THz and of bandwidth σp/(2π) = 35THz with a fixed carrier envelope phase tp = 0 s, while the MIR is

a Gaussian centered at Ω̃/(2π) = 25THz and of bandwidth σΩ̃/(2π) = 5THz. (e)-(h) Example of the count-probability
distribution in Eq. (35) for a squeezed vacuum generated by the operator in Eq. (B6) with ζΩ̃ = 1.5. Eq. (37) shows the
relation between the count-probability distributions over {∆nX,∆nY} and the quasiprobability distribution of the sampled

quantum state, associating ∆nX with X̂-quadrature and ∆nY with Ŷ -quadrature measurements. The filtered probe pulse is
of amplitude β =

√
2 × 10 and of bandwidth ∆ω/(2π) = 1THz at ω̃/(2π) = 300THz. The crystal is assumed to be of length

L = 100 µm and made of zinc telluride with the refractive index of Fig. 9.

distribution in Eq. (35). For each fixed time delay ∆t be-
tween the NIR pump pulse and the sampled MIR pulsed
mode, the transformed MIR s̃-quasiprobability distribu-
tion can be reconstructed from sampled data using the
relation in Eq. (35). Performing the reconstruction for
various time delays ∆t gives access to the time depen-
dence of the transformed MIR state and thus to the co-
efficients ASA/TH(∆t) defined through Eq. (38).

The remaining task is the reconstruction of the wave-
form of the MIR mode from the transformed quasiprob-
ability distribution. As discussed in the preceding sec-
tion, the sampled quadratures follow the MIR waveform
if an ultrabroadband pump pulse is used. To make
this argument more quantitative we consider the ex-
ample of a MIR pulse with a Gaussian-mode function

fΩ̃(Ω) = NΩ̃

√
Ωexp

[
−(Ω− Ω̃)2/(2σΩ̃)

2
]
normalized by

NΩ̃. In this case, the coefficients

ASA(∆t) ≈− sech(θ)

√
∆ω̃

θ
(1)
ω̃

|Sc|eiΦ⊥/2

√
π

n(0)
NΩ̃σ̄a(−)(∆t)

(40)

and

ATH(∆t) ≈−
√
∆ω̃

θ
(1)
ω̃

|Sc|eiΦ⊥/2

√
π

n(0)
NΩ̃σ̄

×
[
csch(θ) sec(θ⊥)e

−iΦ⊥a(+)(∆t)

− sech(θ) tan(θ⊥)e
iΦ⊥a(−)(∆t)

]
(41)

are approximately given in terms of Gaussian profiles

a(∓)(∆t) = exp

[
− (ωp − ω̃)2

4σ2
p

− Ω̃2

4σ2
Ω̃

+
Ω̄2

(∓)

4σ̄2

]
×
{
exp
[
−(∆t− ηc)

2σ̄2 − i(∆t− ηc)Ω̄(∓)

]
− exp

[
−(∆t+ ηc)

2σ̄2 − i(∆t+ ηc)Ω̄(∓)

]}
,

(42)

with the inverse-variance average σ̄ = σpσΩ̃/
√
σ2
p + σ2

Ω̃

and the weighted average central frequency Ω̄(∓) = ∓(ω̃−
ωp)

σ̄2

σ2
p
+ Ω̃ σ̄2

σ2
Ω̃

. The coefficients in Eq. (40) and (41) are

obtained after approximating the phase-matching func-
tion [c.f. Eq. (4)] by Sc sinc(ηcΩ), with constant Sc given
by Eq. (C4) and ηc = L

2c [ng(ω̃) − n(0)] dependent on
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the group refractive index ng(ω̃). The approximation is
valid as long as the refractive index of the nonlinear crys-
tal is flat in the MIR frequency band or in other words
dispersion is low (see Appendix C for details). The co-
efficients from Eq. (40) and (41) are compared to the
MIR waveform in Fig. 7 as functions of the time delay
∆t between the NIR pump pulse and the sampled MIR
mode for various pump bandwidths σp. Increasing the
pump bandwidth improves the matching between the co-
efficient of the sampled mode ASA(∆t) and MIR mode
profile. However, as further explained below, there are
six effects due to the convolution of the MIR waveform
with the gating function in Eq. (39) that detrimentally
affect this matching.

1. Desynchronization.—The most prominent effect is
desynchronization between ASA(∆t) and the MIR
waveform by time shifts ±ηc due to the oscillation of
the phase-matching in the frequency domain. If the
shift is large enough (e.g., ηc ≫ σΩ̃), the two contri-
butions at −ηc and ηc do not interfere and the shift can
be compensated by adjusting ∆t. The shift increases
with the length of the nonlinear crystal and with ω̃. A
proper selection of these parameters therefore allows
for some degree of control over the shift. Nonetheless,
for a fixed pump central frequency ωp, the increase in

ω̃ makes the measurement weaker [i.e., decreases θ
(1)
ω̃ ]

and enhances thermalization by increasing ζT, what
can be counteracted by increasing ωp alongside ω̃. We
highlight suitable values by the white dashed lines in
Fig. 4.

2. Phase shifting.—The real part of ASA(∆t) corresponds
to the imaginary part of the MIR waveform and vice
versa, as can be seen in Fig. 7. This originates from
the imaginary prefactor in the electric field and car-
ries over to the gating function F [f∗

x ](t). This effect is
absent in Fig. 8, since the interference of the two Gaus-
sians at ±ηc, composing the gating function F [f∗

x ](t),
leads to an additional imaginary prefactor.

3. Spectral weighting.—The low-frequency end of the
MIR spectrum is overestimated. This skewed spec-
tral weighting results from the 1/

√
Ω-dependence of

the function fSA(Ω) defining the sampled mode. This
effect is, however, negligible as long as the central fre-
quency of the sampled MIR mode is large compared to
its own bandwidth Ω̃ ≫ σΩ̃. This effect can be seen by
comparing Fig. 7 (b) and (c): in (b), ASA(∆t) seems
to follow the MIR waveform better than in (c), even
though in the latter the pump is shorter. The under-
estimation can be accounted for by reintroducing the
factor

√
Ω in post-processing.

4. Temporal averaging.—The MIR waveform is averaged
over the time window defined by the gating function.
For a Gaussian MIR pulsed mode with central fre-
quency Ω̃ and variance σΩ̃, the averaging will lead to

the reconstruction of a Gaussian with an effective cen-
tral frequency Ω̄(−) and variance σ̄. When consider-
ing the limiting case of an infinitely broadband pump
pulse, limσp→∞ σ̄ = σΩ̃ and limσp→∞ Ω̄(∓) = Ω̃, the
reconstructed parameters tend to the actual MIR pa-
rameters, as shown in Fig. 7. This (unphysical) limit
case would correspond to a probe with amplitude de-
scribed by a delta distribution over time, which ”av-
erages” over a single point of the sampled mode (the
instant at which they intersect). We can quantify how
close the reconstructed variance and central frequency
are to the corresponding MIR-pulse parameters by cal-
culating the relative error for the variance∣∣∣σ2

Ω̃
− σ̄2

∣∣∣
σ2
Ω̃

=
σ2
Ω̃

σ2
Ω̃
+ σ2

p

(43)

and for the central frequency∣∣∣Ω̃− Ω̄(−)

∣∣∣
Ω̃

=

∣∣∣∣1 + ω̃ − ωp

Ω̃

∣∣∣∣ σ2
Ω̃

σ2
Ω̃
+ σ2

p

. (44)

We see that both relative errors vanish if the band-
width of the pump pulse considerably exceeds the MIR
pulse bandwidth, σp ≫ σΩ̃. We can also see that
the relative error in the central frequency is always
zero when the sampled frequencies are matched to the
MIR, ωp − ω̃ = Ω̃. Using Eq. (43) and (44) we can
calculate the variance σp of the pump pulse required
to achieve a certain relative error in the reconstructed
variance and central frequency given a fixed variance
and central frequency of the MIR pulse. Some exem-
plary values can be taken from Table I.

5. Thermalization.—As mentioned previously, there is an
additional contribution to the signal due to the entan-
glement of the sampled mode with the thermalized
mode âTH, which originates from the decomposition
in Eq. (38) and can be observed from Fig. 7, where
ATH(∆t) increases with the bandwidth of the pump
pulse. One could try to reduce the contribution of
the thermalized mode to the MIR mode, i.e., mini-
mize the coefficient ATH(∆t) for all time delays ∆t.

TABLE I. Relative errors in the sampled central frequency
and variance of the MIR waveform as well as the maximum
of the coefficients AD/Th(∆t) in Fig. 7 for various values of the
NIR pump pulse variance σp and a fixed MIR pulse central
frequency Ω̃ = 25THz, variance σΩ̃/(2π) = 5THz, frequency

mismatch ωp − ω̃ = 2Ω̃ and a fixed carrier-envelope phase of
the pump pulse tp = 0.

relative error relative error maximum maximum
σp/(2π) variance cent. freq. ASA(∆t) ATH(∆t)

15THz 10 % 10 % 0.44 0.02
35THz 2 % 2 % 0.39 0.05
50THz 1 % 1 % 0.36 0.06
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FIG. 7. Time-delay dependence of the coefficients ASA(∆t)
and ATH(∆t) describing the decomposition of the MIR mode
function into sampled and thermalized contributions. The fil-
tered probe is assumed to be of bandwidth ∆ω̃/(2π) = 1THz
and central frequency ω̃/(2π) = 300THz, the nonlinear crys-
tal is of length L = 100 µm and the refractive index can
be taken from Eq. (C1). The sampled MIR pulse is a
Gaussian of bandwidth σΩ̃/(2π) = 5THz and central fre-

quency Ω̃/(2π) = 25THz and the probe of central frequency
ωp/(2π) = 350THz, amplitude αp = 2 · 106 and carrier en-
velope phase tp = 0. The probe bandwidth is σp/(2π) =
15THz, 35THz and 50THz in (a)-(c). The dashed orange
line shows the real and the dash-dotted red line the imagi-
nary part of the MIR pulse shape in the time domain scaled
and shifted to fit ASA(∆t). The vertical line marks the point
∆t = ±ηc.

A minimization of the coefficient ATH(∆t) in a math-
ematical sense seems not feasible since the coefficient
depends on the waveform of the MIR mode. However,
there are two strategies to mitigate the influence of
the thermalized mode. First, Eq. (41) shows that for
large pump bandwidths σp, a(+)(∆t) and a(−)(∆t) in
Eq. (42) oscillate coherently and for Φ⊥ = nπ with

n ∈ Z they interfere destructively. The latter require-
ment can be met by fixing the pump carrier-envelope
to tp = 0. Second, one can reduce the entanglement
between the sampled and thermalized modes by de-
creasing the two-mode squeezing parameter ζT. This
can be achieved by filtering below the pump central
frequency, ω̃−ωp ≪ 0, as can be seen from Fig. 4. This
way SFG detection is reduced, as can be seen in Fig. 3,
since less of the pump bandwidth is below the filtered
frequency ω̃. Coincidentally, filtering below the pump
central frequency will reduce the single-mode squeez-
ing and increase the overall squeezing parameter of

the nonlinear interaction θ
(1)
ω̃ , as can be observed in

Fig. 4. A mismatch between the central frequency of
the sampled mode ωp− ω̃ and the central frequency of

the MIR mode Ω̃ leads to a reduced up-conversion effi-
ciency and in turn to a reduction of ASA(∆t), but since
the pump pulse is rather broadband the reduction is
minor. Combining the two strategies by mismatch-
ing the sampled frequencies of the setup and the MIR
central frequency to ωp−ω̃ = 2Ω̃ and fixing the carrier-
envelope phase of the pump pulse, tp = 0, the pump
can be made short enough to allow for a subcycle res-
olution while keeping the influence of the thermalized
mode down, as can be taken from Tab. I. For example,
under such conditions a pump pulse with bandwidth
σp/(2π) = 35THz can reach a relative error in the
sampled central frequency and variance of 2%, while
keeping the maximum of the ATH(∆t) below 13% off
from the maximum of ASA(∆t) [c.f. Fig. 7 (b)].

6. Deamplification.—The overlap of the gating function
and the MIR waveform is imperfect. From Fig. 7, we
can see that the maximum value of ASA(∆t) always
remains well below one. The full reconstruction of the
MIR quantum state requires the coefficient ASA(∆t)
to be equal to one for at least one time delay ∆t. Con-
sider a coherent MIR sample state with amplitude α
which would, if we assume no thermalization, appear
to our measurement setup as a coherent state with am-
plitude ASA(∆t)α. Thus, to reconstruct α, ASA(∆t)
needs to be one for some ∆t. In other words, the
sampled mode function, defined by fSA(Ω), has to co-
incide with that of the MIR pulsed mode, defined by
fΩ̃(Ω). In this case, in the absence of any time delay,
∆t = 0, the coefficient becomes one, ASA(∆t = 0) =

F [fΩ̃f
∗
SA](∆t = 0) =

∫∞
0

|fΩ̃(Ω)|
2
dΩ = 1. This can

be achieved approximately by choosing σp = σΩ̃ and

ωp − ω̃ = Ω̃. Furthermore, the nonlinear crystal has
to be sufficiently small to suppress the influence of the
phase matching, as can be seen from the approxima-
tion (and ηc ∝ L)

|ASA(∆t = 0)| ≈ exp
(
−η2cσ

2
Ω̃
/2
)
sinc(ηcΩ̃), (45)

which is valid as long as the pump pulse and MIR sam-
ple pulse spectrum overlap and dispersion is low in the
MIR range. For σΩ̃/(2π) = 5THz, (ωp − ω̃)/(2π) =
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FIG. 8. Time-delay dependence of the coefficients ASA(∆t)
and ATH(∆t) describing the decomposition of the mode func-
tion into sampled and thermalized contributions for differ-
ent time delays ∆t. The filtered probe is of bandwidth
∆ω̃/(2π) = 1THz, the central frequency is ω̃/(2π) =
300THz, and the refractive index given in Eq. (C1). In con-
trast to Fig. 7, we consider a short nonlinear crystal with
L = 6µm. Choosing a short crystal reduces the influence of
the phase matching and allows a perfect match of the gat-
ing function F [f∗

SA](∆t) and the MIR waveform F [fΩ̃](∆t).
The MIR sample pulse is of bandwidth σΩ̃/(2π) = 5THz,

central frequency Ω̃/(2π) = 25THz and the probe of cen-
tral frequency ωp/(2π) = 325THz, amplitude αp = 2 · 106
and carrier envelope phase tp = 0. The probe bandwidth is
σp/(2π) = 5THz.

Ω̃/(2π) = 25THz and ω̃/(2π) = 300THz, the non-
linear crystal has to be L = 6µm for |ASA(∆t)| to
reach a maximum of 0.8 if the approximated expres-
sion in Eq. (45) is used (precise numerical evaluation
of Eq. (40) results in a maximum of 0.99). Numeri-
cal data on the coefficient ASA(∆t) for the previously
mentioned values is shown in Fig. 8.

V. CONCLUSIONS

In this work we propose an electro-optic-based to-
mography scheme able to reconstruct a time-dependent

quantum state in the mid-infrared range, allowing for
a dynamical sampling of spatiotemporally localized op-
tical modes not only in phase space, but also in the
time domain with subcycle resolution. Utilizing two re-
cently developed theoretical tools [43, 58], we derive the
photon-count probability distribution p({∆ni}) for mul-
tichannel subcycle quantum electro-optic sampling and
show how this quantity is related to a specific time-
dependent phase-space distribution of the sampled state.
We scrutinize the physical sources of noise in the quan-
tum electro-optic signal variance and show that sampling
nonmonochromatic optical modes with subcycle resolu-
tion leads to two intriguing effects that detrimentally en-
hance the noise: A state-independent contribution scal-
ing with the interaction strength between the sampled
MIR and the detected NIR modes and thermalization
noise due to entanglement breaking between the sam-
pled and unsampled modes. The latter effect is unpar-
alleled by continuous-wave-driven multichannel electro-
optic sampling, which is mostly limited by noise due
to the simultaneous measurement of noncommuting ob-
servables. We then propose a scheme to minimize the
thermalization noise by a mismatch between the central
frequencies of the pump pulse used to drive the nonlin-
ear interaction and of the detected NIR modes. Finally,
we demonstrate the reconstruction of the waveform us-
ing the example of a Gaussian mid-infrared pulsed mode.
Our proposed optical tomography scheme is able to dy-
namically sample a broadband quantum state using an
ultrabroadband pump pulse, opening a new paradigm for
time-domain quantum tomography with subcycle resolu-
tion.
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Appendix A: The two-mode characteristic function

In this section we derive the relation used in Eq. (37) between the two-mode and single-mode characteristic function.

The eigenstates of the operators {ûω̃i
| i = X,Y} ∪ {âSA, âTH} span a Hilbert space HEOS =

(⊗
i=X,Y Hω̃i

)
⊗HSA ⊗

HTH which is a factor of the uncountably infinite dimensional Hilbert space H = HEOS⊗Hr. By defining the reduced
density operator ρ̂S-T = trr(ρ̂Ω̃) of the modes, the electro-optic signal inherits contributions from (unsampled) modes
correlated to the sampled ones. The density operator ρ̂S-T acts on the effective bipartite Hilbert space HSA ⊗ HTH

and can hence be written in terms of the displacement operators D̂SA(βSA) and D̂TH(βTH) generated by âSA and âTH
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(see [64], p. 265):

ρ̂S-T =
1

π2

∫
χSA,TH(βSA, βTH)D̂

†
SA(βSA)D̂

†
TH(βTH)d

2βSAd
2βTH, (A1)

with the symmetrically ordered, two-mode characteristic function

χSA,TH(βSA, βTH) =
〈
D̂SA(βSA)D̂TH(βTH)

〉
ρ̂S-T

. (A2)

However, as we have already seen, the effective nonlinear unitary operator (28) only acts on the subspace
(⊗

i∈I Hω̃i

)
⊗

HSA. Thus, we have to calculate the reduced density operator on the Hilbert space HSA,

ˆ̃ρSA = trTH

[
Ŝ†
S-TŜ

†
SAρ̂S-TŜSAŜS-T

]
=

1

π

∫
χSA(β)D̂

†
SA(β)d

2β, (A3)

with the symmetrically ordered characteristic function χSA(β) =
〈
D̂SA(β)

〉
ˆ̃ρSA

. Inserting Eq. (A1) into Eq. (A3)

leads to

ˆ̃ρSA =
1

π2

∫
χSA,TH(βSA, βTH) trTH

[
Ŝ†
THŜ

†
SAD̂

†
SA(βSA)D̂

†
TH(βTH)ŜSAŜTH

]
d2βSAd

2βTH, (A4)

Apply the single-mode squeezing operator leads to

Ŝ†
SAD̂SA(βSA)ŜSA = D̂SA(β̃SA), (A5)

with β̃SA = µSAβSA − νSAβ
∗
SA. Thus, with the Jacobian determinant det

[
Dβ̃SA

]
= µ2

SA − |νSA|2 = 1, we can write

the reduced density operator as follows

ˆ̃ρSA =
1

π2

∫
χSA,TH(µSAβ̃SA − νSAβ̃

∗
SA, βTH) trTH

[
Ŝ†
THD̂

†
SA(β̃SA)ŜTHŜ

†
THD̂

†
TH(βTH)ŜTH

]
d2β̃SAd

2βTH. (A6)

If we now apply the two-mode squeezing operators on the displacement operators

ŜTHD̂TH(βTH)Ŝ
†
TH = exp

{
βTH

[
µTHâ

†
TH − νTHâSA

]
−H.c.

}
= D̂TH(µTHβTH)⊗ D̂SA(νTHβ

∗
TH) (A7)

ŜTHD̂SA(β̃SA)Ŝ
†
TH = exp

{
β̃SA

[
µTHâ

†
SA − νTHâTH

]
−H.c.

}
= D̂TH(νTHβ̃

∗
SA)⊗ D̂SA(µTHβ̃SA). (A8)

Using the fact, that the trace over the displacement operator gives a delta distribution (see p.339, [64])

trTH

{
D̂TH [µTHβTH] D̂TH

[
νTH

(
β̃SA

)∗]}
=

π

(µTH)2
δ

[
Re(βTH) +

νTH

µTH
Re(β̃SA)

]
δ

[
Im(βTH)−

νTH

µTH
Im(β̃SA)

]
.

(A9)

The reduced and transformed density operator can thus be written as follows,

ˆ̃ρSA =
1

π2

∫∫
χ
(
µSAβ̃SA − νSAβ̃

∗
SA, βTH

)
× trTH

[
D̂TH (−µTHβTH) D̂TH

(
−νTHβ̃

∗
SA

)]
D̂SA (−νTHβ

∗
TH) D̂SA

(
−µTHβ̃SA

)
d2βTHd

2β̃SA

=
1

πµ2
TH

∫
χ

(
µSAβ̃SA − νSAβ̃

∗
SA,−

νTH

µTH
β̃∗
SA

)
D̂SA (−νTHβ

∗
TH) D̂SA

(
−µTHβ̃SA

)
d2β̃SA

=
1

π

∫
χ
[
µTH

(
µSAβ̃SA − νSAβ̃

∗
SA

)
,−νTHβ̃

∗
SA

]
D̂SA

(
−β̃SA

)
d2β̃SA

=
1

π

∫
χ(β)D̂SA(−β)d2β. (A10)
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Comparing the last two lines, we can conclude that

χ(β) = χ [µTH (µSAβ − νSAβ
∗) ,−νTHβ

∗] . (A11)

By applying a beam splitter after the spectral filtering to achieve the simultaneous measurement, the time evolution
in Eq. (10) has to be modified to

Û = ÛWPD̂ω̃(β⃗)ÛBÛNL, (A12)

with the operator ÛB = exp
[
iπ4 (û

†
ω̃X

ûω̃Y +H.c.)
]
. Since the beam splitter has no effect on the vacuum, it can be

inserted into Eq. (31) resulting in

p({∆ni}) = tr
(
P̂{∆ni}Û ÛB† ρ̂Ω̃ ⊗ |0⟩NIR NIR⟨0|ÛBÛ

†
)
. (A13)

Applying the beam splitter to the nonlinear operator, ÛBÛNLÛ
†
B, will result in a similar decomposition as Eq. (9)

with α̃X = 1/
√
2 and α̃Y = i/

√
2. The additional imaginary unit can be accounted for by tuning the wave plates

according to the result from Ref. [58].

Appendix B: The quasiprobability distribution for various states

In this section we present the transformed (sX, sY)-quasiprobability distributions, for different states. The (sX, sY)-
quasiprobability distributions are a generalization of the s-quasiprobability distributions (see Ref. [58] for details),
which can be recovered through s = sX = sY.

Starting with a coherent MIR input state ρ̂Ω̃ = D̂Ω̃(αΩ̃) |0⟩ ⟨0| D̂
†
Ω̃
(αΩ̃), generated by D̂Ω̃(αΩ̃) =

exp
(
αΩ̃

∫∞
0

f∗
Ω̃
(Ω)â†ΩdΩ−H.c.

)
, and using A1(∆t) = µTHµSAASA(∆t), A2 = µTHν

∗
SAASA(∆t) + νTHATH(∆t) as

well as

σ2
X =

1

2
(µ2

TH|µSA − νSA|2 + ν2TH − sX) (B1)

σ2
Y =

1

2
(µ2

TH|µSA + νSA|2 + ν2TH − sY) (B2)

σ2
XY =µ2

THµSA|νSA| sin(Φ⊥), (B3)

the quasiprobability distribution of a coherent state can be expressed as

ρ̃SA(z; sX, sY|αΩ̃) =
[
σ2
Xσ

2
Y − σ4

XY

]− 1
2

× exp
[
{−Re2([A1(∆t) +A2(∆t)]αΩ̃ − z)σ2

X − Im2([A1(∆t)−A2(∆t)]αΩ̃ − z)σ2
Y

− 2Re([A1(∆t) +A2(∆t)]αΩ̃ − z) Im([A1(∆t)−A2(∆t)]αΩ̃ − z)σ2
XY}/{σ2

Xσ
2
Y − σ4

XY}
]
. (B4)

Next, let us assume the MIR modes are in a cat state ρ̂Ω̃ = |cat⟩ ⟨cat| with |cat⟩ = Ncat[D̂Ω̃(αΩ̃) + D̂Ω̃(−αΩ̃)] |0⟩ and
Ncat = (2 + 2e−2|αΩ̃|2)−1/2, the transformed quasiprobability distribution is

ρ̃SA(z; sX, sY|cat) =N2
cat

(
ρ̃SA(z; sX, sY|αΩ̃) + ρ̃SA(z; sX, sY| − αΩ̃) + 2ρ̃SA(z; sX, sY|vac) exp

[
− 2|αΩ̃|

2

+
(
Re2

{
[A1(∆t)−A2(∆t)]αΩ̃

}
σ2
Y + Im2

{
[A1(∆t) +A2(∆t)]αΩ̃

}
σ2
X

− 2Re
{
[A1(∆t)−A2(∆t)]αΩ̃

}
Im
{
[A1(∆t) +A2(∆t)]αΩ̃

}
σ2
XY

)
/(σ2

Xσ
2
Y − σ4

XY)
]

× cos
{
2
[(

Im
{
[A1(∆t) +A2(∆t)]αΩ̃

}
σ2
X − Re([A1(∆t)−A2(∆t)]αΩ̃)σ

2
XY

)
Re(z)+

+ (Re([A1(∆t)−A2(∆t)]αΩ̃)σ
2
Y − Im([A1(∆t) +A2(∆t)]αΩ̃)σ

2
XY) Im(z)

]
/[σ2

Xσ
2
Y − σ4

XY]
})

.

(B5)
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FIG. 9. A simple model for the refractive index of zinc telluride. This was obtained by connecting the data from Ref. [35] for
the MIR range and data from Ref. [65] for the NIR. In the MIR range a linear relation was assumed, while in the NIR, it was
assumed to be quadratic.

If the MIR-input state is in the squeezed vacuum ρ̂Ω̃ = ŜΩ̃(ζΩ̃) |0⟩ ⟨0| Ŝ
†
Ω̃
(ζΩ̃), generated by

ŜΩ̃(αΩ̃) = exp

[
1

2
ζ∗
Ω̃

(∫ ∞

0

fΩ̃(Ω)âΩdΩ

)2

−H.c.

]
, (B6)

and using A1 = µTHµSAASA, A2 = µTHνSAASA + νTHATH, as well as

σ2
X =

1

2
(µ2

TH|µSA + νSA|2 + ν2TH − sX) + Re(µΩ̃ν
∗
Ω̃
(A1 −A2)

2) + |νΩ̃|
2|A1 −A2|2 (B7)

σ2
Y =

1

2
(µ2

TH|µSA − νSA|2 + ν2TH − sY)− Re(µΩ̃ν
∗
Ω̃
(A1 +A2)

2) + |νΩ̃|
2|A1 +A2|2 (B8)

σ2
XY =µ2

THµSA|νSA| sin(Φ⊥) + µΩ̃[Im(ν∗
Ω̃
A2

1)− Im(ν∗
Ω̃
A2

2)] + 2|νΩ̃|
2
Im(A1A

∗
2), (B9)

the quasiprobability distribution takes a similar form to the coherent state, as the coherent states are squeezed by
the interaction in the nonlinear crystal

ρ̃SA(z; sX, sY|ζΩ̃) =
[
σ2
Xσ

2
Y − σ4

XY

]− 1
2

× exp
[
{−Re2(z)σ2

X − Im2(z)σ2
Y − 2Re(z) Im(z)σ2

XY}/{σ2
Xσ

2
Y − σ4

XY}
]
. (B10)

Appendix C: Approximate solution to the coefficients

In this section, we derive an approximate solution for the coefficients ASA(∆t) and ATH(∆t). The approximation
is based on the assumption, that for the sampled MIR-frequency range, the refractive index of the nonlinear crystal
is sufficiently flat. We use a simplified model for the refractive index of zinc telluride given by

nω = Θ[b− |ω|/(2π)](a1|ω|+ c1) + Θ[|ω|/(2π)− b](a2[|ω| − b]2 + c2) (C1)

with b = 140THz, a1 = 3.5 ·10−4ps, a2 = 2.6 ·10−6ps2, c1 = 2.55, c2 = 2.75 and Θ being the Heaviside step function.
The model is based on data from Ref. [35] for the MIR range and on Ref. [65] for the NIR. In the MIR range the

refractive index is flat, as can be seen in Fig. 9. Using ΩnΩ = ckΩ we can expand kω̃−Ω ≈ kω̃− dkω

dω |ω=ω̃Ω = kω̃− ng(ω̃)
c Ω

to first order, where ng(ω̃) is the group refractive index at ω̃, if
∣∣dkΩ

dΩ

∣∣|ω=ω̃ ≫ 1
2

∣∣∣d2kΩ

dΩ2 |ω=ω̃Ω
∣∣∣ for small Ω we can expand

(ω̃ − Ω)nω̃−Ω = kω̃−Ωc to first order. Now we can approximate the frequency of the phase-matching function

ηω̃,Ω ≈ LΩ

2c
[ng − n(Ω)] ≈ LΩ

2c
[ng(ω̃)− n(0)] = ηcΩ, (C2)
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with the period of the phase-matching function ηc =
L
2c [ng(ω̃)− n(0)]. Furthermore, using

Ep(ω) ≈ i

(
ℏ

4πcε0A

) 1
2

√
|ωp|
nωp

fp(ω), (C3)

and defining

Sc = − i

ℏ

(
i

√
ℏ

4πcε0A

)3(
−4πL

Aε0d

2

)√
ω̃

nω̃
α∗
p

√
ωp

nωp

1

ηc
, (C4)

the joint spectral amplitude can be written as

S(Ω, ω̃) ≈ Scfp(ω̃ − Ω) sign(Ω)

√
|Ω|
n(0)

1

Ω
sin(ηcΩ). (C5)

The above approximation of Eq. (C5), allows us to analytically solve the integrals for the coefficients ASA(∆t) and
ATH(∆t) defined through Eq. (38) using erfcx(z) = exp

(
z2
)
[1− erf(z)] resulting in

ASA ≈ sech(θ)

√
∆ω̃

θ
(1)
ω̃

Sce
−iω̃tp

√
1

n(0)
NΩ̃

1

2i

√
πσ̄

× exp
[
−(ωp − ω̃)2/(4σ2

p)− Ω̃2/(4σ2
Ω̃
)
]{

erfcx[i(∆t− ηc)σ̄ − Ω̄SAσ̄]− erfcx[i(∆t+ ηc)σ̄ − Ω̄SAσ̄]
}
, (C6)

ATH ≈ sec(θ⊥) csch(θ)

√
∆ω̃

θ
(1)
ω̃

S∗
c e

iω̃tp

√
1

n(0)
NΩ̃

1

2i

√
πσ̄

× exp
[
−(ωp − ω̃)2/(4σ2

p)− Ω̃2/(4σ2
Ω̃
)
]{

erfcx[i(∆t− ηc)σ̄ − Ω̄THσ̄]− erfcx[i(∆t+ ηc)σ̄ − Ω̄THσ̄]
}

− tan(θ⊥)e
iΦ⊥ASA. (C7)

Since fΩ̃(Ω) ≈ 0 for Ω ≤ 0, we can expand the integral over the frequencies over the whole real numbers, resulting
in the Fourier transform in Eq. (39) and thus in Eq. (40) and (41). Furthermore, we assume αp ∈ R and obtain
Φ⊥ = π − 2ω̃tp.

Appendix D: Details to the thermalization noise

Using the framework developed in Ref. [58], we can relate the (ensemble) expectation values of the photon-count

differences ∆ni (for i = X,Y) to the nonmonochromatic MIR quadratures X̂SA(φ) =
1
2 (âSAe

iφ+ â†SAe
−iφ) with φX = 0

and φY = −π/2 by

⟨∆ni⟩ ˆ̃ρSA
≈

√
2|ν||βQ|

〈
X̂SA(φi)

〉
ˆ̃ρSA

. (D1)

Similarly, the (root mean square) variances of the photon-number differences can be related to the variances of the

quadratures, σ2
X̂SA(φi)

= ⟨X̂2
SA(φi)⟩ − ⟨X̂SA(φi)⟩2, according to [58]

σ2
∆ni

≈ 2|ν|2|βi|2
(
σ2
X̂SA(φi)

| ˆ̃ρSA
− s̃

4

)
. (D2)

The variance has two contributions, one dependent on the MIR state and one only dependent on the parameter of

the nonlinear interaction s̃ = 1 − 2 coth2(|θ(1)ω̃ |). The contribution from the latter can be reduced by increasing the

squeezing parameter θ
(1)
ω̃ , which can be achieved by increasing the amplitude αp of the pump or by tuning the central

frequencies ω̃, ωp according to Fig. 4. The state-dependent contribution to the expectation value and the variance
above are expressed in terms of the transformed sampled state of the MIR. However, they can be rewritten with
respect to the state of the MIR mode ρ̂Ω̃. Inserting Eq. (33) into the ensemble average and using the definitions
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ˆ⃗
X = [X̂SA(φ), X̂SA(−φ − Φ⊥), X̂TH(−φ)]T as well as r⃗ = [µTµS, µT|νS|, νT]T, the expectation value in Eq. (D1) can
be expressed as 〈

X̂SA(φ)
〉
ˆ̃ρSA

=
〈
r⃗TX⃗

〉
ρ̂Ω̃

, (D3)

and by defining the quantum covariance matrix

cov(
ˆ⃗
X)
∣∣
ρ̂Ω̃

=
1

2

〈(
ˆ⃗
X− ⟨ ˆ⃗X⟩

)(
ˆ⃗
X− ⟨ ˆ⃗X⟩

)T
+

[(
ˆ⃗
X− ⟨ ˆ⃗X⟩

)(
ˆ⃗
X− ⟨ ˆ⃗X⟩

)T]T〉
ρ̂Ω̃

, (D4)

with the following (i, j)-th matrix element (cov[
ˆ⃗
X]ρ̂Ω̃

)ij =
1
2 ⟨{X̂i, X̂j}⟩ρ̂Ω̃

− ⟨X̂i⟩ρ̂Ω̃
⟨X̂j⟩ρ̂Ω̃

and the i-th/j-th component

of
ˆ⃗
X the variance can be brought into the form

σ2
X̂SA(φ)

∣∣
ˆ̃ρSA

= r⃗T cov(
ˆ⃗
X)
∣∣
ρ̂Ω̃
r⃗ = cov(r⃗T

ˆ⃗
X)
∣∣
ρ̂Ω̃
. (D5)

The first summand of the three contributions to the observable r⃗T
ˆ⃗
X can be understood as follows. Since the refractive

index is flat in the MIR-range, the phase-matching function in Eq. (4) can be simplified to sinc(ηcΩ) with ηc =
L
2c [ng(ω̃)−n(0)] depending on the group refractive index ng(ω̃) (see Appendix C for details). The spectral function of
the sampled mode fSA(Ω) is therefore proportional to the pump spectral function modulated by the phase-matching
function sinc(ηcΩ). If |fSA(Ω)| (and thus the pump bandwidth, σp) is much broader than |fΩ̃(Ω)|, the expectation
value can be approximated by

tr
(
X̂SA(φ)ρ̂Ω̃

)
∝
∼
tr
(
X̂tp−ηc

(φ̃)ρ̂Ω̃

)
+ tr

(
X̂tp+ηc

(φ̃)ρ̂Ω̃

)
(D6)

with φ̃ = φ + arg[fSA(Ω̃)] at the central frequency Ω̃ of the MIR and the instantaneous quadrature X̂t(φ̃) at time
t. In the limit case of an ideal classical electro-optic measurement with infinitely short pump pulses, the signal is
directly related to the instantaneous quadrature expectation values, since the MIR pulse is sampled over a time slice
defined by the pump pulse duration. A small uncertainty in time σt will lead to a broader frequency band σω of the
probing system (in the present case, the pump Ep) due to the Gabor limit σ2

ω ≥ π/(2σ2
t ) [63]. However, as can be

seen from Fig. 3, a broader banded pump pulse will lead to some SFG in addition to the sampled DFG contribution
since the higher end of the band is above the filtered frequency ω̃ but some of the lower end of the band is below ω̃.
This will lead to an increase of the single-mode and two-mode squeezing parameter ζS, ζT accounting for the SFG
contributions, as can be seen in Fig. 4. The two-mode squeezing creates entanglement between the sampled MIR
mode and a temporal mode, which is not sampled and therefore leads to entanglement breaking which in turn mixes
the sampled state and thus increases its von Neumann entropy, which is referred to as thermalization. As will be
shown in the following, for a coherent MIR input state ρ̂Ω̃ (including the vacuum as a limit case), the main result from

Ref. [43] can be reproduced using Eq. (D5), which shows that in the squeezing regime, i.e., aω̃ = â†ω̃, thermalization
leads to an increase of the variance. Expanding Eq. (D5) leads to

σ2
X̂SA(φ)

∣∣
ˆ̃ρSA

=r⃗T cov(
ˆ⃗
X)
∣∣
ρ̂Ω̃
r⃗

=

{
µ2
THµ

2
SAσ

2
X̂SA(φ)

+ µ2
TH|νSA|

2
σ2
X̂SA(−φ−Φ⊥)

+ ν2THσ
2
X̂TH(−φ)

+ 2µ2
THµSA|νSA| cov[X̂SA(φ), X̂SA(−φ− Φ⊥)]

+ 2µTHνTH|νSA| cov[X̂SA(−φ− Φ⊥), X̂TH(−φ)] + 2µTHνTHµSA cov[X̂SA(φ), X̂TH(−φ)]

}∣∣∣∣∣
ρ̂Ω̃

. (D7)

If we assume, that the reduced density operator ρ̂Ω̃(âΩ̃) = ρ̂SA(ASAâSA)⊗ ρ̂TH(ATHâTH)⊗ ρ̂U(AUâU) separates,

σ2
X̂SA(φ)

∣∣
ˆ̃ρSA

=

{
µ2
TH

[
µ2
SAσ

2
X̂SA(φ)

+ |νSA|2σ2
X̂SA(−φ)

]
+ ν2THσ

2
X̂TH(−φ)

+ µ2
THµSA|νSA|

(〈
{X̂SA(φ), X̂SA(−φ− Φ⊥)}

〉
− 2

〈
X̂SA(φ)

〉〈
X̂SA(−φ− Φ⊥)

〉)}
ρ̂Ω̃

. (D8)
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For a coherent state ρ̂Ω̃(âΩ̃) = D̂Ω̃(αΩ̃) |0⟩ ⟨0| D̂
†
Ω̃
(αΩ̃), the variances are

σ2
X̂SA(φ)

| ˆ̃ρSA
= µ2

TH

1

4
(µ2

SA + |νSA|2) +
1

4
ν2TH + e2iφµ2

THµSA|νSA|
1

2
cos(Φ⊥)

=
1

2

〈
â†ω̃ âω̃

〉
± 1

2
Re(
〈
â2ω̃
〉
)− 1

4
. (D9)

If X̂SA(φX) and X̂SA(φY) are measured separately and thus s̃ = sech2(θ
(1)
ω̃ ), the result from [43] is reproduced.

As explained in the main text, it is still possible to mitigate the thermalization noise without compromising on the
bandwidth of the pump, by filtering below pump central frequency, i.e., increasing the difference ω̃−ωp, thus sampling
less SFG since more of the bandwidth is above the filtered frequency ω̃. As a result, the single-mode and two-mode
squeezing is reduced, which agrees with Fig. 4. In the next section, we will make use of this fact to enable the
reconstruction of a quantum states waveform on a subcycle scale using the electro-optic sampling describe in the
previous section.
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