a) Twisted graphene-TMDC heterostructure with inter-layer separation d⊥. b) The twist angle θ controls the induced spin-orbit coupling λVZ in graphene [11] around the K (-K) point, shown in blue (orange). Dashed black line: exact diagonalization at the K point.

2D materials

The low nuclear spin density and weak spin-orbit coupling make graphene – a two-dimensional crystal of carbon – an interesting material to study and probe the coherence and dynamics the spins of (pseudo-) Dirac electrons [1]. Among the interesting challenges is the confinement of effectively massless particles in a gapless semiconductor (or semimetal) e.g. in graphene nanoribbons [1] or bilayer graphene [2,3]. Quantum dots in graphene have been realized experimentally using nanostructured samples [4], as well as both of the above approaches to confinement [4-6]. In contrast to graphene, the monolayer transition-metal dichalcogenides (TMDCs) constitute two-dimensional semiconductors with a finite band gap and a relatively strong spin-orbit coupling. Spin-related (and other) properties of these materials can be studied with a symmetry-based effective Hamiltonian approach combined with k.p theory [7-9]. It is interesting that spin-orbit coupling can turn graphene into a topological insulator [10], but the intrinsic spin-orbit interaction is too weak to open a noticeable topological gap. We explore the induced spin-orbit coupling in graphene combined with TMDCs in twisted van der Waals heterostructures [11] and found an interesting twist-angle dependent induced spin-orbit coupling (see Figure).


Figure (a) Twisted graphene-TMDC heterostructure with inter-layer separation d. (b) The twist angle θ controls the induced spin-orbit coupling λVZ in graphene [11] around the K (-K) point, shown in blue (orange). Dashed black line: exact diagonalization at the K point.

[1] B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, Nature Physics 3, 192 (2007)
[2] P. Recher, J. Nilsson, G. Burkard, and B. Trauzettel, Phys. Rev. B 79, 085407 (2009)
[3] S. Schnez, K. Ensslin, M. Sigrist, and T. Ihn, Phys. Rev. B 78, 195427 (2008)
[4] J. Güttinger, C. Stampfer, S. Hellmüller, F. Molitor, T. Ihn, and K. Ensslin, Appl. Phys. Lett. 93, 212102 (2008)
[5] X. L. Liu, D. Hug, and L. M. K. Vandersypen, Nano Lett. 10, 1623 (2010); M. T. Allen, J. Martin, and A. Yacoby, Nature Comm. 3, 934 (2012)
[6] M. Eich, R. Pisoni, A. Pally, H. Overweg, A. Kurzmann, Y. Lee, P. Rickhaus, K. Watanabe, T. Taniguchi, K. Ensslin, and T. Ihn, Nano Lett. 18, 5042 (2018)
[7] A. Kormányos, V. Zólyomi, N.D. Drummond, P. Rakyta, G. Burkard, V. I. Fal'ko, Phys. Rev. B 88, 045416 (2013)
[8] A. Kormányos, V. Zólyomi, N. D. Drummond, and G. Burkard, Phys. Rev. X 4, 011034 (2014)
[9] A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. I. Fal'ko, 2D Materials 2, 022001 (2015)
[10] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005)
[11] A. David, P. Rakyta, A. Kormányos, and G. Burkard, Phys. Rev. B 100, 085412 (2019)