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Flopping-mode electron dipole spin resonance in the strong-driving regime
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Achieving high-fidelity control of spin qubits with conventional electron dipole spin resonance (EDSR)
requires large magnetic field gradients of about 1 mTnm−1, which also couple the qubit to charge noise, and large
drive amplitudes of order 1 mV. The flopping mode is an alternative method to drive EDSR of an electron in a
double quantum dot, where the large displacement between both dots increases the driving efficiency. We propose
to operate the flopping mode in the strong-driving regime to use the full magnetic field difference between the two
dots. In simulations, the reduced required magnetic field gradients suppress the infidelity contribution of charge
noise by more than two orders of magnitude, while providing Rabi frequencies of up to 60 MHz. However, the
near degeneracy of the conduction band in silicon introduces a valley degree of freedom that can degrade the
performance of the strong-driving mode. This necessitates a valley-dependent pulse optimization and makes
operation to the strong-driving regime questionable.
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I. INTRODUCTION

In recent years, semiconductor qubits have developed
tremendously with key results being fidelities above the error
correction threshold [1,2] and small-scale quantum proces-
sors [3,4] (see [5] for a recent review). New proposals to
construct a universal quantum computer based on this qubit
type have been formulated [6,7]. Supporting the long-term
perspective, semiconductor qubits were shown to be compati-
ble with classical complementary metal-oxide semiconductor
(CMOS) technology [8,9] and can be operated at tempera-
tures above 1 K [10,11]. Furthermore, there has been progress
in the transport of single charges [12] and of spin qubits
through semiconductor quantum dot arrays, with the objective
of establishing medium-range coupling interaction [13,14],
offering much higher connectivity than next-nearest-neighbor
coupling.

A well-established technique for the manipulation of a
single spin in a quantum dot (QD) is the electron dipole spin
resonance (EDSR), where a spin-orbit coupling can be natu-
rally present in the material [15] or artificially induced by an
inhomogeneous magnetic field [16]. This spin-orbit coupling
is used to drive spin transitions by resonantly shifting the
position of the QD with an electric signal. Another method is
the driving of electron spin resonance (ESR) with microwaves
emitted by a nanoscale transmission line in proximity of the
QDs. However, EDSR is often considered as the method of
choice because it allows driving with purely electric fields,
which are easier to localize and dissipate less energy than
the AC currents needed for ESR. The energy dissipation is
especially important when cryogenic electronics are involved
in the pulse generation.

*julian.teske@rwth-aachen.de

To identify possibilities to improve EDSR, a detailed as-
sessment of its requirements and limitations is required. While
fidelities of 99.95%, sufficient for quantum error correction,
have been reached, the required strong magnetic field gra-
dients couple the electron spin to electric noise, which was
identified as the main limitation of the achievable fidelity
[17,18]. In conclusion, a method requiring smaller field gra-
dients would let the qubit tolerate larger electric noise, for
example, due to a higher operating temperature or noisy,
power-limited cryoelectronics.

Furthermore, the strong confinement on an electron in a
QD necessitates relatively strong driving signals with a sub-
stantial power dissipation to reach typical Rabi frequencies
in the MHz range [17]. Working at lower magnetic fields
would be advantageous because the resulting lower drive fre-
quencies can be expected to reduce crosstalk because lower
frequencies reduce capacitive cross coupling and it would
simplify the realization of ultra-low-power cryoelectronic
control solutions. However, the total magnetic field �B0 must
be compatible with the required magnetic field gradient, as
the local inhomogeneous magnetic fields �Bloc(�x) are usually
provided by micromagnets, which are magnetized by �B0 [19].
Large field gradients require optimized magnet designs with
special shapes, which increase the complexity of designing
scalable layouts. Moreover, it is difficult to achieve a total
magnetic field �B(�x) = �Bloc(�x) + �B0 much smaller than the mi-
cromagnet field, as the externally applied field �B0 would then
have to largely cancel out the micromagnet field. Foreseeable
variation of the latter between qubits will hamper a strong
cancellation for many qubits at a time.

One approach to working with lower magnetic field gradi-
ents is the flopping-mode driving scheme, which applies the
EDSR principle to an electron confined in a double quantum
dot (DQD). Instead of shifting the position of a single QD,
the driving electric signal changes the potential difference
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of the two dots in the DQD, displacing the electron within
the DQD. This displacement provides a large electric dipole
moment, while being more efficient in terms of driving power
than shifting a QD [20,21]. The distance of the two dots is
usually on the order of 100 nm, whereas the displacement of
the QD in conventional EDSR is typically only 1 nm. This
increases the dipole moment and allows the use of much
smaller magnetic field gradients and smaller total magnetic
fields. Smaller Zeeman splittings are also beneficial for spin
relaxation time, especially in the case of silicon, if the Zeeman
splitting is smaller than the valley splitting [22].

The flopping-mode qubit first attracted attention because
its strong electric dipole moment enables strong spin-photon
coupling in cavities [23–27]. This spin-photon coupling can
also be used to mediate two-qubit gates [28]. Alternatively,
two-qubit gates for the flopping mode can be implemented by
capacitive coupling [29] and the flopping-mode can even be
applied to heavy-hole qubits in germanium [30].

While the weak-driving regime considered in previous
studies is most efficient when aiming for the lowest possible
drive amplitude [20], improving the fidelity favors large drive
amplitudes, thus eventually leaving the weak-driving regime.
We thus propose and analyze a strong-driving regime for the
flopping-mode qubit with a pulse amplitude much larger than
the tunnel coupling of the DQD such that the electron is
entirely shifted from one dot to the other, exploiting the full
magnetic field gradient across the DQD. The central idea of
our proposal is to let the electron oscillate resonantly between
the stable and noise-insensitive positions of strong confine-
ment in the left and right QD while spending as little time in
the transition between the dots.

The concept of moving the electron between the discrete
positions in the left and the right QD can also be supported
by the driving pulse. We study a smoothed rectangular driving
pulse that provides the maximal time of strong confinement
between adiabatic transitions. As the electron is strongly con-
fined in one QD most of the time, small perturbation to the
pulse have only a weak effect on the electrons position.

Parallel to our studies, the strongly confined configuration
was considered for the robust storage for quantum information
and the transition into the weak-driving flopping-mode regime
for manipulation was investigated [31]. This idea switches
the strong dipole moment on and off between storage and
manipulation to improve the noise robustness during idle time,
while our proposal intends to use the robustness of strong
confinement to improve the robustness of the manipulation.

The strong-driving flopping-mode qubit suits proposals
for sparse architectures for a semiconductor spin quantum
processor [7], where DQDs are readily available without re-
quiring additional sites and crosstalk is suppressed by the
large distances between qubits. The low magnetic field is
also beneficial in shuttling-based quantum processors [6].
Furthermore, the proposed pulse scheme poses only minimal
requirements concerning the pulse generation electronics.

We simulate the flopping mode to calculate the achievable
fidelity in presence of noise. We show the reduced noise sen-
sitivity by the transition from the weak- to the strong-driving
regime. In the strong-driving regime we discuss two differ-
ent pulse shapes to fully leverage the potential of flopping
mode. We identify optimal parameter regions where a good

FIG. 1. Sketch of the flopping-mode qubit. An electron is trapped
in a DQD of tunnel coupling tc and the detuning ε corresponds to the
energy difference of the ground state in the left and right QDs. The
electron’s wave function is shifted between the left and right QDs by
an electric pulse on the detuning. Here, a rectangular pulse is drawn
for the manipulation. The magnetic field gradient �Bx introduces an
artificial spin-orbit coupling that allows Rabi driving of the spin state.
The total magnetic field �Bz determines the Zeeman energy and hence
the resonance frequency of the qubit.

noise resilience is achieved while the probability for orbital
excitation is minimized. Leakage by orbital excitation poses
the limiting factor for the performance in the general model
(without valley states). We calculate excellent fidelities with
an improvement of more than two orders of magnitude in
fidelity compared to conventional EDSR.

To discuss the realization of the strong-driving regime of
the flopping mode in Si-based devices, we include different
valley states in our model. The valley splitting has been argued
to be a local stochastic material parameter [32] that is difficult
to control. Valley excitations can degrade the performance
of the flopping mode so that pulses have to be optimized
specifically for a given valley splitting. In the strong-driving
regime, high-fidelity manipulation can only be realized with
a favorable valley splitting configuration so that high-fidelity
operation may in general be constrained to the weak-driving
regime.

The remainder of this paper is structured as follows. In
Sec. II, we present our qubit model and two pulse schemes
to drive the flopping-mode qubit. In Sec. III, we present the
results of our simulation. In Sec. IV, we extend the simulation
to discuss implications of the valley degree of freedom (DOF)
for flopping-mode qubits in silicon and in Sec. V we give an
outlook and summarize our results.

II. MODEL

We model the flopping-mode qubit as single electron in a
DQD placed in an inhomogeneous magnetic field as sketched
in Fig. 1. We label the QDs left (L) and right (R) and assume
different magnetic field values in the QDs �BL and �BR. The
coordinate system is chosen such that the total magnetic field
�BL + �BR is aligned with the z axis and the perpendicular
component � �Bx of magnetic field gradient is aligned with the
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x axis. We publish an implementation of the qubit model and
the pulse shapes in the QOPT applications repository [33].

A. Hamiltonian

The Hamiltonian of an electron in a DQD with the conven-
tion h̄ = 1 is given by [21]

H (ε(t )) = ε(t )

2
τz + tcτx + Ez

2
σz

+ gμB

2
(�Bxσx + �Bzσz )τz, (1)

where the detuning ε is the difference in the electric potentials
of the two dots as function of time t and the tunnel coupling
tc of the two dots is assumed constant. The Zeeman energy
is denoted Ez = gμBBz with the effective g-factor g, Bohr
magneton μB, and the magnetic field gradient in x direction
(z direction) �Bx (�Bz). The Pauli matrices on the spin and
orbital DOF are denoted σ and τ , and operate on the basis
(|↑〉 , |↓〉) and (|L〉 , |R〉), respectively. The orbital degree of
freedom (|L〉 , |R〉) is not to be confused with different orbital
states of an electron in a single dot and we do not make
assumptions about the explicit shape of the electric potential
forming the dots. In particular, shifts of the QDs (used for
traditional EDSR) are not included. These shifts contribute to
variations of the magnetic fields, but can be neglected because
the magnetic field gradients are about 100 times smaller than
those used for standard EDSR [17] in the regime of interest.

The energy spectrum of the Hamiltonian defined in Eq. (1)
is plotted in Fig. 2. The assumption of a small Zeeman
splitting compared to the tunnel coupling Ez � tc leads to
a dominant orbital splitting and a large avoided crossing
between eigenstates with different orbital states. Thus, with
our manipulation method we want to drive spin excitations
between the ground state and the first-excited state while
being adiabatic with respect to the orbital DOF. This driving is
mediated by �Bx while we assume a finite �Bz to account for
a placement tolerance of the micromagnet. For concreteness,
we assume a conservative ratio of �Bx/�Bz = 5, whereas
even higher ratios have already been realized [20].

We include three noise contributions in our model and we
use the term quasistatic for noise contributions at frequencies
much slower than the qubit dynamics. First, we consider noise
on the detuning ε → ε(t ) + δε(t ), where quasistatic noise δε

is sampled from a Gaussian distribution. The second contri-
bution is described as fast white noise δε(t ) with a constant
spectral noise density S up to a finite cutoff frequency. Third,
we describe the hyperfine interaction as quasistatic magnetic
noise on the Zeeman splitting Ez → Ez + gμBδBz with a stan-
dard deviation σB. The contribution of charge noise to the
quasistatic magnetic noise is suppressed by the low magnetic
field gradients.

B. Pulse shapes

We investigate two pulse shapes. The first one is a cosine
pulse with an envelope and the second pulse is a smoothed
rectangular function [Fig. 4(a)]. The cosine pulse is given by

ε(t ) = ε0 + 2 sin2

(
πt

T

)
A cos(ωt + φ), (2)

FIG. 2. Energy spectrum of the flopping-mode qubit. The ener-
gies of the eigenstates are plotted against the detuning of the DQD.
The colors encode the changes in the eigenstates as visualized by the
triangles below. Each triangle shows the color code for superposi-
tions of three basis states. Each corner of the triangles corresponds
to one basis state, each edge to superpositions of two basis states,
and the interior of the triangle is filled with nonzero superpositions
of all three eigenstates. The orbital states show an avoided crossing
due to the tunnel coupling tc = 30 µeV. The energy of the spin states
is split by the Zeeman energy Ez/gμB = 120 mT with the asymmetry
introduced by the magnetic gradient along the z axis �Bz = 40 mT.
The two lowest-lying energy states differ by their spin and transitions
can be driven by the coupling magnetic gradient �Bx = 60 mT. The
large magnetic field values were chosen to increase the clarity of the
illustration.

with the offset ε0, amplitude A, total pulse time T , carrier
frequency ω, and phase offset φ. The sin2 term acts as an
envelope and is scaled by the factor of 2 to have unity average
amplitude.

The cosine pulse is not ideal concerning the three key
properties heat dissipation, achievable Rabi frequency, and
noise susceptibility. In terms of heat dissipation, in the strong-
driving regime A � 2tc, the occupation probability in one
dot saturates such that the highest detuning peaks of the
sine function do not contribute to the displacement of the
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FIG. 3. Plots of the two considered pulse forms. (a) The cosine pulse with a sinusoidal envelope serves as reference pulse form. The
pulse starts and ends in a symmetrically tuned DQD. (b) The smoothed rectangular pulse with a steepness parameter of Rtanh = 13 represents
the proposed pulse form. The asymmetry between positive and negative values is set by the duty cycle parameter cdc = 0.3. The rectangular
pulse starts and ends in a strongly detuned DQD such that the electron is confined in one QD. Both pulses were plotted for illustration with
A = 250 µeV, Tres = 2π/ω ≈ 0.56 ns, and T ≈ 25 ns and T ≈ 16 ns for the cosine and rectangular pulse, respectively.

electron, while they still contribute to the heat emission of
the high-frequency signal. The achievable Rabi frequency is
limited because the electron is not fully displaced during the
initial and final oscillations of the pulse due to the envelope.
And finally the noise susceptibility is not ideal yet because
the electron’s wave function is stretched over the DQD for a
large portion of the pulse yielding a high spin-orbit mixing on
average.

We envision the ideal pulse to meet the following three
requirements to improve with respect to the three key proper-
ties. First, the pulse starts and terminates localized in one QD.
Second, the electron is strongly localized in one QD during
as much of the pulse duration as possible without the ampli-
tude reaching unnecessarily high values. Third, the electron
is shifted between the two dots as fast as possible to reduce
noise susceptibility, while still being transferred adiabatically
with regard to both charge and spin excitations.

We implement such a pulse with a smoothed rectangular
pulse shape [Fig. 3(b)]. The rectangular pulse is modeled in
the simulation by transitions shaped as hyperbolic tangent
functions:

ε(t ) = A tanh

[
2Rtanh

Tres

(
t − Tres(1 + cdc)

4

)]
,

∀ t : t = nTres + s, s < Tres/2, n ∈ N,

ε(t ) = −A tanh

[
2Rtanh

Tres

(
t − Tres(3 − cdc)

4

)]
,

∀ t : t = nTres + s, s > Tres/2, n ∈ N, (3)

where Tres = 2π
Ez

is the resonance oscillation period, Rtanh the
pulse steepness, and the duty cycle parameter cdc ∈ [0, 1] ef-
fectively controls the Rabi frequency. This control is required
because the amplitude cannot be used for the control of the
Rabi frequency in the strong-driving regime due to saturation
effects. The duty cycle parameter introduces an asymmetry
such that the electron remains longer in one QD than in the
other as can be seen in Fig. 3(b). Intuitively, cdc determines the
time the spin is exposed to the driving field. For cdc = 0 the
driving is symmetric between both QDs providing the largest
Rabi frequency possible and for cdc = 1 the electron remains
stationary in one QD. Negative values for cdc are possible but

have the same effect with exchanged QDs and are not used
in our formulation. The pulse steepness Rtanh is introduced to
control the velocity of the charge transfer within the DQD,
where a large Rtanh corresponds to a sharper rectangle and
therefore a faster charge transfer.

We require the total pulse time to be an integer multiple of
the resonance period time, such that the electron is always
driven in full cycles and terminates in the same QD as it
started. This complicates the pulse tuning as it makes the
time a discrete optimization parameter. We use the duty cycle
parameter to adjust the effective driving strength to the pulse
time. Note that two single-qubit gates about orthogonal axes
can be acquired by a phase shift of the pulse by ±π/4.

C. Methods

We performed quantum dynamics simulations of the pro-
posed pulses using the simulation and optimal control package
QOPT [34]. Before the optimal performance of the flopping-
mode qubit can be evaluated, the pulses must be optimized
for a given magnetic field and DQD parameters because the
inaccuracy of analytic estimates of the optimal pulse param-
eters would deteriorate the qubit performance. The numeric
optimization allows us to estimate the optimal pulse length
and frequency (T, ω) for the cosine pulse or the optimal pulse
length and duty cycle parameter (T, cdc) for the rectangular
pulse with great accuracy.

A suitable figure of merit for the quantification of the
qubit performance needs to account for the spin dynamics
and excitations in the orbital DOF, which we consider to be
leakage. Therefore, we define an infidelity IL in the presence
of leakage between the calculated propagator U and a target
unitary Utarget as

IL(Utarget,U ) = 1 − 1
4 |tr(U †

targetU |VC )|2, (4)

where U |VC denotes the truncation of the propagator to the
computational subspace. The measure IL always considers
leakage as erroneous and thus IL > 0 for a finite probability
of orbital excitation during the pulse. For example, if we
take the target to be identity Utarget = I and the propagator to
include orbital excitation U (x) = exp(xiπτx/2), then we cal-
culate IL(I,U (x)) = 1 − [cos(xπ ) + 1]/2. The definition is
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inspired by common fidelity measures [35]. Our optimization
target Utarget is an Xπ gate in the computational space, but the
pulse-optimization algorithm can be adapted to any rotation
around the x axis. Other fidelity measures can also be used
to assess the performance in specific situations. For example,
if the fidelity of an experiment shall be predicted, then the
simulation can be extended by an orbit-independent spin mea-
surement, implemented as partial trace over the orbital DOF.
The average gate fidelity for such a quantum channel can be
calculated following [35,36]. Although the exact fidelities are
deviating, we found the systematic relations and the interpre-
tation to be independent of the fidelity measure.

We define the computational space in terms of the eigen-
vectors vi, 1 � i � 4, of the Hamiltonian at t = 0. We want
to drive excitations in the spin DOF, so we define the compu-
tational space VC to be the vector space that is spanned by the
ground and the first-excited state with a different spin. With
the assumption that Ez < 2tc, we have

VC = span(v1, v2). (5)

If the orbital splitting 
 = √
ε2 + 4t2

c set by the tunnel cou-
pling and offset in detuning becomes smaller than the Zeeman
splitting, we need to replace v2 with v3. The leakage space
is then defined to be spanned by the remaining eigenvectors.
These definitions are justified by the assumption that the
flopping-mode qubit is initialized and read out adiabatically.
For the initialization, this means that the qubit is initialized
as a Loss-DiVincenzo qubit and then adiabatically transferred
into the DQD with detuning ε(t = 0). To perform the readout,
the electron is first adiabatically confined in one QD and then
read out as Loss-DiVinvenzo qubit.

To study the noise resilience of the proposed driving mode,
we perform Monte Carlo noise simulations of quasistatic and
white noise. For the simulation of quasistatic noise, we aver-
age over eight noise values δε to approximate an integral over
a Gaussian distribution. For white noise we generate 1000
time-dependent noise traces δε(t ) from the spectral noise
density with pseudorandom numbers. The effect of quasistatic
noise is calculated in a basis adiabatically following the noise,
meaning that the eigenvectors defining the computational
space are calculated for the Hamiltonian H (ε(t = 0) + δε).

The tuning procedure is described in more detail in the
Supplemental Material in Appendix A. We verified the sim-
ulation by reproducing previous experimental and theoretical
results as discussed in Appendixes D and E.

III. RESULTS

In this section, we consider sources of strong qua-
sistatic electric noise with a standard deviation of σε =
15 µeV and white noise with a spectral noise density of S =
0.07 µeV/

√
Hz and a cutoff at 10 GHz. We chose noise values

larger than those typically measured in experiments [17,37]
to demonstrate the noise resilience of the proposed driving
mode. We choose to evaluate the flopping-mode qubit in a
small magnetic field Ez/(gμB) = 20 mT with a transversal
magnetic field gradient �Bx = 2 mT and a longitudinal gra-
dient �Bz = 0.4 mT, unless stated otherwise.

We also consider quasistatic fluctuations of the Zeeman
splitting Ez with a standard deviation of σB = 3 µT. Such a

magnetic noise can for example originate from fluctuations of
nuclear spins that couple to the electron spin in the DQD. Our
value for σB is chosen lower than measured values in natural
silicon [38] but higher than measurements in isotopically pu-
rified silicon suggest [18]. The value we chose corresponds
to a residual 29Si concentration of 0.5% or a dephasing time
of T ∗

2 = h̄/σB ≈ 1.9 µs [39]. Even for the relatively high σB,
perturbations from hyperfine noise can be neglected as they
are dominated by the electrical noise and lead to an additional
infidelity of about 10−5, depending mainly on the pulse time
T . We verified the consistency of our simulations with previ-
ous theoretical (see Appendix E) and experimental results (see
Appendix D).

A. Pulse shape comparison

A direct comparison of the cosine and the rectangular pulse
is made in Fig. 4. Figures 4(a) and 4(b) show the perfor-
mance of the cosine pulse in the presence of electric noise.
In Fig. 4(a), a clear improvement in the fidelity with larger
amplitude can be observed except for very large amplitude
values paired with a small tunnel coupling. In this case the
infidelity is dominated by leakage into the excited orbital state
caused by diabatic Landau-Zener (LZ) excitation. The green
dotted lines are contour lines of the Rabi frequency showing
the acceleration of the pulse with rising amplitude. The blue
lines are contour lines of the infidelity. Note that the contour
lines for the infidelity and the Rabi frequency are not parallel.
This indicates that the increase in fidelity is not determined by
the relation of the dephasing time to the pulse time T alone.
Instead, it originates partially from the stronger confinement
in one of the dots by larger absolute pulse values since the
system is less susceptible to noise when the detuning ε is large
and the spin-orbit mixing low.

Figures 4(c) and 4(d) show corresponding plots for the
rectangular pulse, where tc is kept constant, because tc =
100 µeV is the global optimum (compare Fig. 5) and Rtanh

is varied to map out the strong-driving regime. The steplike
features in the Fig. 4(c) are caused by the discreteness in the
tuning of the rectangular pulse. The rectangular pulse time T
must always be a multiple of the resonance time T = n 2π

Ez
; n ∈

N. At every change of T , the Rabi frequency is increased and
also the duty cycle parameter cdc has a discontinuity. On each
step, the infidelity drops and then continuously increases with
the amplitude. This behavior is linked to cdc because large
duty cycle values correspond to asymmetric pulses, which
are more susceptible to electric noise. The largest infidelity
values in Figs. 4(c) and 4(d) arise for very steep pulses at
large amplitudes and this infidelity contribution is caused by
LZ excitation. The peaks in Fig. 4(d) [more clearly visible in
Fig. 5(d)] near the green lines reflect coherent errors that are
caused by pulse tuning. At these values, the total pulse time
is shorter than ideal and the duty cycle can only decrease the
Rabi frequency. The optimum for the fidelity is reached at a
discontinuity, which is a pathological case, because the exact
position of the discontinuity and the values in its proximity
depend on the choice of the pulse length. Changes to the
optimization algorithm can vary the results at these points
(compare Appendix A). However, this is not a serious limi-
tation to the driving mode because the fidelity only degrades
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FIG. 4. Infidelity of the Xπ gate calculated with Monte Carlo simulations of a flopping-mode qubit driven by a cosine pulse (a), (b) or a
smoothed rectangular pulse (c), (d). The simulations include quasistatic noise on the control signal with a standard deviation of σε = 15 µeV
in (a), (c), (e) and white noise with a spectral noise density of

√
S = 0.07 neV/

√
Hz in (b), (d), (f). Both simulations are performed with

magnetic fields of Ez/(gμB ) = 20 mT, �Bx = 2 mT, �Bz = 0.4 mT. The simulation of the rectangular pulse features a large tunnel coupling
of tc = 100 µeV. The green dotted lines in (a) and (c) mark the contour lines of the Rabi frequency with values in MHz. (a) Contour lines of the
fidelity are plotted in blue. The infidelity introduced by quasistatic noise is reduced for higher amplitudes unless LZ excitations increase the
leakage for large amplitudes and small tunnel couplings. (b) The infidelity contribution by white noise is largely independent of the amplitude
and tunnel coupling, unless LZ excitations are dominant. (c) We can identify an optimal region around A = 400 µeV and Rtanh = 12. For small
amplitudes the pulse becomes slower and more susceptible to quasistatic noise while LZ excitations are dominant for steep pulses with a large
amplitude. The Rabi frequency changes substantially at the discontinuities of the fidelity and is otherwise almost constant. The green Rabi
frequency values correspond to the plateaus. (d) The rectangular pulse is robust towards white noise in a wide range of parameters. The plots
in (e) and (f) show cuts along (a) and (c) and (b) and (d), respectively. The data are cut along tc = 100 µeV and Rtanh = 9.97 to consider data
of the same tunnel coupling and the optimal steepness Rtanh. Instead of the amplitude A, we plot the infidelity against the corresponding power
dissipation EP(A). The rectangular pulse can achieve a higher fidelity and larger Rabi frequency with less power dissipation.

of about a factor of 2 when choosing pulse parameters away
from the discontinuity.

Even though both pulses can reach robust noise insensitiv-
ity, the rectangular pulse has an advantage in terms of power
dissipation. To quantify the pulse energy we define

EP ∝
∫

[ε(t ) − ε0]2dt, (6)

and plot in Figs. 4(e) and 4(f) the infidelity IL against
EP for horizontal cuts through Figs. 4(a)–4(d). Figure 4(e)
shows that a smaller infidelity can be reached with the
rectangular pulse with a given EP, if an optimal duty cy-
cle can be chosen. From a comparison of the contour
lines in Figs. 4(a) and 4(c) we can also extract that the
rectangular pulse provides higher Rabi frequencies. The com-
parison of Figs. 4(b) and 4(d) also demonstrates that the
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FIG. 5. Infidelity of the Xπ gate calculated with Monte Carlo simulations of a flopping-mode qubit driven by a cosine pulse (a), (b) or a
smoothed rectangular pulse (c), (d). The simulations include quasistatic noise on the control signal with a standard deviation of σε = 15 µeV
in (a), (c), (e) and white noise with a spectral noise density of

√
S = 0.07 neV/

√
Hz in (b), (d), (f). Both simulations are performed with

magnetic fields of Ez/(gμB ) = 20 mT, �Bx = 2 mT, �Bz = 0.4 mT. The simulation of the rectangular pulse features a large tunnel coupling
of tc = 100 µeV. The green dotted lines in (a) and (c) mark the contour lines of the Rabi frequency with values in MHz. (a) Contour lines of the
fidelity are plotted in blue. The infidelity introduced by quasistatic noise is reduced for higher amplitudes unless LZ excitations increase the
leakage for large amplitudes and small tunnel couplings. (b) The infidelity contribution by white noise is largely independent of the amplitude
and tunnel coupling, unless LZ excitations are dominant. (c) We can identify an optimal region around A = 400 µeV and Rtanh = 12. For small
amplitudes the pulse becomes slower and more susceptible to quasistatic noise while LZ excitations are dominant for steep pulses with a large
amplitude. The Rabi frequency changes substantially at the discontinuities of the fidelity and is otherwise almost constant. The green Rabi
frequency values correspond to the plateaus. (d) The rectangular pulse is robust towards white noise in a wide range of parameters. The plots
in (e) and (f) show cuts along (a) and (c) and (b) and (d), respectively. The data are cut along tc = 100 µeV and Rtanh = 9.97 to consider data
of the same tunnel coupling and the optimal steepness Rtanh. Instead of the amplitude A, we plot the infidelity against the corresponding power
dissipation EP(A). The rectangular pulse can achieve a higher fidelity and larger Rabi frequency with less power dissipation.

rectangular pulse is less sensitive towards white noise in a
wide region.

B. Landau-Zener excitation

Having identified leakage as one of the major sources
of infidelity, we investigate the influence of leakage more
closely. The shift of the electron from one dot to another
can be theoretically described as a LZ transition. LZ theory
predicts an excitation probability of PLZ = exp(−2πδ) with
δ = t2

c /4v with the level velocity v = dε
dt [40]. A tight upper

bound for the velocity of the rectangular pulse described in
(3) can be calculated with a first-order Taylor expansion of
the hyperbolic tangent to

v � 2ARtanh

Tres
= AEzRtanh

π
. (7)

Thus, operation with low Ez is beneficial for the suppres-
sion of LZ excitation in addition to the advantages discussed
above. In case of the amplitude A, a tradeoff must be made
be since lower amplitudes further suppress LZ excitation and
reduce the dissipated energy but also increase the noise sensi-

035302-7



JULIAN D. TESKE et al. PHYSICAL REVIEW B 107, 035302 (2023)

tivity. The plot in Figs. 5(a) and 5(b) explores the range of
possible values for tc and Rtanh, while keeping the relation
A = 4tc to remain in the strong-driving regime. We observe
that a higher tunnel coupling is generally favorable, while
there is a sweet spot for Rtanh between an increase in LZ
excitation and an increased noise sensitivity. In the absence
of noise, we can clearly observe Landau-Zener-Stückelberg
oscillations as discussed in the Appendix B.

The discreteness of the rectangular pulse can also be ob-
served in Fig. 5. Like in Figs. 4(c) and 4(d), discontinuities in
the sensitivity to quasistatic noise appear when the pulse time
T changes. We do not observe an asymmetry around the steps
for the infidelity caused by white noise. In Figs. 5(b) and 5(d)
there are only tuning artifacts along the changes in the Rabi
frequency, where the total pulse time is not optimal.

C. High Rabi frequencies

The achievable Rabi frequency is mainly determined by the
transversal magnetic field gradient �Bx, while the influence
of A saturates for large A values. The infidelity as function
of �Bx and A is plotted in Figs. 5(c) and 4(d). The Rabi fre-
quency ωR can be brought up to values of more than 60 MHz,
indicating that the rotating wave approximation Ez

ωR
� 1 does

not need to be fulfilled. The increased Rabi frequency reduces
the influence of magnetic noise and for the assumed stan-
dard deviation of σB = 3 µT the infidelity contribution drops
to 10−6.

D. Comparison to conventional EDSR

The noise robustness of the flopping-mode qubit becomes
evident in the direct comparison with EDSR in a single QD.
In this section, we estimate the infidelity that arises, when a
single QD is driven by EDSR and exposed to a charge noise
source of the strength considered as the quasistatic electric
noise above. We start with the rotating frame Hamiltonian for
an electron in a QD under resonant drive, given by

H = δω

2
σz + ωR

2
σx, (8)

where δω denotes the frequency detuning of the driving signal
from the resonance frequency and ωR denotes the Rabi fre-
quency. High fidelities were achieved by driving the electron
with an electric control signal in a local magnetic field gradi-
ent with a transversal btrans and a longitudinal blong gradient.
The transversal gradient determines the Rabi frequency ωR =
ArgμBbtrans/2 with the amplitude of the displacement Ar .

The predominant contribution to the frequency detuning
δω originates from charge noise, which displaces the QD by
a distance of δr and couples to the longitudinal magnetic field
gradient δω = δrgμBblong [17]. Both the driving pulse and the
noise fluctuations shift the position of the QD over a distance
of δr by creating a local electric field of strength δE . When
approximating a QD as an harmonic confining potential with
an orbital energy of �orb, then the relation between positional
shifts and applied electric fields is given by

δr = h̄2e

mSi�orb
δE , (9)

where mSi denotes the effective electron mass in silicon and
e the elementary charge (see Supplemental Material of [17]).
Further, the electric field can be described by a shift in the
electric potential δV :

δE = δV

ed
, (10)

where the distance d is measured from the QD to the charge
defect creating δE . Let us assume that any defects causing
charge noise and the driving metallic gates have the same
distance to the QD of approximately d ≈ 100 nm.

The infidelity caused as pure dephasing by quasistatic
noise for an Xπ gate up to leading order is given by

I ≈
( 〈δω〉

ωR

)2

=
(

2〈δV 〉
A

blong

btrans

)2

. (11)

A previous experiment achieved an optimal fidelity at a Rabi
frequency of ωR = 3.9 MHz, corresponding to a driving am-
plitude of A = 70 µeV for the magnetic field gradients btrans =
1 mTnm−1 and blong = 0.2 mTnm−1 [17]. We can now extrap-
olate the performance of this experiment for our assumption of
quasistatic electric noise with a standard deviation of 〈δV 〉 =
15 µeV to an infidelity of I = 0.7%, which is more than two
orders of magnitude larger compared to the optimal values in
the flopping mode, where an infidelity of about IL ≈ 10−5 is
predicted. In conclusion, the direct comparison to EDSR in
a single QD for our assumed noise values demonstrates the
much lower noise sensitivity of the flopping mode.

IV. FLOPPING-MODE EDSR IN SILICON

In this section, we discuss the prospects of realizing
flopping-mode qubits in silicon, as it is the currently pre-
dominant material for the construction of spin qubit quantum
processors [3,4]. The most relevant peculiarity of silicon is
the conduction band degeneracy leading to the presence of
a valley DOF. Silicon heterostructures possess two low-lying
valley states that can influence the spin dynamics. Usually,
the influence is modeled by a valley-dependent g-factor or a
valley-orbit coupling mechanism.

The electron band structure of a two-dimensional electron
gas in silicon has a twofold-degenerate minimum [41]. In
the heterostructures used for the fabrication of semiconductor
spin qubits, this degeneracy is lifted by the sharp potential step
at a silicon-insulator interface [42,43]. The energy difference
between these two valley states is called the valley splitting.
We extend the Hamiltonian of (1) by the valley DOF

HV = H +
∑

i=L,R

Pi

(
0 �i

�∗
i 0

)
, (12)

where PL (PR) denotes the projector on the left (right) QD,
the valley splittings �L and �R are complex numbers, and the
matrix is written in the valley basis (|z〉 , |z̄〉) consisting of two
orthogonal valley states. Without loss of generality, we choose
the quantization axis in the valley space such that the valley
splitting in the left dot is purely real, i.e., Im(�L ) = 0. The
valley state influences the g-factor in silicon so that stochastic
excitations lead to an increase in decoherence. We do not
include a valley dependence of the g-factor, but we do consider
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FIG. 6. Simulation of the valley model. (a), (b) Show the energy spectra of a DQD with the additional valley DOF. The spectra are plotted
for tc = 40 µeV, Ez/(gμB ) = 100 mT (chosen for clarity), �Bx = 20 mT, �Bz = 10 mT, |�R| = 40 µeV. (a) Calculated for a valley phase of
φR = 0.5π and (b) for a valley phase of φR = 0.9π , where additional avoided crossings appear. (c), (d) Show Monte Carlo simulations of a
flopping-mode qubit driven by a smoothed rectangular pulse including the valley DOF. The simulation was performed with magnetic fields of
�Ez/(gμB ) = 20 mT, �Bx = 2 mT, �Bz = 0.4 mT and the parameters tc = 100 µeV, A ≈ 422 µeV, Rtanh ≈ 8.1, and �L = 60 µeV. (c) Shows
a Monte Carlo simulation of quasistatic noise with a standard deviation of σε = 15 µeV. The infidelity shows strong oscillations in the valley
phase. If the pulse can be tuned away from a maximum of the oscillation, then the valley splitting should allow high-fidelity gates. (d) Shows
a Monte Carlo simulation of white noise with a spectral noise density of

√
S = 0.07 neV/

√
Hz. The infidelity shows the same oscillations in

the valley phase as in (c).

valley excitations as leakage. The resulting energy spectrum
is plotted in Figs. 6(a) and 6(b). One can see that the valley-
orbit interaction can create new (avoided) crossings depending
strongly on the valley phase difference �φ = arg(�∗

L�R)
[here �φ = arg(�R)] between the two QDs. These new cross-
ings pose additional adiabaticity restrictions on the pulse to
avoid valley excitations.

For the simulation of the valley-splitting model, we per-
form a pulse optimization and noise simulations similar to
the preceding section. In the gradient-based optimization, the
optimized pulses from the model without valley states serve
as initial values in the optimization of the valley model. We
use the fidelity measure from Eq. (4) because it only re-
lies on the truncated propagator on the computational space.
In Figs. 6(c) and 6(d), we investigate the performance of
a parameter combination that yielded excellent fidelities in
the absence of valley splittings. The dependence on the
valley-splitting magnitude |�R| and phase φR in the right
QD shows that the fidelity drops to unacceptable values for
most of the valley-splitting configurations. Our strong-driving
method only works for a very small phase difference, when
the pulse is also adiabatic with respect to the valley DOF.
This requirement is unlikely to be fulfilled reliably in prac-
tice. A simulation without noise can be found in Figs. 11(c)
and 11(d).

In the strong-driving mode, we are certain to pass all
(avoided) crossings in the energy spectrum, but we want to
discuss the prospect of avoiding crossings in the weak-driving
mode by appropriate choice of the working point. A simu-
lation of the valley model in the weak-driving regime with
the cosine pulse shape as shown in Fig. 3(a) is plotted in
Fig. 7. The simulated parameter set was extracted from an
experimental realization of the flopping-mode qubit [20]. The
result shows a strong dependence on the valley-splitting con-
figuration with local extrema. The simulation results agree
with the experimental results in [20] if we assume a favorable
valley-splitting configuration.

The features in the infidelity in Fig. 7 can be explained with
the corresponding energy spectrum of the valley model. The
infidelity contributions at zero valley phase difference φR = 0
and |�R| ≈ 18 µeV or |�R| ≈ 80 µeV are linked to harmonic
excitations, where the excitation energy of the driven transi-
tion equals the splitting of other transitions (see Appendix C
for details). The blue dashed-dotted line marks valley con-
figurations where the first two excited states are degenerate
in energy, and we need to redefine the computational space
above this line to drive spinlike transitions. Each feature that
increases the infidelity does not only depend on the sample-
depending valley splitting but also on variable parameters like
the pulse parameters or magnetic field values. The presence
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FIG. 7. Influence of the valley splitting in the weak-driving
regime. The simulation was performed with experimentally realized
parameters [20] with a magnetic field with Ez/(gμB ) = 209 mT,
�Bx = 15 mT, and �Bz = 0.27 mT, and a tunnel coupling of tc =
23 µeV. We assumed �L = 60 µeV just like in the simulation for
Fig. 6 and simulated a pulse of cosine shape as in Fig. 3(a) with
an amplitude of A = 0.42 µeV and an offset ε0 = 5.4 µeV. Addi-
tionally, we simulated quasistatic electric noise with a standard
deviation of σε = 0.5 µeV. Along the blue dashed-dotted line, the
first two excited states are degenerate. Below the line, we drive
transitions to the first excited state and above the line to the
second excited state.

of the valley DOF thus necessitates an individual optimization
of the pulse.

In conclusion, the presence of the valley DOF complicates
the driving of the flopping-mode qubit. The expected perfor-
mance relies on a favorable valley-splitting configuration, and
recent studies indicate that the valley splitting in the two dots
of a DQD are random and uncorrelated [32]. When flopping-
mode qubits are fabricated in large numbers in a silicon-based
quantum processor, we predict that a relevant fraction will
not outperform conventional EDSR driving due to an unfa-
vorable valley splitting configuration. This fraction could be
reduced if the processor can vary the physical positions of the
DQDs used for flopping-mode qubits and is calibrated for the
valley splitting. Also, a fraction of unusable flopping-mode
qubit locations could be mitigated by the implementation of
redundant flopping-mode qubit locations. Another prospect is
the research in fabrication and tuning methods to control the
valley splitting [32,44–46].

V. SUMMARY AND OUTLOOK

We investigated the performance of the flopping-mode
qubit with quantum dynamic simulations and pulse opti-
mizations using the optimal control package QOPT [34] and
publish the source code on the QOPT applications reposi-
tory [33] simultaneously to the paper. We demonstrated that
driving the flopping-mode qubit with a large pulse ampli-
tude decreases the noise susceptibility and achieves high
Rabi frequencies at low magnetic field gradients with the
strong displacement of an electron in a DQD. The sim-
ulations indicate excellent fidelities even in presence of

strong noise sources. In direct comparison to conventional
EDSR, the fidelity can be improved by more than two orders
of magnitude.

The noise robustness can be attributed to the lower mag-
netic field gradients and the discreteness of the possible dot
positions in-between interdot transitions in the DQD and this
discreteness can be fully leveraged by an appropriate choice
of the pulse. We developed a smoothed rectangular pulse form
to optimize the manipulation in the strong-driving regime. To
evaluate the suitability of this pulse form and guide the choice
of parameters, we discussed the features of the pulse dis-
creteness and the duty cycle tuning on the qubit performance.
Our simulations indicate that the rectangular pulse can further
increase the noise insensitivity and the Rabi frequency. In ad-
dition, the rectangular pulse can reduce the power dissipation
and requirements on the pulse generation.

Leakage caused by orbital excitation due to LZ transitions
proved to be one limitation of the rectangular pulse scheme
in the strong-driving regime. To avoid diabatic transitions, a
small Zeeman splitting EZ and a strong tunnel coupling tc
are required, while the pulse steepness Rtanh shows a tradeoff
between more adiabatic transitions and an increased noise
sensitivity. The flopping-mode qubit makes effective use of
the small magnetic field gradient and reaches Rabi frequencies
of more than ωR/2π = 60 MHz for realistic magnetic field
gradients.

Extending the model by a valley DOF, which is present
in silicon-based devices, can seriously deteriorate the qubit
performance in case of an unfavorable valley-splitting con-
figuration. This valley splitting is a material parameter and
difficult to predict or manipulate after the fabrication. A pulse
optimization including amplitude and offset depending on a
given valley splitting is required. Furthermore, the possible
drive amplitude is strongly limited.

While the concept has in principle clear advantage, the
implementation in Si/SiGe appears to be hindered by the pres-
ence of low-lying excited valley states. An ability to achieve
a consistently large valley splitting, such as typically found
in MOS devices, or identical valley coupling phases, could
likely significantly improve the prospects. For other material
systems such as GaAs/AlGaAs or Ge/SiGe, low-lying valley
states can be avoided, but different dephasing parameters due
to the hyperfine interaction and SO coupling, respectively,
would have to be considered.

Another interesting idea for a future study would be the
application of similar pulse forms to a resonant SWAP gate.
This is a two-qubit gate, where two electrons are placed in
a DQD and the exchange interaction is pulsed in resonance
with the longitudinal magnetic field gradient �Bz across the
DQD [47].

A further improvement of the simulation could be the
inclusion of orbital and valley relaxation as T1 process, by
solving a Lindblad master equation of the form

ρ̇ = − i

h̄
[HV , ρ] +

∑
i∈{O,V }

γi

(
LiρL†

i − 1

2
{L†

i Li, ρ}
)

, (13)

where ρ is the systems density matrix, HV the valley Hamilto-
nian defined in Eq. (12), γi are the relaxation rates, and Li the
relaxation operators on the orbital or valley space. The orbital
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relaxation rate depends mainly on the detuning γO(ε(t )) and
the valley relaxation rate additionally on the valley splittings
γV (ε,�L,�R). The correct treatment of the relaxation pro-
cesses could reduce the population of leakage states and thus
increase the fidelity and make the simulation more accurate
in settings where leakage cannot be avoided. Another noise
source to be included is the stability of the micromagnets at
the low total magnetic fields [19].

As the research on the valley splitting progresses and new
insights on the distribution of valley splittings are obtained,
it would become interesting to simulate the expected infi-
delity distribution for a given valley-splitting distribution.
This distribution can then be optimized with an included
valley-dependent optimization of the pulse amplitude, offset,
and envelope or the application of more advanced quantum
optimal control methods, for example, to avoid leakage [48].
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APPENDIX A: PULSE OPTIMIZATION

In this Appendix, we present the construction details of the
rectangular pulse scheme using analytic and numeric pulse
optimization. We start with a discussion of the degrees of
freedom of the control pulses and the target operation. Then
we describe the time domain optimization with the QOPT

package and how the time discretization is chosen. Finally,
we explain the actual optimization algorithm for the cosine
pulse and the more complicated case of the rectangular pulse,
which requires an accurate estimation of the achievable Rabi
frequency and the effective resonance frequency for the opti-
mization of the discrete pulse time.

The relevant degrees of freedom for a quantum gate can
be visualized using the group isometry of SU(2) and SO(3),
whereby any target evolution of a qubit can be described as
rotation on the Bloch sphere. If the driving is resonant, then
the rotation axis lies in the xy plane so that it can be described
by the azimuth angle θ of the rotation. This azimuth angle
θ and the rotation angle φ are the two relevant degrees of
freedom that describe a resonantly driven quantum gate.

The azimuth angle θ can be tuned using a phase shift of
the control pulses. This tuning step is straightforward because
any phase shift in the control pulse directly corresponds to a

shift in θ . To reduce the number of optimization parameters
and the number of cost functions of the optimization, we start
with an optimization of the rotation angle φ. This is effectively
achieved by choosing a state infidelity as the cost function.
Thereby, we assume our qubit to be initially in the ground
state and drive a full π rotation to the first-excited state. Since
we assume the orbital splitting to be larger than the Zeeman
splitting, this is a spinlike transition.

We perform the simulation and optimization with the op-
timal control package QOPT making use of the support of
analytic gradients. For this purpose we only need to im-
plement our pulse parametrization and derivatives of this
parametrization.

Our pulses possess four degrees of freedom, being the
amplitude, frequency, length, and phase shift, but in the
strong-driving regime not all parameters can be used effec-
tively because the dynamics are insensitive to changes of
the amplitude. Further, the pulse frequency must be chosen
resonant to the spin precession frequency and this choice must
be consistent with the pulse because the effective average
Zeeman splitting depends on the electron position �Bz �= 0.
The phase shift is used to control the azimuth angle θ of the
quantum gate. The pulse length as remaining DOF can be
optimized to control the rotation angle φ.

The optimal control package QOPT operates with fixed time
steps but we can use a scalar time-stretching parameter st to
introduce an effective optimization of the pulse length. This
time-stretching parameter is absorbed into the Hamiltonian
using the identity

U = e−ih̄(tst )H = e−ih̄t (st H ). (A1)

1. Time discretization

A crucial step in the optimization is the choice of the time
discretization into time steps of length δt because a too long
δt can limit the accuracy, while a too short δt decreases the
numerical efficiency. We thus need to identify the longest δt
that resolves all relevant dynamics of our system. Only the
orbital dynamics are relevant for the choice of δt because they
are much faster than the spin dynamics. Let us consider the
orbital Hamiltonian

HO(ε(t )) = ε(t )

2
τz + tcτx (A2)

and two unitary propagators U1,U2 with different time dis-
cretizations

U1 =
2∏

k=1

eH (ε(kδt ))δt ,

U2 = eH (ε(0))2δt ,

such that U1 is sampled in two time steps of δt and U2 is
sampled with one time step 2δt . Next, we estimate how small
δt needs to be chosen that the discretization in steps of δt
and 2δt yields approximately the same result. Therefore, we
calculate the deviation �U of these two propagators with the
Baker-Campbell-Hausdorff formula to be

�U = U1U
†
2 ≈ exp{(H (ε(0)) − H (ε(δt )))δt (A3)

− 2δt2[H (ε(0)), H (ε(δt ))]}. (A4)
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We can now identify criteria that ensure �U to be close to
unity. From (A3) we identify the first condition to be

δεδt � 1 (A5)

with δε = [ε(0) − ε(δt )]/2, and calculating the commutator
in (A4) gives the second condition

4tcδt2δε � 1. (A6)

Using the maximum values of the pulse derivatives by time as
bound for δε ≈ δt ∂ε

∂t , we can reformulate the conditions for
both pulses in terms of the number of time steps nt and the
total pulse time T :

Cosine Rectangular

C 1 nt � √
T 2EzA nt �

√
T 2ARtanh

Ez
π

C 2 nt � (T 34tcEzA)1/3 nt � (T 34tcARtanh
Ez
π

)1/3

2. Cosine pulse optimization

For the cosine pulse, we optimize the time-stretching pa-
rameter st and the pulse frequency ω. We use st to match the
gate time with the Rabi frequency and optimize ω to match the
resonance frequency of the qubit. The amplitude and phase
remain constant during the optimization.

We calculate initial values for the optimization from the
Rabi driving theory [49]. First, we transform the time-
dependent Hamiltonian H (ε(t )) into the eigenbasis of the
Hamiltonian at the central position H (ε0) with the basis trans-
formation V (ε0). The eigenvalues of

V (ε0)H (ε0)V (ε0)† = diag(E1, E2, E3, E4) (A7)

are sorted in ascending order E1 � E2 � E3 � E4. We want
to drive the spinlike transition of resonance frequency ωres =
E2 − E1, while the electron remains in the orbital ground
state. The Rabi frequency ωR can be approximated by the
off-diagonal element corresponding to the transition [50]

ωR ≈ A

(
∂H (ε)

∂ε

∣∣∣∣
ε0

)
[0,1]

≈ [H (A) − H (−A)][0,1]. (A8)

3. Rectangular pulse optimization

Tuning the smoothed rectangular pulse is more compli-
cated since we require the pulse to consist of a number NP

of full resonance periods. In addition, we want to avoid a
mixed discrete and continuous optimization for the sake of
simplicity, so we require NP to be constant during the con-
tinuous optimization. In consequence, the pulse length and
frequency cannot be varied independently. We calculate the
optimal number of driving periods before the optimization
and optimize only the time-stretching parameter st and the
duty cycle parameter cdc with a gradient-based optimization
algorithm.

The duty cycle tuning can be used to effectively decrease
the driving strength and thereby change the Rabi frequency
ωR. ωR is maximal when cdc = 0 and drops to zero for cdc = 1.
We want to choose cdc as small as possible because large cdc

FIG. 8. Duty cycle cdc from the pulse optimization belonging
to Figs. 4(c) and 4(d). The discontinuities in cdc correspond to the
changes in pulse length and thus changes in the Rabi frequency ωR

marked by green dashed lines in Figs. 4(c) and 4(d).

values lead to longer pulses and an increased noise suscep-
tibility. Therefore, the optimal Np is the smallest number of
driving periods that are sufficient to realize the target gate.

To give an example for the tuning range of the duty cycle,
Fig. 8 shows the optimized cdc values from the pulse opti-
mization leading to the fidelities plotted in Figs. 4(c) and 4(d).
It can be observed that the optimal cdc rises monotonically
with the amplitude A and the steepness parameter Rtanh to
compensate the increased driving efficiency until NP can be
reduced by one and the optimal cdc value is reset to 0. The
required range of cdc values is related to the number of res-
onance periods NP. The lower NP is, the stronger one needs
to tune cdc to adjust the total pulse time to the next integer
multiple of the resonance time.

a. Rabi frequency estimation

We calculate an estimation of the maximal ωR at cdc = 0
by solving the effective spin Hamiltonian

HS = Ez
σz

2
+ �Bx〈τz〉σx

2
, (A9)

where 〈τz〉 = 〈0|τz|0〉 is the expectation value of the τz oper-
ator in the instantaneous ground state. This expectation value
can be calculated from the orbital Hamiltonian

HO = ε
τz

2
+ 2tc

τx

2
(A10)

and has the analytical solution

〈τz〉 = ε
(
ε − √

ε2 + 4t2
c

)
ε2 − ε

√
ε2 + 4t2

c + 4t2
c

. (A11)

Finally, we calculate the Rabi frequency ωR in the rotating
reference frame as the average over one period of the driving
pulse:

ωR = �Bx
σx

Tres

∫ Tres

0
〈τz(ε(t ))〉dt . (A12)

The discreteness of the pulse leads to systematic errors
even after the optimization. These errors lead only to small

035302-12



FLOPPING-MODE ELECTRON DIPOLE SPIN RESONANCE … PHYSICAL REVIEW B 107, 035302 (2023)

FIG. 9. Landau-Zener-Stückelberg oscillation pattern. (a) Shows
the sum of the accumulated phases ζ1 + ζ2 between transition
through the avoided crossing modulo 2π for the simulation in
Figs. 5(a) and 5(b) in the main text. The pattern can also be found
in the infidelity calculated in the absence of noise plotted in (b).

infidelities but are visible for example as a vertical line in
Figs. 5(a) and 5(b) around Rtanh = 8. At this line, NP changed
by one.

Furthermore, precise initial values are required for the
optimization because the LZS oscillations (see Appendix B)
create such a rough optimization landscape that a pure
gradient-based optimization quickly converges to the nearest
local optimum. We therefore start by simulating a grid of
parameter combinations around the presumed location of the
global optimum. The parameter combination with the lowest
infidelity is then chosen as the initial set of values.

b. Effective Zeeman splitting

We further improve the convergence of the optimization
by introduction of orthogonal control parameters. cdc and st

are not orthogonal, in the sense that any change in cdc alters
the average occupation of the QDs and changes the effective
resonance frequency ωres because of the longitudinal magnetic
field gradient �Bz in the Hamiltonian in (1). We now calculate
the shift in ωres and the corresponding compensation in st

analytically and include it in the pulse parametrization.
For any duty cycle parameter cdc, we spend cdc/2Tres longer

in the right QD. For this time, the resonance frequency is
shifted by �Bz. Thus, the new effective resonance frequency

FIG. 10. Selected energy spectra with parameters of the weak-
driving mode with valley DOF as plotted in Fig. 7. In both plots we
discuss energy spectra for purely real valley splittings in both dots,
i.e., �φ = 0. The red lines mark the operation point in the pulse off-
set ε0 and the plotted range corresponds to 10A. The energy spectra
can explain leakage into certain states. In (a) the energy difference
between the ground and first-excited states equals approximately the
energy splitting between the first- and the third-excited states. In
(b) the energy difference between the ground the the first-excited
states equal approximately the energy difference between the first-
and the second-excited states.

is ω′
res = Ez(1 + cdc�Bz

2Ez
), and we need to multiply st by an

additional correction of sC = 1/(1 + cdc�Bz

2Ez
) ≈ 1 − cdc�Bz

2Ez
.

APPENDIX B: LANDAU-ZENER-STÜCKELBERG
INTERFERENCE

In Figs. 5(a) and 5(b) in the main text, we can weakly
see an oscillation pattern in the infidelity. This pattern can be
explained by Landau-Zener-Stückelberg (LZS) interferometry
[40]. The LZS theory describes coherent excitations that occur
as result of periodic passages of an avoided crossing. Driving
the detuning induces such passages in the orbital DOF in
the flopping-mode qubit, where the avoided crossing is at
the minimum of the orbital splitting at ε = 0 and excitations
correspond to leakage into the excited orbital state. The reso-
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FIG. 11. (a) Reproduction of the infidelity in Fig. 4(b) in [20] measured by Croot et al. The simulation was performed with the parameters
measured in [20]. We therefore used magnetic field gradients of �Bx = 15 mT and �Bz = 0.27 mT, a total magnetic field of Bz = 209.4 mT,
a tunnel coupling of 2tc = 23 µeV, and quasistatic noise with a standard deviation of σε = 0.5 µeV. (b) Reproduction of the infidelity in
Fig. 4(b) in [21] simulated by Benito et al. A second-order charge noise sweet spot at about tc = 13 µeV can be seen, but the minimum is shifted
towards the center ε = 0. The simulation was performed with the parameters employed in [20]. We therefore used magnetic field gradients
�Bx = 17.3 mT and �Bz = 4.32 mT at a total magnetic field of Bz = 207 mT, driving with an amplitude of A = 2.1 µeV and simulating
quasistatic noise of standard deviation σε/h̄ = 2.5 µeV. (c), (d) Show the coherent simulation of the flopping-mode qubit including the valley
splitting but without noise. The simulation was performed with the same parameters as in Fig. 6. The infidelity (c) and the leakage (d) look
almost identical, indicating that leakage is the dominant contribution to the infidelity.

nance condition for LZS interferometry is linked to the phases
ζ1 and ζ2 accumulated between the passages of the avoided
crossing. In the slow-passage limit, the resonance condition
can be reduced to

ζ1 + ζ2 + 2φS = kπ, k ∈ N, (B1)

where φS is the Stückelberg phase. The correspondence be-
tween the resonance pattern in the infidelity in Figs. 5(a)
or 9(b) and the sum of the accumulated phases in Fig. 9(a)
indicates that LZS oscillations pose the main contribution of
infidelity in the absence of noise in this simulation.

APPENDIX C: HARMONIC EXCITATION

This Appendix discusses the energy spectrum of valley-
splitting model to explain features in Fig. 7. For the plots in
Fig. 10, we select two points of interest from the simulation
with a purely real valley parameter �R = 18 µeV in (a) and
�R = 80 µeV in (b). At these points we observe a local in-
crease in the infidelity in Fig. 7 that cannot be explained with
diabatic valley excitation because the valley phase difference
is zero.

We explain these features in the infidelity by harmonic
excitation, in the sense that multiple transitions have an
energy splitting identical to the driven transition. The Hamil-

tonian HV (ε0) from Eq. (12) has the eigenvalues e1, . . . , e8 in
ascending order and eigenvectors v1, . . . , v8, where v1 and
v2 span the computational space. Thus, our pulse is driven
with the frequency e2 − e1 = ω ≈ Ez. Now we observe an
increase in the leakage into state v4 for �R = 18 µeV in our
simulation. The reason for this increase in leakage is that
e2 − e1 = ω ≈ e4 − e2 as can be seen in Fig. 10(a). Simi-
larly, we observe leakage into v3 around �R = 80 µeV and
Fig. 10(b) shows that here ω ≈ e3 − e2 holds. We conclude
that the observed leakage increases at these points because
our pulse drives multiple transitions resonantly with the same
energy difference.

APPENDIX D: REPRODUCTION CROOT ET AL.

Croot et al. demonstrated the feasibility of flopping-mode
driving experimentally [20]. They leveraged the large electric
dipole moment to increase the driving efficiency by nearly
three orders of magnitude in the zero detuning configuration.
This enabled them to reach Rabi frequencies of up to 8 MHz
with about 250 times less microwave power compared to
standard EDSR.

We qualitatively reproduce Fig. 4(b) from [20] by sweep-
ing the static offset ε0 and the driving amplitude A. Our results
are plotted in Fig. 11(a) and the simulation reproduces the
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FIG. 12. Spectral analysis of example smoothed rectangular pulses. In (a) and (b) the smoothed rectangular pulses with steepness
parameters Rtanh = 8 and 14 are plotted. The other pulse parameters are calculated for Ez/(gμB ) = 20 mT, �Bx = 2 mT, �Bz = 0.4 mT,
tc = 100 µeV, and A = 400 µeV, as they appear for example in Fig. 4. It can be observed that the larger Rtanh leads to sharper transitions in
the pulse. The absolute values of the corresponding Fourier transforms are plotted in (c) and (d), where the black dashed line marks a cutoff
frequency of fc = 3 GHz. In (e) the rising flank of both pulses is plotted with the same pulses when generated with a cutoff frequency fc. Due
to the symmetry and periodicity, the plot contains the full pulse information. For simplicity, we use a symmetric filter not respecting causality
for this illustration. It can be seen that a bandwidth of 0 to fc is sufficient to generate the smoother pulse with Rtanh = 8 but is insufficient for
the sharper pulse with Rtanh = 14.

fidelity maximum near zero detuning offset ε0 = 0 with a
slight shift to positive detuning offsets. Croot et al. do not
find the local infidelity maximum at the spin-orbit degeneracy
point, possibly because they sample the offset ε0 too coarsely
or because other dephasing channels dominate. We cannot re-
produce their high Rabi frequencies for large detuning offsets
|ε| > 30 µeV, likely because the electron is strongly confined
for these values such that the driving relies on shifts of the
QD, which are not included in our model.

APPENDIX E: REPRODUCTION BENITO ET AL.

Benito et al. investigated the susceptibility of the flopping-
mode qubit to electric noise with analytical calculations. They
predicted a second-order sweet spot for the qubit, where it
would be insensitive to quasistatic detuning shifts up to sec-
ond order. We can reproduce a local minimum in the infidelity
but it is shifted more towards the symmetric position ε = 0.
The differences between Figs. 11(b) and 4(b) in [21] can be
explained by the fact that the numerical simulations capture
the influence of leakage explicitly than the analytical calcula-
tions employed in [21].

The main difference between the driving mode inves-
tigated in [20,21] and the driving mode presented in this

paper are the relations of magnetic field strengths, tunnel
coupling, and driving amplitude. They operate at a much
larger spin-orbit mixing and achieve a better relation of Rabi
frequency to driving power at the cost of an increased noise
susceptibility.

APPENDIX F: PULSE BANDWIDTH

In this Appendix, we present an example analysis of the
bandwidth required to generate the discussed smoothed rect-
angular pulses. In Fig. 12, we show two pulses of different
steepness for typical parameters used in the simulations. The
plots of the pulses in Figs. 12(a) and 12(b) show again the
influence of the steepness parameter Rtanh and the correspond-
ing Fourier transform in Figs. 12(d) and 12(e) show that the
sharper pulse has a larger spectral weight at higher frequen-
cies, as expected.

To investigate the influence of a limited bandwidth, we
apply a cutoff at fc = 3 GHz and apply the inverse Fourier
transformation. The rising flank of the resulting pulse is
plotted in Fig. 12(e), where it can be observed that the
pulse with Rtanh = 8 is not significantly deformed, while
the the pulse with Rtanh = 14 is smoothed by the applica-
tion of the cutoff frequency. Note that the simulation results
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indicate that the accuracy of the transition is much more
important that the exact shape at the plateaus, where the pulse
values saturate ε ≈ A. We conclude that the proposed pulses
with appropriate pulse steepness can be generated by com-

mercially available arbitrary waveform generators. Following
this procedure, the required bandwidth can be found for any
parameter set. The two critical parameters are the pulse steep-
ness Rtanh and the resonance frequency determined by Ez.
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